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Applications of the large deviation technique 
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1. Insurance problem 

2. Queueing problem 

3. Buffer overflow probability 

Safety capital for an insurance company 

Consider some insurance company which needs to decide on the amount of cap­
ital S0 it needs to hold to avoid the cash flow issue. Suppose the insurance pre­
mium per month is a fixed (non-random) quantity C > 0. Suppose the claims 
are i.i.d. random variable AN ≥ 0 for the time N = 1, 2, · · · . Then the capital 

L

Nat time N is SN = S0 + (C − An). The company wishes to avoid the 
n=1

situation where the cash flow SN is negative. Thus it needs to decide on the 
capital S0 so that P(∃N,SN ≤ 0) is small. Obviously this involves a tradeoff 
between the ”smallness” and the amount S0. Let us assume that upper bound 
δ = 0.001, namely 0.1% is acceptable (in fact this is pretty close to the banking 
regulation standards). We have 

N 
) 

P(∃N,SN ≤ 0) = P(min S0 + (C −An) ≤ 0) 
N 

n=1 

N 
) 

= P(max (An − C) ≥ S0) 
N 

n=1 
L

NIf E[A1] ≥ C , we have P(maxN (An − C) ≥ S0) = 1. Thus, the 
n=1

interesting case is E[A1] < C (negative drift), and the goal is to determine the 
starting capital S0 such that 

N 
)

P(max (An − C) ≥ S0) ≤ δ. 
N 

n=1 
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Buffer overflow in a queueing system 

The following model is a variant of a classical so called GI/GI/1 queueing sys­
tem. In application to communication systems this queueing system consists of 
a single server, which processes some C > 0 number of communication packets 
per unit of time. Here C is a fixed deterministic constant. Let An be the random 
number packets arriving at time n, and Qn be the queue length at time n (asume 
Q0=0). By recursion, we have that 

QN = max(QN−1 + AN − C, 0) 

= max(QN−2 + AN−1 + AN − 2C,AN − C, 0) 
n 
)

= max ( (AN−k − C), 0) 
1≤n≤N−1 

k=1 

Notice, that in distributional sense we have 
    

n 
)

QN = max max (AN−k − C) , 0
1≤n≤N−1

k=1 

In steady state, i.e. N = ∞, we have 
  

n 
)

Q∞ = max max (Ak − C), 0
n≥1 

k=1 

Our goal is to design the size of the queue length storage (buffer) B, so that 
the likelihood that the number of packets in the queue exceeds B is small. In 
communication application this is important since every packet not fitting into 
the buffer is dropped. Thus the goal is to find buffer size B > 0 such that 

n 
)

P(Q∞ ≥ B) ≤ δ ⇒ P(max (Ak − C) ≥ B) ≤ δ 
n≥1 

k=1 

If E[A1] ≥ C , we have P(Q∞ ≥ B) = 1. So the interesting case is E[A1] < C 

(negative drift). 

Buffer overflow probability 

We see that in both situations we need to estimate 
n 
)

P(max (Ak − C) ≥ B). 
n≥1 

k=1 

We will do this asymptoticlly as B → ∞. 
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Theorem 1. Given an i.i.d. sequence An ≥ 0 for n ≥ 1 and C > E[A1]. 
Suppose 

M(θ) = E[exp(θA)] < ∞, for some θ ∈ [0, θ0). 

Then 

n 
)1 

lim log P(max (Ak −C) ≥ B) = − sup{θ > 0 : M(θ) < exp(θC)} 
B→∞ B n≥1 

k=1 

Observe that since An is non-negative, the MGF E[exp(θAn)] is finite for 
θ < 0. Thus it is finite in an interval containing θ = 0, and applying the result 
of Lecture 2 we can take the derivative of MGF. Then 

d � d � 
M(θ) = E[A], exp(θC) = C 

dθ dθ 
θ=0 θ=0 

Since E[An] < C , then there exists small enough θ so that M(θ) < exp(θC), 

( )M θ 
exp( )Cθ

1 

θ * θ 

Figure 1: Illustration for the existance of θ such that M(θ) < exp(θC) 
. 

and thus the set of θ > 0 for which this is the case is non-empty. (see Figure 1). 
The theorem says that roughly speaking 

n 
)

P(max (Ak − C) ≥ B) ∼ exp(−θ ∗ B), 
n
 

k=1
 

when B is large. Thus given δ select B such that exp(−θ ∗ B) ≤ δ, and we can 
1set B = log 1 .
θ∗ δ
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Example. Let A be a random variable uniformly distributed in [0, a] and C = 2. 
Then, the moment generating function of A is 

 

a exp(θa) − 1 
exp(θt)a −1 dt = 

θa
 
M(θ) =


0 

Then 
exp(θa) − 1 

sup{θ > 0 : M(θ) ≤ exp(θC)} = sup{θ > 0 : ≤ exp(2θ)}
θa 

Case 1: a = 3, we have θ ∗ = sup{θ > 0 : exp(3θ) − 1 ≤ 3θ exp(2θ)}, i.e. 
θ ∗ = 1.54078. 
Case 2: a = 4, we have that {θ > 0 : exp(3θ) − 1 ≤ 3θ exp(2θ)} = Ø since 
E[A] = 2 = C .
 
