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Applications of the large deviation technique
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1 Safety capital for an insurance company

Consider some insurance company which needs to decide on the amount of cap-
ital Sy it needs to hold to avoid the cash flow issue. Suppose the insurance pre-
mium per month is a fixed (non-random) quantity C' > 0. Suppose the claims
are i.i.d. random variable Ay > 0 for the time N = 1,2,---. Then the capital
attime N is Sy = So + ZTJLI(C — A,,). The company wishes to avoid the
situation where the cash flow Sy is negative. Thus it needs to decide on the
capital Sy so that P(3N, Sy < 0) is small. Obviously this involves a tradeoff
between the "smallness” and the amount Sy. Let us assume that upper bound
0 = 0.001, namely 0.1% is acceptable (in fact this is pretty close to the banking
regulation standards). We have
N
P3N, Sy < 0) = P(min 5o + > (C-4,)<0)

n=1
N
= ]P’(m]\z}x z:I(An —C) > Sy)
If E[A)] > C, we have P(maxy >0, (4, — C) > Sp) = 1. Thus, the
interesting case is E[A;] < C (negative drift), and the goal is to determine the

starting capital Sy such that

N
— > < 0.
]P’(m]\z}anl(An C)>8y) <6
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2 Buffer overflow in a queueing system

The following model is a variant of a classical so called GI/GI/1 queueing sys-
tem. In application to communication systems this queueing system consists of
a single server, which processes some C' > 0 number of communication packets
per unit of time. Here C'is a fixed deterministic constant. Let A,, be the random
number packets arriving at time n, and @Q,, be the queue length at time n (asume
(Q0=0). By recursion, we have that

QN = max(QN,l + Ay —C, 0)
=max(Qn_2+ An-_1+ Ay — 2C, Ax — C,0)

n

= IS%_IEMM - C),0)

Notice, that in distributional sense we have

QN = max <1§I%a§_1 (Z(AN—k - C)) ,0>

k=1

In steady state, i.e. N = oo, we have

Qo = max <T§¥;<Ak — C),O)

Our goal is to design the size of the queue length storage (buffer) B, so that
the likelihood that the number of packets in the queue exceeds B is small. In
communication application this is important since every packet not fitting into
the buffer is dropped. Thus the goal is to find buffer size B > 0 such that

P(Qo > B) <6 = P(rrrllgi(;(Ak —-C)>B)<94

IfE[A;] > C, we have P(Q~ > B) = 1. So the interesting case is E[A4;] < C
(negative drift).

3 Buffer overflow probability

We see that in both situations we need to estimate

P(max . (A, —C) > B).

n>1
k=1

We will do this asymptoticlly as B — ~o.



Theorem 1. Given an i.i.d. sequence A, > 0for n > 1 and C > E[A,].
Suppose
M(0) = E[exp(8A)] < oo, for somed € [0,6).

Then

1 - _ _
Blgnoo B 10g]?(1£1§i{];(14k —C)>B)=—sup{f >0: M(0) <exp(6C)}

Observe that since A,, is non-negative, the MGF E[exp(6A,,)] is finite for
f < 0. Thus it is finite in an interval containing ¢ = 0, and applying the result
of Lecture 2 we can take the derivative of MGF. Then

4 rro)

d
7 =E[A], — exp(0C) =C

0=0 do 0=0

Since E[A,,] < C, then there exists small enough 6 so that M (0) < exp(6C),

4 M)

exp(6C)

|

|

|

|

|

|

|

i -

o %

Figure 1: Illustration for the existance of 6 such that M (0) < exp(0C)

and thus the set of & > 0 for which this is the case is non-empty. (see Figure 1).
The theorem says that roughly speaking

P(max Y (A —C) > B) ~ exp(—0*B),
k=1

when B is large. Thus given ¢ select B such that exp(—6*B) < §, and we can
set B = 9% log %.



Example. Let A be a random variable uniformly distributed in [0, a] and C' = 2.
Then, the moment generating function of A is

M(0) = / exp(0t)a-Ldt = S0V =1

0 fa
Then
exp(fa) — 1
fa

Case 1: a = 3, we have 6* = sup{f > 0 : exp(36) — 1 < 30exp(20)}, i.e.
0* = 1.54078.
Case 2: a = 4, we have that {0 > 0 : exp(30) — 1 < 30exp(20)} = @ since
E[4A]=2=C.
Case 3: a = 2, we have that {# > 0 : exp(36) — 1 < 3fexp(20)} = Ry
and thus 6* = oo, which implies that P(max,, Y ,_,(A; — C) > B) = 0 by
theorem 1.

sup{f > 0: M(0) < exp(6C)} = sup{f > 0: < exp(20)}

Proof of Theorem 1. We will first prove an upper bound and then a lower bound.
Combining them yields the result. For the upper bound, we have that

n

P(maxy (4~ C) = B) < Y P(Y (A4 —~C) > B)
k=1

n=1 k=1
o9 n

1 B
= P(— A, >C+ —
2P Az )

<3 exp(—n(B(C + ) ~log M(#))) (6> 0)
n=1

= exp(—0B) Z exp(—n(0C — log M (0)))

n>1
Fix any 6 such that C' > log M (#), the inequality above gives
< exp(—0B) > exp(—n(0C — log M(0)))
n>0
= exp(—0B)[1 — exp(—(4C — log M(6)))] !
Simplification of the inequality above gives
1

5 log]P’(mgLX Z(Ak —C)>B)< -0+ %log([l — exp(—(0C —log M(6)))] )

k=1
= lim sup % log P(max Y (A — C) > B) < —0 for ¥0 : M(6) < exp(6C)

n
B—oo h—1



Next, we will derive the lower bound.

P(max » (Ax —C) > B) > P()_(Ax — C) > B),¥n
k=1
Fixat¢ > 0, then

n [Bt]
P(max ) (A~ C) > B) > P(})_(Ax —C) > B)
k=1

Then, we have

o] -
hmBlnf B log ]P’(mrzllx ;(Ak —C) > B)

1 [Bt] [ t—|
> lim inf — log P d (A -C) = —

t
k=1

t
k=1

¢ 3] [Bt]
= lirr}ginfmlogp Z(Ak -C)>——

1 = n
— ¢liminf — S —0)> =
thmnlnf - log ]P’(k_l(Ak. c) > t)
] RN 1
= tliminf — log P(— g AkZC—i—;)
non n
k=1

> —t inf I(z) (by Cramer’stheorem.)
x>C+%

> —inft inf I(xz) (since we can choose an arbitrary positive ¢.) (1)
t>0 z>C41

We claim that

1
—inft inf I(z)=—inftI(C+ -)
>0 z>041 t>0 t

Indeed, let z* = inf x : I(x) = oo (possibly z* = o). If * < C, then I(C +
1) = occ. Suppose C' < z*. If tissuch that C'+ 1 > 2*, theninf _ . 1 I(x) =

t
oo. Therefore it does not make sense to consider such ¢. Now for ¢ + % < x¥,
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we have I is convex non-decreasing and finite on [E[A;], z*). Therefore it is
continuous on [E[A;], z*), which gives that

1
inf I(x)=1(C+-)
x>C+% t

and the claim follows. Thus, we obtain

1 E 1
o1 COYS B> i 1
lgri)lor(l)f 5 log P(mr?x kg_l(Ak C)>B)> 7%r>1£ tI(C + t)

Exercise in HW 2 shows that sup{# > 0 : M (0) < exp(C#)} = infy~ tI(C +
1
i)
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