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1 Technical preliminary: stopping times 

Stopping times are loosely speaking ”rules” by which we interrupt the process 
without looking at the process after it was interrupted. For example ”sell your 
stock the first time it hits $20 per share” is a stopping rule. Whereas, ”sell your 
stock one day before it hits $20 per share” is not a stopping rule, since we do 
not know the day (if any) when it hits this price. 

Given a stochastic process {Xt}t≥0 with t ∈ Z+ or t ∈ R+, a random variable 
T is called a stopping time if for every time the event T ≤ t is completely 
determined by the history {Xs}0≤s≤t. 

This is not a formal definition. The formal definition will be given later when 
we study filtration. Then we will give the definition in terms of the underlying 
(Ω, F , P). For now, though, let us just adopt this loose definition. 

2 The Reflection principle. The distribution of the maximum 

The goal of this section is to obtain the distribution of 

M(t) £ sup B(s) 
0≤s≤t 

1 



for any given t. Surprisingly the resulting expression is very simple and follows 
from one of the key properties of the Brownian motion – the reflection principle. 

Given a > 0, define 

Ta = inf{t : B(t) = a} 

– the first time when Brownian motion hits level a. When no such time exists 
we define Ta = ∞, although we now show that it is finite almost surely. 

Proposition 1. Ta < ∞ almost surely. 

Proof. Note that if B hits some level b ≥ a almost surely, then by continuity 
and since B(0) = 0, it hits level a almost surely. Therefore, it suffices to prove 
that lim supt B(t) = ∞ almost surely. This in its own order will follow from 
lim sup B(n) = ∞ almost surely. n 

Problem 1. Prove that lim sup |B(n)| = ∞ almost surely. n 

The differential property of the Brownian motion suggests that 

B(Ta + s) − B(Ta) = B(Ta + s) − a (1) 

is also a Brownian motion, independent from B(t), t ≤ Ta. The only issue here 
is that Ta is a random instance and the differential property was established for 
fixed times t. Turns out (we do not prove this) the differential property also holds 
for a random time Ta, since it is a stopping time and is finite almost surely. The 
first is an immediate consequence of its definition: we can determine whether 
Ta ≤ t by checking looking at the path B(u), 0 ≤ u ≤ t. The almost sure 
finiteness was established in Proposition 1. The property (1) is called the strong 
independent increments property of the Brownian motion. 

Theorem 1 (The reflection principle). Given a standard Brownian motion 
B(t), for every a ≥ 0  ∞ 21 − x 

P(M(t) ≥ a) = 2P(B(t) ≥ a) = 2 √ e 2t dx. (2)
2πt a 

Proof. We have 

P(B(t) ≥ a) = P(B(t) ≥ a, M(t) ≥ a) + P(B(t) ≥ a, M(t) < a). 

2 



Note, however, that P(B(t) ≥ a, M(t) < a) = 0 since M(t) ≥ B(t). Now
 

P(B(t) ≥ a, M(t) ≥ a) = P(B(t) ≥ a|M(t) ≥ a)P(M(t) ≥ a) 
= P(B(t) ≥ a|Ta ≤ t)P(M(t) ≥ a). 

We have that B(Ta + s) − a is a Brownian motion. Conditioned on Ta ≤ t, 

1
P(B(t) ≥ a|Ta ≤ t) = P(B(Ta + (t − Ta)) − a ≥ 0|Ta ≤ t) = 

2 

since the Brownian motion satisfies P(B(t) ≥ 0) = 1/2 for every t. Applying 
this identity, we obtain 

1
P(B(t) ≥ a) = P(M(t) ≥ a). 
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This establishes the required identity (2). 

We now establish the joint probability distribution of M(t) and B(t). 

Proposition 2. For every a > 0, y ≥ 0 

P(M(t) ≥ a, B(t) ≤ a − y) = P(B(t) > a + y). (3) 

Proof. We have 

P(B(t) > a + y) = P(B(t) > a + y, M(t) ≥ a) + P(B(t) > a + y, M(t) < a) 
= P(B(t) > a + y, M(t) ≥ a) 
= P(B(Ta + (t − Ta)) − a > y|M(t) ≥ a)P(M(t) ≥ a). 

But since B(Ta + (t − Ta)) − a, by differential property is also a Brownian 
motion, then, by symmetry 

P(B(Ta + (t − Ta)) − a > y|M(t) ≥ a) 
= P(B(Ta + (t − Ta)) − a < −y|M(t) ≥ a) 
= P(B(t) < a − y|M(t) ≥ a). 

We conclude 

P(B(t) > a + y) = P(B(t) < a − y|M(t) ≥ a)P(M(t) ≥ a) 
= P(B(t) < a − y, M(t) ≥ a). 
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We now compute the Laplace transform of the hitting time Ta. 

Proposition 3. For every λ > 0 
√ 

− 2λa E[e −λTa ] = e . 

Proof. We first compute the density of Ta. We have 

22 ∞
− x 

P(Ta ≤ t) = P(M(t) ≥ a) = 2P(B(t) ≥ a) = √ e 2t dx = 2(1 − N(
2πt a 

By differentiating with respect to t we obtain that the density of Ta is given as 

a 1 − a 2 

e3 √ 2t . 
t 2 2π 

Therefore 
∞ 2a − a−λtE[e −λTa ] = e 3 √ e 2t dt. 

0 t 2 2π 

Computing this integral is a boring exercise in calculus. We just state the result √  
− 2λa  which is e . 

Brownian motion with drift 

So far we considered a Brownian motion which is characterized by zero mean 
and some variance parameter σ2. The standard Brownian motion is the special 
case σ = 1. 

There is a natural way to extend this process to a non-zero mean process 
by considering Bµ(t) = µt + B(t), given a Brownian motion B(t). Some 
properties of Bµ(t) follow immediately. For example given s < t, the in­
crements Bµ(t) − Bµ(s) have mean µ(t − s) and variance σ2(t − s). Also, 
by the Time Reversal property of B (see the previous lecture) we know that 
limt→∞(1/t)B(t) = 0 almost surely. Therefore, almost surely 

Bµ(t)
lim = µ. 
t→∞ t 

When µ < 0 this means that Mµ(∞) £ supt≥0 Bµ(t) < ∞ almost surely. On 
the other hand Mµ(∞) ≥ 0 (why?). 

Our goal now is to compute the probability distribution of Mµ(∞). 
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Theorem 2. For every µ < 0, the distribution of Mµ(∞) is exponential with 
parameter 2|µ|/σ. Namely, for every x ≥ 0 

2|µ|x−P(Mµ(∞) > x) = e σ . 

The direct proof of this result can be found in Section 6.8 of Resnick’s 
book [3]. The proof consists of two parts. We first show that the distribution 
of Mµ(∞) is exponential. Then we compute its parameter. 

Later on we will study an alternative proof based on the optional stopping 
theory for martingale processes. 

Additional reading materials 

•	 Sections 6.5 and 6.8 from Chapter 6 of Resnick’s book ”Adventures in 
Stochastic Processes”. 

•	 Sections 7.3 and 7.4 in Durrett [2]. 

•	 Billingsley [1], Section 9. 
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