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Quadratic variation property of Brownian motion  

Content. 

1. Unbounded variation of a Brownian motion. 

2. Bounded quadratic variation of a Brownian motion. 

Unbounded variation of a Brownian motion 

Any sequence of values 0 < t0 < t1 < · · · < tn < T is called a partition Π = 
Π(t0, . . . , tn) of an interval [0, T ]. Given a continuous function f : [0, T ] → R 
its total variation is defined to be  

LV (f) £ sup |f(tk) − f(tk−1)|, 
Π 1≤k≤n 

where the supremum is taken over all possible partitions Π of the interval [0, T ] 
for all n. A function f is defined to have bounded variation if its total variation 
is finite. 

Theorem 1. Almost surely no path of a Brownian motion has bounded variation 
for every T ≥ 0. Namely, for every T 

P(ω : LV (B(ω)) < ∞) = 0. 

The main tool is to use the following result from real analysis, which we do 
not prove: if a function f has bounded variation on [0, T ] then it is differentiable 
almost everywhere on [0, T ]. We will now show that quite the opposite is true. 

Proposition 1. Brownian motion is almost surely nowhere differentiable. Specif­
ically, 

B(t + h) − B(t)
P(∀ t ≥ 0 : lim sup | | = ∞) = 1. 

hh→0 
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Proof. Fix T > 0,M > 0 and consider A(M, T ) ⊂ C[0, ∞) – the set of all 
paths ω ∈ C[0, ∞) such that there exists at least one point t ∈ [0, T ] such that 

B(t + h) − B(t)
lim sup | | ≤ M. 

hh→0 

We claim that P(A(M, T )) = 0. This implies P(∪M≥1A(M, T )) = 0 which 
is what we need. Then we take a union of the sets A(M, T ) with increasing T 
and conclude that B is almost surely nowhere differentiable on [0, ∞). If ω ∈ 
A(M, T ), then there exists t ∈ [0, T ] and n such that |B(s)−B(t)| ≤ 2M |s−t|

2for all s ∈ (t − 2 , t + ). Now define An ⊂ C[0, ∞) to be the set of all paths n n 
ω such that for some t ∈ [0, T ] 

|B(s) − B(t)| ≤ 2M |s − t| 

2for all s ∈ (t − 2 , t + ). Then n n 

An ⊂ An+1 (1) 

and 

A(M, T ) ⊂ ∪nAn. (2) 

jFind k = max{j : ≤ t}. Define n 

k + 2 k + 1 k + 1 k k k − 1 
Yk = max{|B( ) − B( )|, |B( ) − B( )|, |B( ) − B( )|}. 

n n n n n n 

In other words, consider the maximum increment of the Brownian motion over 
these three short intervals. We claim that Yk ≤ 6M/n for every path ω ∈ An. 

To prove the bound required bound on Yk we first consider 

k + 2 k + 1 k + 2 k + 1 |B( ) − B( )| ≤ |B( ) − B(t)| + |B(t) − B( )|
n n n n 

2 1 ≤ 2M + 2M 
n n 

6M ≤ . 
n 

The other two differences are analyzed similarly. 

Now consider event Bn which is the set of all paths ω such that Yk(ω) ≤ 6M/n 
for some 0 ≤ k ≤ Tn. We showed that An ⊂ Bn. We claim that limn P(Bn) = 
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0. Combining this with (1), we conclude P(An) = 0. Combining with (2), this 
will imply that P(A(M, T )) = 0 and we will be done. 