Case 3: a = 2, we have that {θ > 0 : exp(3θ) − 1 ≤ 3θ exp(2θ)} = R+
 

and thus θ ∗ =
 ∞, which implies that P(maxn 
L


n 

k=1
(Ak − C) ≥ B) = 0 by 

theorem 1. 

Proof of Theorem 1. We will first prove an upper bound and then a lower bound. 
Combining them yields the result. For the upper bound, we have that 

)

n 
)

n=1 k=1 

)

∞ 
)

n=1 k=1 
∞ 

n ∞ 

(Ak − C) ≥ B) ≤ 
k=1 

)

P(max P(
 (Ak − C) ≥ B) 
n 

n
1
 B
 

P(
 Ak ≥ C + )=
 
n
 n
 

B
)

n=1 

= exp(−θB)

≤
 exp(−n(θ(C + ) − log M(θ))) (θ > 0) 
n 

)

)

n≥1 

Fix any θ such that θC ≥ log M(θ), the inequality above gives 

n≥0 

= exp(−θB)[1 − exp(−(θC − log M(θ)))]−1 

exp(−n(θC − log M(θ))) 

≤ exp(−θB) exp(−n(θC − log M(θ))) 

Simplification of the inequality above gives 
n

1
 1 
log([1 − exp(−(θC − log M(θ)))]−1)

)

k=1 

⇒ lim sup log P(max 

log P(max (Ak − C) ≥ B) ≤ −θ + 
B
 B
n 

)

n 

k=1 

1
 
(Ak − C) ≥ B) ≤ −θ for ∀θ : M(θ) < exp(θC)

B
 nB→∞ 
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Next, we will derive the lower bound. 

n n 
) )

P(max (Ak − C) ≥ B) ≥ P( (Ak − C) ≥ B),∀n 
n
 

k=1 k=1
 

Fix a t > 0, then 

n ⌈Bt⌉ 
) )

P(max (Ak − C) ≥ B) ≥ P( (Ak −C) ≥ B) 
n
 

k=1 k=1
 
  

⌈Bt⌉ 
) ⌈Bt⌉ 

≥ P  (Ak − C) ≥  
t 

k=1 

Then, we have 

n 
)1 

lim inf log P(max (Ak − C) ≥ B) 
B B n 

k=1 
  

⌈Bt⌉ 
)1 ⌈Bt⌉ 

≥ lim inf log P  (Ak − C) ≥  
B B t 

k=1 
  

⌈Bt⌉ 
)t ⌈Bt⌉ 

= lim inf log P  (Ak − C) ≥  
B ⌈Bt⌉ t 

k=1 

n 
)1 n 

= t lim inf log P( (Ak − C) ≥ ) 
n n t 

k=1
 
n
 
)1 1 1 

= t lim inf log P( Ak ≥ C + ) 
n n n t

k=1 

≥ −t inf I(x) (by Cramer’s theorem.) 
1

x>C+ 
t 

≥ − inf t inf I(x) (since we can choose an arbitrary positive t. ) (1) 
1t>0 x>C+ 
t 

We claim that 
1 

− inf t inf I(x) = − inf tI(C + )
1 tt>0 t>0x>C+ 
t 

∗Indeed, let x ∗ = inf x : I(x) = ∞ (possibly x = ∞). If x ∗ ≤ C , then I(C + 
1 ) = ∞. Suppose C < x ∗. If t is such that C+ 1 ≥ x ∗, then inf 1 I(x) = 
t t x>C+ 

t 
∗∞. Therefore it does not make sense to consider such t. Now for c + 1 < x ,

t 
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t 

we have I is convex non-decreasing and finite on [E[A1], x 
∗). Therefore it is 

continuous on [E[A1], x 
∗), which gives that 

1 
inf I(x) = I(C + )

1 tx>C+ 

and the claim follows. Thus, we obtain 

n 
)1 1 

lim inf log P(max (Ak −C) ≥ B) ≥ − inf tI(C + ) 
B→∞ B n t>0 t

k=1 

1 
Exercise in HW 2 shows that sup{θ > 0 : M(θ) < exp(Cθ)} = inft>0 tI(C + 
). 

t 
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