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Conditional expectations, filtration and martingales
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1 Conditional Expectations

1.1 Definition

Recall how we define conditional expectations. Given a random variable X and
an event A we define E[ X |A] = %.

Also we can consider conditional expectations with respect to random vari-
ables. For simplicity say Y is a simple random variable on {2 taking values

Y1,Y2, - - -, Yn With some probabilities
Plw:Y(w) =) =pi.

Now we define conditional expectation E[X|Y] as a random variable which
takes value E[X|Y = y;] with probability p;, where E[X|Y = y;] should be
understood as expectation of X conditioned on the event {w € Q : Y (w) = y;}.

It turns out that one can define conditional expectation with respect to a o-
field. This notion will include both conditioning on events and conditioning on
random variables as special cases.

Definition 1. Given 2, two o-fields G C F on (), and a probability measure P
on (Q, F). Suppose X is a random variable with respect to F but not necessar-
ily with respect to G, and suppose X has a finite Ly norm (that is E[| X |] < o).
The conditional expectation E[X |G| is defined to be a random variable Y which
satisfies the following properties:

(a) Y is measurable with respect to G.



(b) Forevery A € G, we have E[X1{A}] = E[Y1{A}].

For simplicity, from now on we write Z € F to indicate that Z is measurable
with respect to F. Also let (Z) denote the smallest o-field such with respect
to which Z is measurable.

Theorem 1. The conditional expectation E[X |G| exists and is unique.

Uniqueness means that if Y/ € G is any other random variable satisfying
conditions (a),(b), then Y’ = Y a.s. (with respect to measure IP). We will prove
this theorem using the notion of Radon-Nikodym derivative, the existence of
which we state without a proof below. But before we do this, let us develop
some intuition behind this definition.

1.2 Simple properties

e Consider the trivial case when G = {@,2}. We claim that the constant
value ¢ = E[X] is E[X|G]. Indeed, any constant function is measurable
with respect to any o-field So (a) holds. For (b), we have E[X1{Q}] =
E[X] = cand E[c1{Q}] = E[¢] = ¢; and E[ X 1{@}] = 0 and E[c1{@}] =
0.

e As the other extreme, suppose G = F. Then we claim that X = E[X|G].
The condition (b) trivially holds. The condition (a) also holds because of
the equality between two o-fields.

e Let us go back to our example of conditional expectation with respect to
an event A C Q. Consider the associated o-fields G = {@, A, A°, Q}
(we established in the first lecture that this is indeed a o-field). Consider
arandom variable Y : {2 — R defined as

Y(w) = E[X]4] = W s
for w € A and
Y(w) =E[X]4%] = W 2

forw € A°. We claim that Y = E[X|G]. First Y € G. Indeed, assume
for simplicity ¢; < ¢2. Then {w : Y(w) <z} =@ whenz < ¢, = A



fore; < x < cg,=Q whenz > co. Thus Y € G. Then we need to check
equality E(X1{B}| = E[Y1{B}] for every B = @, A, A° ), which is
straightforward to do. For example say B = A. Then

E[X1{A}] = E[X|A]P(A) = c1P(A).
On the other hand we defined Y (w) = ¢; forallw € A. Thus
E[Y1{A}] = c1E[1{A}] = c1P(A).

And the equality checks.

e Suppose now G corresponds to some partition Ay, ..., A, of the sample
space 2. Given X € F, using a similar analysis, we can check that
Y = E[X]G] is a random variable which takes values E[X|A;] for all
w e Ay, for j =1,2,...,m. You will recognize that this is one of our
earlier examples where we considered conditioning on a simple random
variable Y to get E[X |Y]. In fact this generalizes as follows:

e Given two random variables X, Y : 2 — R, suppose both € F. Let
G = G(Y) C F be the field generated by Y. We define E[X|Y] to be
E[X]G].

1.3 Proof of existence

We now give a proof sketch of Theorem 1.

Proof. Given two probability measures P, Py defined on the same (2, F), P,
is defined to be absolutely continuous with respect to IP; if for every set A € F,
P (A) = 0 implies P2(A) = 0.

The following theorem is the main technical part for our proof. It involves
using the familiar idea of change of measures.

Theorem 2 (Radon-Nikodym Theorem). Suppose Py is absolutely continuous
with respect to P1. Then there exists a non-negative random variable Y : 0 —
R such that for every A € F

Py(A) = Ep, [Y1{A}].

Function'Y is called Radon-Nikodym (RN) derivative and sometimes is denoted
dPy /dP;.



Problem 1. Prove that Y is unique up-to measure zero. That is if Y' is also RN
derivative, then Y =Y’ a.s. w.r.t. P; and hence Ps.

We now use this theorem to establish the existence of conditional expec-
tations. Thus we have G C F, P is a probability measure on F and X is
measurable with respect to /. We will only consider the case X > 0 such that
E[X] < co. We also assume that X is not constant, so that E[X] > 0. Consider
a new probability measure P, on G defined as follows:

_ Ep[X1{A}]

P2(A) - E]}D[X] ) A€ g7

where we write Ep in place of E to emphasize that the expectation operator is
with respect to the original measure P. Check that this is indeed a probability
measure on (2, G). Now P also induced a probability measure on (£2,G). We
claim that P, is absolutely continuous with respect to P. Indeed if P(A) = 0
then the numerator is zero. By the Radon-Nikodym Theorem then there exists
Z which is measurable with respect to G such that forany A € G

Py(A) = Es[Z1{A}].

We now take Y = ZEp[X]. Then Y satisfies the condition (b) of being a
conditional expectation, since for every set B

Ee[Y1{B}] = E¢[X|Es[21{B}] = Es[X1{B}].

The second part, corresponding to the uniqueness property is proved similarly
to the uniqueness of the RN derivative (Problem 1). ]

2 Properties

Here are some additional properties of conditional expectations.
Linearity. E[aX + Y|G] = «E[X|G] + E[Y|G].

Monotonicity. If X; < X5 a.s, then E[X|G] < E[X3|G]. Proof idea is similar
to the one you need to use for Problem 1.

Independence.

Problem 2. Suppose X is independent from G. Namely, for every measurable
ACR,BeGP{X € A} nB) =P(X € A)P(B). Prove that E[X|G] =
E[X].



Conditional Jensen’s inequality. Let ¢ be a convex function and E[| X |], E[|¢(X)]|] <
oo. Then ¢(E[X|G]) < E[¢(X)|F].

Proof. We use the following representation of a convex function, which we do
not prove (see Durrett [1]). Let

A={(a,b) € Q:ax+b< ¢(x),Va}

Then ¢(z) = sup{az +b: (a,b) € A}.

Now we prove the Jensen’s inequality. For any pair of rationals a,b
Q satisfying the bound above, we have, by monotonicity that E[¢(X)|J]
aE[X|G] + b, as., implying E[¢(X)|G] > sup{aE[X|G] +b : (a,b) € A}
P(E[X]G]) as.

o ivm

Tower property. Suppose G; C Ga C F. Then E[E[X|G1]|G2] = E[X|G1] and
E[E[X|G2]|G1] = E[X|G1]. That is the smaller field wins.

Proof. By definition E[X|G;] is G; measurable. Therefore it is G, measurable.
Then the first equality follows from the fact E[X |G] = X, when X € G, which
we established earlier. Now fix any A € G;. Denote E[X |G;] by Y] and E[ X |G5]
by Ys. Then Y7 € G1,Y5 € Gs. Then

EVi1{A}] = E[X1{A}],

simply by the definition of Y7 = E[X]|G;]. On the other hand, we also have
A € Gy. Therefore

E[X1{A}] = E[Y21{A}].

Combining the two equalities we see that E[Y21{A}] = E[Y;1{A}] for every
A € Gy. Therefore, E[Y2|G1] = Y1, which is the desired result. O

An important special case is when G is a trivial o-field {@, 2}. We obtain
that for every field G

E[E[X|G]] = E[X].



3 Filtration and martingales

3.1 Definition

A family of o-fields {F;} is defined to be a filtration if 7;, C F;, whenever
t1 < to. We will consider only two cases whent € Z or¢t € R. A stochastic
process {X;} is said to be adapted to filtration {F;} if X; € F; for every ¢.

Definition 2. A stochastic process { X} adapted to a filtration {F;} is defined
to be a martingale if

1. E[|X:]] < oo forall t.
2. E[Xy|Fs] = X, forall s < t.

When equality is substituted with <, the process is called supermartingale.
When it is substituted with >, the process is called submartingale.

Suppose we have a stochastic process {X;} adapted to filtration {F;} and
suppose for some s’ < s < t we have E[X;|F,] = X, and E[X{|Fy] = Xy.
Then using Tower property of conditional expectations

E[X:|Fy] = E[E[X:|FS]|Fy] = E[X| Fs] = Xo.

This means that when the stochastic process { X, } is discrete time it suffices to
check E[X,,11|F] = X, for all n in order to make sure that it is a martingale.

3.2 Simple examples

1. Random walk. Let X,,,n = 1,... be an i.i.d. sequence with mean p
and variance 0? < oco. Let F, be the Borel o-algebra on R™. Then
Sn — 1N =Y g<p<n Xk — pn is a martingale. Indeed S, is adapted to
Fn, and -

E[Sni1 — (n+ Dpu|Fn] = E[Xni1 — p+ Sp — npu|F]
E[Xp11 — p|Fn] + E[Sn — nu|F]

[Xn+1 - ,U] + Sp —np
= Sp — ny.

o

Here in (a) we used the fact that X, is independent from F,, and S,, €
Fn-

2. Random walk squared. Under the same setting, suppose in addition
p = 0. Then S2 — no? is a martingale. The proof of this fact is very
similar.



4 Additional reading materials

e Durrett [1] Section 4.1, 4.2.
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