Now to obtain the required bound on P(Bn) we note that, since the incre­
ments of a Brownian motion are independent and identically distributed, then 

P(Bn) ≤ P(Yk ≤ 6M/n) 
0≤k≤Tn 

3 2 2 1 1 ≤ TnP(max{|B( ) − B( )|, |B( ) − B( )|, |B( ) − B(0)|} ≤ 6M/n) 
n n n n n 

1 
= Tn[P(|B( )| ≤ 6M/n)]3 . (3) 

n 
Finally, we just analyze this probability. We have 

1 √ 
P(|B( )| ≤ 6M/n) = P(|B(1)| ≤ 6M/ n). 

n 

Since B(1) which has the standard normal distribution, its density at any point is√ √ 
at most 1/ 2π, then we have that this probability is at a most (2(6M)/ 2πn). 
We conclude that the expression in (3) is, ignoring constants, O(n(1/ 

√ 
n)3) = √ 

O(1/ n) and thus converges to zero as n → ∞. We proved limn P(Bn) = 
0. 

Bounded quadratic variation of a Brownian motion 

Even though Brownian motion is nowhere differentiable and has unbounded 
total variation, it turns out that it has bounded quadratic variation. This observa­
tion is the cornerstone of Ito calculus, which we will study later in this course. 

We again start with partitions Π = Π(t0, . . . , tn) of a fixed interval [0, T ], 
but now consider instead 

Q(Π, B) £ (B(tk) − B(tk−1))
2 . 

1≤k≤n 

where, we make (without loss of generality) t0 = 0 and tn = T . For every 
partition Π define 

Δ(Π) = max |tk − tk−1|. 
1≤k≤n 

Theorem 2. Consider an arbitrary sequence of partitions Πi, i = 1, 2, . . .. Sup­
pose limi→∞ Δ(Πi) = 0. Then 

lim E[(Q(Πi, B) − T )2] = 0. (4)
i→∞ 
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Suppose in addition limi→∞ i
2Δ(Πi) = 0 (that is the resolution Δ(Πi) con­

verges to zero faster than 1/i2). Then almost surely 

Q(Πi, B) → T. (5) 

In words, the standard Brownian motion has almost surely finite quadratic vari­
ation which is equal to T . 

Proof. We will use the following fact. Let Z be a standard Normal random 
variable. Then E[Z4] = 3 (cute, isn’t it?). The proof can be obtained using 
Laplace transforms of Normal random variables or integration by parts, and we 
skip the details. 

Let θi = (B(ti)−B(ti−1))
2 −(ti −ti−1). Then, using the independent Gaussian 

increments property of Brownian motion, θi is a sequence of independent zero 
mean random variables. We have 

Q(Πi) − T = θi. 
1≤i≤n 

Now consider the second moment of this difference 

E(Q(Πi) − T )2 = E(B(ti) − B(ti−1))
4 

1≤i≤n 

− 2 E(B(ti) − B(ti−1))
2(ti − ti−1) + (ti − ti−1)

2 . 
1≤i≤n 1≤i≤n 

Using the E[Z4] = 3 property, this expression becomes 

3(ti − ti−1)
2 − 2 (ti − ti−1)

2 + (ti − ti−1)
2 

1≤i≤n 1≤i≤n 1≤i≤n 

= 2 (ti − ti−1)
2  

1≤i≤n  

≤ 2Δ(Πi) (ti − ti−1)  
1≤i≤n  

= 2Δ(Πi)T.  

Now if limi Δ(Πi) = 0, then the bound converges to zero as well. This estab­
lishes the first part of the theorem. 

To prove the second part identify a sequence Ei → 0 such that Δ(Πi) = 
Ei/i

2 . By assumption, such a sequence exists. By Markov’s inequality, this is 
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bounded by 

P((Q(Πi) − T )2 > 2Ei) ≤ 
E(Q(Πi) − T )2 

2Ei 
≤ 

2Δ(Πi)T 
2Ei 

= 
T 
i2 (6) 

 TSince i i2 < ∞, then the sum of probabilities in (6) is finite. Then apply­
ing the Borel-Cantelli Lemma, the probability that (Q(Πi) − T )2 > 2Ei for 
infinitely many i is zero. Since Ei → 0, this exactly means that almost surely, 
limi Q(Πi) = T . 

Additional reading materials 

• Sections 6.11 and 6.12 of Resnick’s [1] chapter 6 in the book. 
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