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Quadratic variation property of Brownian motion
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1 Unbounded variation of a Brownian motion

Any sequence of values 0 < ¢y < t; < --- < t, < T is called a partition I =
II(tp,...,t,) of an interval [0, T]. Given a continuous function f : [0,7] — R
its total variation is defined to be

LV(f) = sup > 1) = Fte-)l,

1<k<n

where the supremum is taken over all possible partitions II of the interval [0, T']
for all n. A function f is defined to have bounded variation if its total variation
is finite.

Theorem 1. Almost surely no path of a Brownian motion has bounded variation
for every T' > 0. Namely, for every T

P(w: LV(B(w)) < c0) = 0.

The main tool is to use the following result from real analysis, which we do
not prove: if a function f has bounded variation on [0, T'] then it is differentiable
almost everywhere on [0, T']. We will now show that quite the opposite is true.

Proposition 1. Brownian motion is almost surely nowhere differentiable. Specif-
ically,

B(t+h)— B(t
P(Vt>0:limsup| (t+h) ®)

=o0) = 1.
h—0 h | )



Proof. Fix T > 0, M > 0 and consider A(M,T) C C[0,00) — the set of all
paths w € C[0, 00) such that there exists at least one point ¢ € [0, T'] such that

B(t+h) — B(t
lim sup | (t+h) ®)

< M.
h—0 h |_

We claim that P(A(M,T)) = 0. This implies P(Upr>1A(M,T)) = 0 which
is what we need. Then we take a union of the sets A(M,T) with increasing T
and conclude that B is almost surely nowhere differentiable on [0, 00). If w €
A(M,T), then there exists ¢ € [0, 7] and n such that | B(s) — B(t)| < 2M|s—t]
forall s € (t — 2,¢ + 2). Now define 4,, C C[0,00) to be the set of all paths
w such that for some ¢ € [0, T']

[B(s) — B(t)| < 2M|s — |
forall s € (t — 2,t + 2). Then
A, C A (1)
and
A(M,T) C UpA,. (2)
Find & = max{j : % < t}. Define

k k—1

k+2 kE+1 E+1 )_B(T)’}

Y}, = max{| B( - ) — B( ) 1B(

n n

k
— B(—)|,|B(—
)= BOLIBC
In other words, consider the maximum increment of the Brownian motion over

these three short intervals. We claim that Y, < 6M /n for every path w € A,,.
To prove the bound required bound on Y}, we first consider

k+2 E+1 k+2 E+1

B(2) = B < B(2) - Bl + 1B() - B(——))
§2M%+2M%
6 M
< —

The other two differences are analyzed similarly.

Now consider event B,, which is the set of all paths w such that Y3 (w) < 6M/n
for some 0 < k < T'n. We showed that A,, C B,,. We claim that lim,, P(B,,) =



0. Combining this with (1), we conclude P(A,,) = 0. Combining with (2), this
will imply that P(A(M,T')) = 0 and we will be done.

Now to obtain the required bound on P(B,,) we note that, since the incre-
ments of a Brownian motion are independent and identically distributed, then

P(B,) < Y  P(Yp <6M/n)

0<k<Tn
< TnB(max{|B() ~ BC)LIBC) — BB ~ BO)]} < 6M/n)
= Tl B()| < 6M/m)* G

Finally, we just analyze this probability. We have
1
P(IB(-)] < 6M/n) = P(B(1)| < 6M//n).

Since B(1) which has the standard normal distribution, its density at any point is
at most 1/+/27, then we have that this probability is at a most (2(6M)/+/27n).
We conclude that the expression in (3) is, ignoring constants, O(n(1/y/n)3) =
O(1/4/n) and thus converges to zero as n — oo. We proved lim,, P(B,) =
0. O

2 Bounded quadratic variation of a Brownian motion

Even though Brownian motion is nowhere differentiable and has unbounded
total variation, it turns out that it has bounded quadratic variation. This observa-
tion is the cornerstone of Ito calculus, which we will study later in this course.

We again start with partitions I = TI(¢,...,t,) of a fixed interval [0, T,
but now consider instead

QULB) 2 Y (B(ty) — B(ty-1))*
1<k<n
where, we make (without loss of generality) tp = 0 and ¢,, = T. For every

partition II define

A(TT) = te —tp_1l.
(IT) @?é‘n’k k-1l

Theorem 2. Consider an arbitrary sequence of partitions I1;,,1 = 1,2, .. .. Sup-
pose lim;_, A(I1;) = 0. Then

lim E[(Q(II;, B) — T)? = 0. 0))

1—00



Suppose in addition lim; . i*A(I;) = 0 (that is the resolution A(I1;) con-
verges to zero faster than 1/i?). Then almost surely

Q(1;,B) = T. 5)

In words, the standard Brownian motion has almost surely finite quadratic vari-
ation which is equal to T.

Proof. We will use the following fact. Let Z be a standard Normal random
variable. Then E[Z4] = 3 (cute, isn’t it?). The proof can be obtained using
Laplace transforms of Normal random variables or integration by parts, and we
skip the details.

Let0; = (B(t;)—B(t;_1))?—(t;—t;_1). Then, using the independent Gaussian
increments property of Brownian motion, #; is a sequence of independent zero
mean random variables. We have

QL) -T= Y 6.

1<i<n

Now consider the second moment of this difference

E(Q(L) - T)* = Y E(B(t) - B(ti1))*

1<i<n
—2 > E(B(t) = B(ti-1))*(ti — tic1) + > (ti—tio1)™.
1<i<n 1<i<n

Using the E[Z*4] = 3 property, this expression becomes

DoBti—tii)? =2 > (ti—tii) 4+ D (ti—tio1)?

1<i<n 1<i<n 1<i<n
=2 ) (t;i—ti1)’
1<i<n
< 2A(1L;) Z (ti —ti-1)
1<i<n
— 2A(IL)T.

Now if lim; A(II;) = 0, then the bound converges to zero as well. This estab-
lishes the first part of the theorem.

To prove the second part identify a sequence ¢; — 0 such that A(IL;) =
€;/i%. By assumption, such a sequence exists. By Markov’s inequality, this is

4



bounded by

) 2 .
BQ) TP _oAWT _T
2€; 2¢; i2

P(Q(IL) — T)% > 2¢;) <

Since ), ZIQ < 00, then the sum of probabilities in (6) is finite. Then apply-
ing the Borel-Cantelli Lemma, the probability that (Q(TI;) — T)? > 2¢; for
infinitely many ¢ is zero. Since ¢; — 0, this exactly means that almost surely,

3 Additional reading materials

e Sections 6.11 and 6.12 of Resnick’s [1] chapter 6 in the book.

References

[1] S. Resnick, Adventures in stochastic processes, Birkhuser Boston, Inc.,
1992.



MIT OpenCourseWare
http://ocw.mit.edu

15.070J / 6.265J Advanced Stochastic Processes
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms



