
Optimality Conditions for Constrained 
Optimization Problems 

Robert M. Freund 

February, 2004 

1 

2004 Massachusetts Institute of Technology.



1 Introduction 

Recall that a constrained optimization problem is a problem of the form 

(P) minx f(x) 

s.t. g(x) ≤ 0 

h(x) = 0  
x ∈ X, 

where X is an open set and g(x)) = (g1(x), . . . , gm(x)) : �n → �m , h(x) =  
(h1(x), . . . , hl(x)) : �n → �l. Let  S denote the feasible region of (P), i.e., 

S := {x ∈ X : g(x) ≤ 0, h(x) = 0}. 

Then the problem (P) can be written as 

min f(x) . 
x∈S 

Recall that x̄ is a local minimum of (P) if there exists ε >  0 such that 
f(¯ x, ε). Local, global minima and maxima, strict x) ≤ f(y) for all y ∈ S∩B(¯
and non-strict, are defined analogously. 

We will often use the following “shorthand” notation: 

⎡ ⎤ ⎡ ⎤ ∇g1(x)t ∇h1(x)t ⎢ . ⎥ ⎢ . ⎥∇g(x) =  ⎣ . ⎦ and ∇h(x) =  ⎣ . ⎦ ,. . 
∇gm(x)t ∇hl(x)t 

i.e., ∇g(x) ∈ �m×n and ∇h(x) ∈ �l×n are Jacobian matrices, whose ith row 
is the transpose of the corresponding gradient. 
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2 Necessary Optimality Conditions 

2.1 Geometric Necessary Conditions 

A set  C ⊆ �n is a cone if for every x ∈ C, αx ∈ C for any α >  0. 

A set  C is a convex cone if C is a cone and C is a convex set. 

Suppose x̄ ∈ S. We have the following definitions: 

• F0 := {d : ∇f(x̄)td <  0} is the cone of “improving” directions of f(x) 
at x̄. 

• I = {i : gi(x̄) = 0} is the set of indices of the binding inequality 
constraints at x̄. 

• G0 = {d : ∇gi(x̄)td <  0 for all i ∈ I} is the cone of “inward” pointing 
directions for the binding constrains at x̄. 

• H0 = {d : ∇hi(x̄)td = 0  for  all  i = 1, . . . , l} is the set of tangent 
directions for the equality constraints at x̄. 

Theorem 1 Assume that h(x) is a linear function, i.e., h(x) =  Ax − b for 
A ∈ �l×n. If  ̄x is a local minimum of (P), then F0 ∩ G0 ∩ H0 = ∅. 

Proof: Note that ∇hi(x̄) =  Ai·, i.e., H0 = {d : Ad = 0}. Suppose d ∈ 
F0 ∩ G0 ∩ H0. Then for all λ >  0 sufficiently small gi(¯ x) =x + λd) ≤ gi(¯
0 for all i ∈ I (for i 
 x + λd) < 0), and h(¯∈ I, since  λ is small, gi(¯ x + λd) =  
(A¯ x + λd ∈ S for all λ >  0 sufficiently small. x − b) +  λAd = 0. Therefore ¯
On the other hand, for all sufficiently small λ >  0, f(¯ x). This x + λd) < f(¯
contradicts the assumption that x̄ is a local minimum of (P). 

The following is the extension of Theorem 1 to handle general nonlinear 
functions hi(x), i  = 1, . . . , l. 

x is a local minimum of (P) and the gradient vectors ∇hi(¯Theorem 2 If ¯ x), i  = 
1, . . . , l  are linearly independent, then F0 ∩ G0 ∩ H0 = ∅. 
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Note that Theorem 2 is essentially saying that if a point x̄ is (locally) 
optimal, there is no direction d which is an improving direction (i.e., such 

x+λd) < f(¯that f(¯ x) for small λ > 0), and at the same time is also a feasible 
x + λd) ≤ gi(¯ x + λd) ≈direction (i.e., such that gi(¯ x) = 0  for  i ∈ I and h(¯

0), which makes sense intuitively. Observe, however, that the condition in 
Theorem 2 is somewhat weaker than the above intuitive explanation: indeed, 
we can have a direction d which is an improving direction but ∇f(x̄)td = 0  
and/or ∇g(x̄)td = 0.  

The proof of Theorem 2 is rather awkward and involved, and relies on 
the Implicit Function Theorem. We present this proof at the end of this 
note, in Section 6. 

2.2 Separation of Convex Sets 

We will shortly attempt to restate the geometric necessary local opti-
mality conditions (F0 ∩G0 ∩H0 = ∅) into a constructive and “computable” 
algebraic statement about the gradients of the objective function and the 
constraints functions. The vehicle that will make this happen involves the 
separation theory of convex sets. 

t•	 If p 
= 0 is a vector in �n and α is a scalar, H := {x ∈ �n : p x = α} is a 
t	 nhyperplane, and  H+ = {x ∈ �n : p x ≥ α}, H− = {x ∈ � : ptx ≤ α}

are halfspaces. 

n•	 Let S and T be two non-empty sets in � . A hyperplane H = {x : 
t	 tp x = α} is said to separate S and T if p x ≥ α for all x ∈ S and 
tp x ≤ α for all x ∈ T , i.e., if S ⊆ H+ and T ⊆ H− . If, in addition, 

S ∪ T 
⊂ H, then H is said to properly separate S and T . 

•	 H is said to strictly separate S and T if ptx > α  for all x ∈ S and 
ptx < α for all x ∈ T . 

t•	 H is said to strongly separate S and T if for some ε > 0, p x ≥ α + ε 
tfor all x ∈ S and p x ≤ α − ε for all x ∈ T . 
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Theorem 3 Let S be a nonempty closed convex set in �n, and suppose that 
t∈ S. Then there exists p 
y 
 = 0  and α such that H = {x : p x = α} strongly 

separates S and {y}. 

To prove the theorem, we need the following result: 

Theorem 4 Let S be a nonempty closed convex set in �n, and  y 
∈ S. 
Then there exists a unique point x ∈ S with minimum distance from y.¯
Furthermore, ¯ x)t(x − ¯x is the minimizing point if and only if (y − ¯ x) ≤ 0 for 
all x ∈ S. 

Proof: Let x̂ be an arbitrary point in S, and  let  S ̄ = S ∩ {x : ‖x − y‖ ≤  
‖x̂ − y‖}. Then S ̄ is a compact set. Let f (x) =  ‖x − y‖. Then f (x) attains 

¯ x ∈ S. Note that ¯ = y.its minimum over the set S ̄ at some point ¯ x 

To show uniqueness, suppose that there is some x′ ∈ S for which ‖y − 

.
 By convexity of S,
 1 
2(x̄ + x′) ∈ S. But by the triangle x̄‖ = ‖y − x

inequality, we have: 

∥ 1 ∥ 1 1 
x + x ′)∥ ≤ ‖y − ¯∥y −

2
(¯ x‖ + ‖y − x ′‖. ∥ ∥ 2 2 

If strict inequality holds, we have a contradiction. Therefore equality holds, 
x = λ(y − x′) for some λ. Since  ‖y − ¯and we must have y − ¯ x‖ = ‖y − x′‖, 

1 
2(x̄ + x′) ∈ S, contradicting the assumption. = 1.  If  λ = −1, then y|λ|


Hence λ = 1, whereby x

= 
x. 

Finally we need to establish that x̄ is the minimizing point if and only if 
x)t(x − ¯(y − ¯ x) ≤ 0 for all x ∈ S. To establish sufficiency, note that for any 

x ∈ S, 

2 = ‖(x−¯ x)‖x)−(y−¯ 2 2+‖y−¯ x)t(y−¯x‖2−2(x−¯ x) ≥ ‖¯ 2 x−x̄‖‖x−y‖ x−y‖ . 

Conversely, assume that x is the minimizing point. For any x ∈ S, λx +¯
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x ∈ S for any λ ∈ [0, 1]. Also, ‖λx + (1  − λ)¯ ¯(1 − λ)¯ x − y‖ ≥ ‖x − y‖. Thus,  

‖x − y‖2 ≤ ‖λx + (1  − λ)¯¯ x − y‖2 

2= ‖λ(x − ¯ x − y)‖x) + (¯

2= λ2‖x − ¯ x)t(¯ ¯x‖2 + 2λ(x − ¯ x − y) +  ‖x − y‖ , 

which when rearranged yields: 

x‖2 ≥ 2λ(y − ¯ x) .λ2‖x − ¯ x)t(x − ¯

This implies that (y −x)t(x−x) ≤ 0 for any x ∈ S, since otherwise the above ¯ ¯
expression can be invalidated by choosing λ >  0 and sufficiently small. 

Proof of Theorem 3: Let x̄ ∈ S be the point minimizing the distance from 
x = y. Let  p = y −x, α = 2 (y −x)t(y +¯the point y to the set S. Note that ¯ 
 ¯ 1 ¯ x), 

and ε = 1 ‖y − ¯ x)t(y − ¯x‖2 . Then for any x ∈ S, (x − ¯ x) ≤ 0, and so 2 

1 1 t 1t t ¯x)t x ≤ ¯ ¯ x t(y−x)+ ‖y−x‖2−ε =
2 
y y− x x−ε = α−ε.p x = (y−¯ x t(y−x) =  ̄ ¯ ¯ ¯

2 2 

Therefore p x ≤ α − ε for all x ∈ S. On the other hand, p y = (y − ¯t t x)ty = 
α + ε, establishing the result. 

Corollary 5 If S is a closed convex set in �n, then S is the intersection of 
all halfspaces that contain it. 

Theorem 6 Let S ∈ �n and let C be the intersection of all halfspaces 
containing S. Then C is the smallest closed convex set containing S. 

Theorem 7 Suppose S1 and S2 are disjoint nonempty closed convex sets 
and S1 is bounded. Then S1 and S2 can be strongly separated by a hyper-
plane. 

nProof: Let T = {x ∈ � : x = y − z, where y ∈ S1, z  ∈ S2}. Then it is 
easy to show that T is a convex set. We also claim that T is a closed set. 
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To see this, let {xi}i=1 ⊂ T , and suppose ¯∞ x = limi→∞ xi. Then xi = yi − zi 

for {yi}∞ ⊂ S1 and {zi}∞ ⊂ S2. By the Weierstrass Theorem, some i=1 i=1 
y ∈ S1. Then zi = yi − xi → ȳ − ¯subsequence of {yi} converges to a point ¯ x 

(over this subsequence), so that ¯ y − ¯z = ¯ x is a limit point of {zi}. Since  S2 

z ∈ S2, and then ¯ y − ¯is also closed, ¯ x = ¯ x ∈ T , proving that T is a closed 
set. 

By hypothesis, S1 ∩ S2 = ∅, so  0  
∈ T . Since  T is convex and closed, 
t α} such that p x >  ̄there exists a hyperplane H = {x : p x = ¯ t α for x ∈ T 

and pt0 < ¯ α > 0).α (and hence ¯

Let y ∈ S1 and z ∈ S2. Then x = y − z ∈ T , and  so  pt(y − z) > ᾱ > 0 
for any y ∈ S1 and z ∈ S2. 

tLet α1 = inf{p y : y ∈ S1} and α2 = sup{ptz : z ∈ S2} (note that 
1 10 < ¯ ¯α ≤ α1 − α2); define α = 2 (α1 + α2) and  ε = α >  0. Then for all 2 

y ∈ S1 and z ∈ S2 we have 

1 1 1 
p t y ≥ α1 = 

2
(α1 + α2) +  

2
(α1 − α2) ≥ α + α = α + ε¯

2 

and 

1 1 1 
p t z ≤ α2 = 

2
(α1 + α2) − 

2
(α1 − α2) ≤ α − α = α − ε.¯

2 

Theorem 8 (Farkas’ Lemma) Given an m× n matrix A and an n-vector 
c, exactly one of the following two systems has a solution: 

t(i) Ax ≤ 0, c x > 0 

t(ii) A y = c, y ≥ 0. 

Proof: First note that both systems cannot have a solution, since then we 
twould have 0 < c x = ytAx ≤ 0. 

tSuppose the system (ii) has no solution. Let S = {x : x = A y for some y ≥ 
0}. Then c 
∈ S. S is easily seen to be a convex set. Also, S is a closed set. 
(For an exact proof of this, see Appendix B.3 of Nonlinear Programming by 
Dimitri Bertsekas, Athena Scientific, 1999.) Therefore there exist p and α 

tsuch that ctp > α and pt(A y) = (Ap)ty ≤ α for all y ≥ 0. 
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If (Ap)i > 0 for some i, one could set yi sufficiently large so that (Ap)ty >  
α, a contradiction. Thus Ap ≤ 0. Taking y = 0, we also have that α ≥ 0, 

tand so c p >  0, and p is a solution of (i). 

Lemma 9 (Key Lemma) Given matrices A, B, and  H of appropriate di-
mensions, exactly one of the two following systems has a solution: 

¯(i) Ax < 0, Bx  ≤ 0, Hx  = 0  

t¯(ii) Atu + Btv + Htw = 0, u  ≥ 0, v  ≥ 0, e u = 1. 

Proof: It is easy to show that both (i) and (ii) cannot have a solution. 
Suppose (i) does not have a solution. Then the system 

¯ Ax + eθ ≤ 0, θ  >  0 
Bx ≤ 0 
Hx  ≤ 0 
−Hx  ≤ 0 

has no solution. This system can be re-written in the form 

⎡ ¯ 
⎤ 

A e  ⎢ ⎥
⎢ ⎥

⎢ B 0 ⎥ · x ≤ 0, (0, . . . , 0, 1) · x

> 0. ⎣ H 0 ⎦ θ θ 
−H 0 

From Farkas’ Lemma, there exists a vector (u; v; w1; w2) ≥ 0 such that ⎛ ⎞ ⎡ ¯ A e  
⎛ ⎞ 0⎤t 

u ⎢ ⎥ ⎜ ⎟ ⎜ . ⎜ . ⎟ ⎢ B 0 ⎥ ⎜ v ⎟ ⎟ ⎢ ⎥ · ⎜ 1 ⎟ = ⎜ . ⎟ . ⎜ ⎟ ⎣ H 0 ⎦ ⎝ w ⎠ ⎝ 0 ⎠ 
2−H 0 w 1 

This can be rewritten as 

t¯ At u + Bt v + Ht(w 1 − w 2) = 0, e u = 1  . 
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∑ ∑ 

∑ ∑ 

Letting w = w1 − w2 completes the proof of the lemma. 

2.3 Algebraic Necessary Conditions 

¯Theorem 10 (Fritz John Necessary Conditions) Let x be a feasible 
solution of (P). If x is a local minimum of (P), then there exists (u0, u, v)¯
such that 

m l 

x) +  ui∇gi(¯ x) = 0,u0∇f(¯ x) +  vi∇hi(¯
i=1 i=1 

u0, u  ≥ 0, (u0, u, v) 
= 0, 

uigi(x̄) = 0, i  = 1, . . . , m.  

(Note that the first equation can be rewritten as 

u0∇f(¯ x)t u + ∇h(¯x) +  ∇g(¯ x)t v = 0  .) 

x) are linearly dependent, then there exists v 
Proof: If the vectors ∇hi(¯ = 0  
such that ∇h(x̄)tv = 0. Setting (u0, u) = 0 establishes the result. 

Suppose now that the vectors ∇hi(x̄) are linearly independent. Then 
we can apply Theorem 2 and assert that F0 ∩ G0 ∩ H0 = ∅. Assume for 
simplicity that I = {1, . . . , p}. Let  

⎡ ⎤ 
x)t ⎡ ⎤ ⎢ 

∇f(¯
x)t ⎥ ∇h1(¯⎢ ∇g1(¯ ⎥ 

x)t ⎢ ⎥
A = ⎢ ⎥ , H  = ⎣ ..

. ⎦ . ⎢ .. ⎥ ⎣ . ⎦ 
x)t ∇hl(¯∇gp(¯

x)t 

Then there is no d that satisfies Ad < 0, Hd  = 0. From the Key Lemma 
there exists (u0, u1, . . . , up) and  (v1, . . . , vl) such that 

p l 

x) +  ui∇gi(¯ x) = 0,u0∇f(¯ x) +  vi∇hi(¯
i=1 i=1 
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∑ ∑ 

with u0 + u1 + · · ·+up = 1  and  (u0, u1, . . . , up) ≥ 0. Define up+1, . . . , um = 0.  
= 0, and for any i, either gi(¯Then (u0, u) ≥ 0, (u0, u) 
 x) = 0, or ui = 0.  

Finally, 

u0∇f(¯ x)t u + ∇h(¯x) +  ∇g(¯ x)t v = 0. 

Theorem 11 (Karush-Kuhn-Tucker (KKT) Necessary Conditions) 
Let x be a feasible solution of (P) and let I = {i : gi(¯¯ x) = 0}. Further, 
suppose that ∇hi(¯ x) for i ∈ I are linearly inde-x) for i = 1, . . . , l  and ∇gi(¯
pendent. If x̄ is a local minimum, there exists (u, v) such that 

∇f(¯ x)t u + ∇h(¯x) +  ∇g(¯ x)t v = 0, 

u ≥ 0, 

uigi(x̄) = 0  , i  = 1, . . . , m.  

Proof: x must satisfy the Fritz John conditions. If u0 > 0, we can redefine ¯
u ← u/u0 and v ← v/u0. If  u0 = 0, then 

l 

x) +  vi∇hi(¯ui∇gi(¯ x) = 0  , 
i∈I i=1 

and so the above gradients are linearly dependent. This contradicts the 
assumptions of the theorem. 

Example 1 Consider the problem: 

min 6(x1 − 10)2 +4(x2 − 12.5)2 

2s.t. x1 +(x2 − 5)2 ≤ 50 

2 2x1 +3x2 ≤ 200 

2(x1 − 6)2 +x2 ≤ 37 

In this problem, we have: 
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f (x) = 6(x1 − 10)2 + 4(x2 − 12.5)2 

2 g1(x) =  x1 + (x2 − 5)2 − 50 

2 2 g2(x) =  x + 3x2 − 2001 

2 g3(x) = (x1 − 6)2 + x2 − 37 

We also have: 

⎛ ⎞
12(x1 − 10) ⎝ ⎠∇f (x) =  
8(x2 − 12.5) 

⎛ ⎞
2x1 ⎝ ⎠∇g1(x) =  

2(x2 − 5) 

⎛ ⎞
2x1 ⎝ ⎠∇g2(x) =  
6x2 

⎛ ⎞
2(x1 − 6) ⎝ ⎠∇g3(x) =  

2x2 

Let us determine whether or not the point x = (¯ x2) = (7, 6) is a ¯ x1, ¯
candidate to be an optimal solution to this problem. 
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We first check for feasibility: 

g1(x̄) = 0  ≤ 0 

g2(x̄) =  −43 < 0 

g3(x̄) = 0  ≤ 0 

To check for optimality, we compute all gradients at x̄: 

⎛ ⎞ −36 ⎝ ⎠∇f(x) =  
−52 

⎛ ⎞
14 ⎝ ⎠∇g1(x) =  
2 

⎛ ⎞
14 ⎝ ⎠∇g2(x) =  
36 

⎛ ⎞
2 ⎝ ⎠∇g3(x) =  
12 

We next check to see if the gradients “line up”, by trying to solve for 
u1 ≥ 0, u2 = 0, u3 ≥ 0 in the following system: 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ −36 14 14 2 0 ⎝ ⎠ + ⎝ ⎠ u1 + ⎝ ⎠ u2 + ⎝ ⎝ ⎠⎠ u3 = 
−52 2 36 12 0 

u = (¯ u2, ¯ u ≥ 0Notice that ¯ u1, ¯ u3) = (2, 0, 4) solves this system, and that ¯
and ¯ ¯u2 = 0. Therefore x is a candidate to be an optimal solution of this 
problem. 
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Example 2 Consider the problem (P): 

(P) : maxx xT Qx 

s.t. ‖x‖ ≤ 1 

where Q is symmetric. This is equivalent to: 

(P) : minx −xT Qx 

Ts.t. x x ≤ 1 . 

The KKT conditions are: 

−2Qx + 2ux = 0  

Tx x ≤ 1 

u ≥ 0 

u(1 − xT x) = 0  . 

One solution to the KKT system is x = 0, u  = 0, with objective function 
value xT Qx = 0. Are there any better solutions to the KKT system? 

If x 
= 0  is a solution of the KKT system together with some value 
u , then x is an eigenvector of Q with nonnegative eigenvalue u. Also,  
xT Qx = uxT x = u, and so the objective value of this solution is u. Therefore 
the solution of (P) with the largest objective function value is x = 0  if the 
largest eigenvalue of Q is nonpositive. If the largest eigenvalue of Q is 
positive, then the optimal objective value of (P) is the largest eigenvalue, and 
the optimal solution is any eigenvector x corresponding to this eigenvalue, 
normalized so that ‖x‖ = 1. 

Example 3 Consider the problem: 
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min (x1 − 12)2 +(x2 + 6)2 

2 2s.t.	 x1 + 3x1 +x2 − 4.5x2 ≤ 6.5 

2(x1 − 9)2 +x2 ≤ 64 

8x1 +4x2 = 20  

In this problem, we have: 

f (x) = (x1 − 12)2 + (x2 + 6)2 

2 2 g1(x) =  x + 3x1 + x2 − 4.5x2 − 6.51 

2 g2(x) = (x1 − 9)2 + x2 − 64 

h1(x) = 8x1 + 4x2 − 20 

Let us determine whether or not the point x = (¯ x2) = (2, 1) is a ¯ x1, ¯
candidate to be an optimal solution to this problem. 

We first check for feasibility: 

g1(x̄) = 0  ≤ 0 

g2(x̄) =  −14 < 0 

h1(x̄) = 0 


To check for optimality, we compute all gradients at ¯
x: 
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⎛ ⎞ −20 ⎝ ⎠∇f(x) =  
14 

⎛ ⎞
7 ⎝ ⎠∇g1(x) =  

−2.5 

⎛ ⎞ −14 ⎝ ⎠∇g2(x) =  
2 

⎛ ⎞
8 ⎝ ⎠∇h1(x) =  
4 

We next check to see if the gradients “line up”, by trying to solve for 
u1 ≥ 0, u2 = 0, v1 in the following system: 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ −20 7 −14 8 0 ⎝ ⎠ + ⎝ ⎠ u1 + ⎝ ⎠ u2 + ⎝ ⎝ ⎠⎠ v1 = 
14 −2.5 2 4 0 

u, ¯ u1, ¯Notice that (¯ v) = (¯ u2, v̄1) = (4, 0,−1) solves this system and that 
u ≥ 0 and ¯ x is a candidate to be an optimal solution of ¯ u2 = 0. Therefore ¯
this problem. 

3 Generalizations of Convexity 

nSuppose X is a convex set  in  � . The function f(x) :  X → � is a 
quasiconvex function if for all x, y ∈ X and for all λ ∈ [0, 1], 

f(λx + (1  − λ)y) ≤ max{f(x), f(y)}. 
f(x) is  quasiconcave if for all x, y ∈ X and for all λ ∈ [0, 1], 

f(λx + (1  − λ)y) ≥ min{f(x), f(y)}. 
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If f (x) :  X → �, then the level sets of f (x) are the sets 

Sα = {x ∈ X : f (x) ≤ α} 

for each α ∈ �. 

Proposition 12 If f (x) is convex, then f (x) is quasiconvex. 

Proof: If f (x) is convex, for λ ∈ [0, 1], 

f (λx + (1  − λ)y) ≤ λf (x) + (1  − λ)f (y) ≤ max{f (x), f  (y)}. 

Theorem 13 A function f (x) is quasiconvex on X if  and only if  Sα is a 
convex set for every α ∈ �. 

Proof: Suppose that f (x) is quasiconvex. For any given value of α, suppose 
that x, y ∈ Sα. 

Let z = λx+(1−λ)y for some λ ∈ [0, 1]. Then f (z) ≤ max{f (x), f  (y)} ≤
α, so  z ∈ Sα, which shows that Sα is a convex set. 

Conversely, suppose Sα is a convex set for every α. Let  x and y be given, 
and let α = max{f (x), f  (y)}, and hence x, y ∈ Sα. Then for any λ ∈ [0, 1], 
f (λx + (1  − λ)y) ≤ α = max{f (x), f  (y)}, and  so  f (x) is a quasiconvex 
function. 

Corollary 14 If f (x) is a convex function, its level sets are convex sets. 

Suppose X is a convex set in �n . The differentiable function f (x) :  X → 
� is a pseudoconvex function if for every x, y ∈ X the following holds: 

∇f (x)t(y − x) ≥ 0 ⇒ f (y) ≥ f (x) . 

Theorem 15 

(i) A differentiable convex function is pseudoconvex. 
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(ii) A pseudoconvex function is quasiconvex. 

Proof: To prove the first claim, we use the gradient inequality: if f(x) 
is convex and differentiable, then f(y) ≥ f(x) +  ∇f(x)t(y − x). Hence, if 
∇f(x)t(y − x) ≥ 0, then f(y) ≥ f(x), and so f(x) is pseudoconvex. 

To show the second claim, suppose f(x) is pseudoconvex. Let x, y and 
λ ∈ [0, 1] be given, and let z = λx+(1  −λ)y. If  λ = 0  or  λ = 1, then f(z) ≤ 
max{f(x), f(y)} trivially; therefore, assume 0 < λ <  1. Let d = y − x. 

If ∇f(z)td ≥ 0, then 

∇f(z)t(y − z) =  ∇f(z)t(λ(y − x)) = λ∇f(z)td ≥ 0, 

so f(z) ≤ f(y) ≤ max{f(x), f(y)}. 
On the other hand, if ∇f(z)td ≤ 0, then 

∇f(z)t(x − z) =  ∇f(z)t(−(1 − λ)(y − x)) = −(1 − λ)∇f(z)td ≥ 0, 

so f(z) ≤ f(x) ≤ max{f(x), f(y)}. Thus  f(x) is quasiconvex. 

Incidentally, we define a differentiable function f(x) :  X → � to be 
pseudoconcave if for every x, y ∈ X the following holds: 

∇f(x)t(y − x) ≤ 0 ⇒ f(y) ≤ f(x) . 

4 Sufficient Conditions for Optimality 

Theorem 16 (KKT Sufficient Conditions) Let x̄ be a feasible solution 
of (P), and suppose x̄ together with multipliers (u, v) satisfies 

∇f(¯ x)t u + ∇h(¯x) +  ∇g(¯ x)t v = 0, 

u ≥ 0, 
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uigi(x̄) = 0, i  = 1, . . . , m.  

If f(x) is a pseudoconvex function, gi(x), i  = 1, . . . , m  are quasiconvex func-
tions, and hi(x), i  = 1, . . . , l  are linear functions, then x̄ is a global optimal 
solution of (P). 

Proof: Because each gi(x) is quasiconvex, the level sets 

Ci := {x ∈ X : gi(x) ≤ 0}, i  = 1, . . . , m  

are convex sets. Also, because each hi(x) is linear, the sets 

Di = {x ∈ X : hi(x) = 0}, i  = 1, . . . , l  

are convex sets. Thus, since the intersection of convex sets is also a convex 
set, the feasible region 

S = {x ∈ X : g(x) ≤ 0, h(x) = 0} 

is a convex set. 

Let I = {i | gi(¯ x. Let  
x. Then λx + (1  − λ)¯

x) = 0} denote the index of active constraints at ¯
x ∈ S be any point different from ¯ x is feasible for all 
λ ∈ (0, 1). Thus for i ∈ I we have 

gi(λx + (1  − λ)¯ x + λ(x − ¯ x)x) =  gi(¯ x)) ≤ 0 =  gi(¯

for any λ ∈ (0, 1), and since the value of gi(·) does not increase by moving 
in the direction x − ¯ x)t(x − ¯x, we must have  ∇gi(¯ x) ≤ 0 for all i ∈ I. 

x + λ(x − ¯ x)t(x − ¯Similarly, ∇hi(¯ x)) = 0, and so ∇hi(¯ x) = 0 for all 
i = 1, . . . , l. 

Thus, from the KKT conditions, 
( )t ∇f(¯ x) =  − ∇g(¯ x)t v (x − ¯x)t(x − ¯ x)t u + ∇h(¯ x) ≥ 0, 

and by pseudoconvexity, f(x) ≥ f(x̄) for any feasible x. 
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The program 
(P) minx f(x) 

s.t. g(x) ≤ 0 

h(x) = 0  

x ∈ X 

is called a convex program if f(x), gi(x), i  = 1, . . . , m  are convex functions, 
hi(x), i  = 1  . . . , l  are linear functions, and X is an open convex set. 

Corollary 17 The KKT conditions are sufficient for optimality of a convex 
program. 

Example 4 Continuing Example 1, note that f(x), g1(x), g2(x), and  g3(x) 
are all convex functions. Therefore the problem is a convex optimization 
problem, and the KKT conditions are necessary and sufficient. Therefore 
x̄ = (7, 6) is the global minimum. 

Example 5 Continuing Example 3, note that f(x), g1(x), g2(x) are all con-
vex functions and that h1(x) is a linear function. Therefore the problem is 
a convex optimization problem, and the KKT conditions are necessary and 
sufficient. Therefore x̄ = (2, 1) is the global minimum. 

5 Constraint Qualifications 

Recall that the statement of the KKT necessary conditions established 
herein has the form “if x̄ is a local minimum of (P) and (some requirement for 
the constraints) then the KKT conditions must hold at x̄.” This additional 
requirement for the constraints that enables us to proceed with the proof of 
the KKT conditions is called a constraint qualification. 

In (Theorem 11) we established the following constraint qualification: 
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Linear Independence Constraint Qualification: The gradients ∇gi(x̄), i  ∈ 
I,  ∇hi(x̄), i  = 1, . . . , l  are linearly independent. 

We will now establish two other useful constraint qualifications. Before 
doing so we have the following important definition: 

Definition 5.1 A point  x is called a Slater point if x satisfies g(x) < 0 and 
h(x) = 0, that is, x is feasible and satisfies all inequalities strictly. 

Theorem 18 (Slater condition) Suppose that gi(x), i  = 1, . . . , m  are 
pseudoconvex, hi(x), i  = 1, . . . , l  are linear, and ∇hi(x), i  = 1, . . . , l  are 
linearly independent, and (P) has a Slater point. Then the KKT conditions 
are necessary to characterize an optimal solution. 

Proof: Let x̄ be a local minimum. The Fritz-John conditions are necessary 
for this problem, whereby there must exist (u0, u, v) 
= 0 such that (u0, u) ≥ 
0 and  

u0∇f(¯ x)t u + ∇h(¯ x) = 0.x) +  ∇g(¯ x)t v = 0, uigi(¯

If u0 > 0, dividing through by u0 demonstrates KKT conditions. Now 
suppose u0 = 0.  Let  x0 be Slater point, and define d := x0 − x̄. Then for 
each i ∈ I, 0  =  gi(x̄) > gi(x0), and by the pseudo-convexity of gi(·) we have  
∇gi(¯ x) = 0. Thus, x)td <  0. Also, since hi(x), i  = 1, . . . , l  are linear, dt∇h(¯

x)t u + ∇h(¯0 = 0td = (∇g(¯ x)t v)td <  0, 

unless ui = 0  for  all  i ∈ I. But if this is true, then we would have v 
= 0  
and ∇h(x̄)tv = 0, violating the linear independence assumption. This is a 
contradiction, and so u0 > 0. 

Theorem 19 (Linear constraints) If all constraints are linear, the KKT 
conditions are necessary to characterize an optimal solution. 

Proof: Our problem is 

20 



∑ ∑ 

(P) minx f(x) 

s.t. Ax ≤ b 

Mx  = g .  

Suppose x̄ is a local optimum. Without loss of generality, we can partition 
the constraints Ax ≤ b into groups AI x ≤ bI and AĪx ≤ b¯ such that I 
AI x = bI and AĪ ¯ ¯¯ x < bĪ . Then at x, the set {d : AI d ≤ 0, Md  = 0  } is 
precisely the set of feasible directions. Thus, in particular, for every d as 
above, ∇f(x̄)td ≥ 0, for otherwise d would be a feasible descent direction at 
x̄, violating its local optimality. Therefore, the linear system 

∇f(x̄)td <  0, AI d ≤ 0, Md  = 0  

has no solution. From the Key Lemma, there exists (u, v, w) satisfying 
u = 1,  v ≥ 0, and ∇f(x̄)u + AI

T v + MT w = 0 which are precisely the KKT 
conditions. 

5.1 Second-Order Optimality Conditions 

To describe the second order conditions for optimality, we will define 
the following function, known as the Lagrangian function, or simply the 
Lagrangian: 

m l 
tL(x, u, v) =  f(x) +  uigi(x) +  vihi(x) =  f(x) +  u g(x) +  v th(x). 

i=1 i=1 

Using the Lagrangian, we can, for example, re-write the gradient conditions 
of the KKT necessary conditions as follows: 

∇xL(x̄, u, v) = 0, (1) 

since ∇xL(x, u, v) =  ∇f(x) +  ∇g(x)tu + ∇h(x)tv. 
mAlso, note that ∇2 L(x, u, v) =  ∇2f(x)+

∑ 
i=1 ui∇2gi(x)+

∑l
i=1 vi∇2hi(x).xx

Here we use the standard notation: ∇2q(x) denotes the Hessian of the 
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function q(x), and ∇2 L(x, u, v) denotes the submatrix of the Hessian of xx

L(x, u, v) corresponding to the partial derivatives with respect to the x vari-
ables only. 

Theorem 20 (KKT second order necessary conditions) Suppose x̄ is 
a local minimum of (P), and ∇gi(¯ x), i  = 1, . . . , l  are lin-x), i  ∈ I and ∇hi(¯
early independent. Then x̄ must satisfy the KKT conditions. Furthermore, 
every d that satisfies: 

∇gi(x̄)td ≤ 0, i ∈ I,  
∇hi(x̄)td = 0, i = 1  . . . , l  

must also satisfy 

dt∇xxL(x̄, u, v)d ≥ 0 . 

Theorem 21 (KKT second order sufficient conditions) Suppose the point 
x̄ ∈ S together with multipliers (u, v) satisfies the KKT conditions. Let 
I+ = {i ∈ I : ui > 0} and I0 = {i ∈ I : ui = 0}. Additionally, suppose that 
every d 
= 0  that satisfies 

∇gi(x̄)td = 0, i ∈ I+ , 
∇gi(x̄)td ≤ 0, i ∈ I0 , 
∇hi(x̄)td = 0, i = 1  . . . , l  

also satisfies 

dt∇2 L(x̄, u, v)d >  0 .xx

Then x̄ is a strict local minimum of (P). 
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6 A Proof of Theorem 2 

The proof of Theorem 2 relies on the Implicit Function Theorem. To moti-
vate the Implicit Function Theorem, consider a system of linear functions: 

h(x) :=  Ax − b 

and suppose that we are interested in solving 

h(x) =  Ax − b = 0  . 

Let us assume that A ∈ �l×n has full row rank (i.e., its rows are linearly 
independent). Then we can partition columns of A and elements of x as 
follows: A = [B | N ], x = (y; z), so that B ∈ �l×l is non-singular, and 
h(x) =  By + Nz  − b. 

Let s(z) =  B−1b−B−1Nz. Then for any z, h(s(z), z) =  Bs(z)+Nz−b = 
0, i.e., x = (s(z), z) solves h(x) = 0. This idea of “invertability” of a system 
of equations is generalized (although only locally) by the following version 
of the Implicit Function Theorem, where we will preserve the notation used 
above: 

Theorem 22 (Implicit Function Theorem) Let h(x) :  �n → �l and 
x = (¯ y, ¯¯ y1, . . . , ȳl, z̄1, . . . , z̄n−l) = (¯ z) satisfy: 

1. h(x̄) = 0  

2. h(x) is continuously differentiable in a neighborhood of x̄ 

3. The l × l Jacobian matrix 

⎡ ∂h1(x̄) · · ·  ∂h1(x̄) ⎤ 
∂y1 ∂yl ⎢ ⎢ . . . 

. . . 
. . . 

⎥ ⎥ ⎣ ⎦ 
∂hl(x̄) · · ·  ∂hl(x̄) 

∂y1 ∂yl 

is nonsingular. 
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∑ 

Then there exists ε >  0 along with functions s(z) = (s1(z), . . . , sl(z)) such 
that for all z ∈ B(z̄, ε), h(s(z), z) = 0  and sk(z) are continuously differen-
tiable. Moreover, for all i = 1, . . . , m  and j = 1, . . . , n − l we have: 

l ∑ ∂hi(y, z) ∂sk(z) ∂hi(y, z) · + = 0  . 
∂yk ∂zj ∂zjk=1 

Proof of Theorem 2:  Let A = ∇h(x̄) ∈ �l×n . Then A has full row rank, 
and its columns (along with corresponding elements of x̄) can be re-arranged 
so that A = [B | N ] and  ̄ y; ¯x = (¯ z), where B is non-singular. Let z lie in a 
small neighborhood of z̄. Then, from the Implicit Function Theorem, there 
exists s(z) such that h(s(z), z) = 0.  

Suppose that d ∈ F0 ∩ G0 ∩ H0, and let us write d = (q; p). Then 
0 =  Ad = Bq + Np, whereby q = −B−1Np. Let  z(θ) =  z̄ + θp, y(θ) =  
s(z(θ)) = s(z̄ + θp), and x(θ) = (y(θ), z(θ)). We will derive a contradiction 
by showing that d is an improving feasible direction, i.e., for small θ >  0, 
x(θ) is feasible and f(x(θ)) < f(x̄). 

To show feasibility of x(θ), note that for θ >  0 sufficiently small, it 
follows from the Implicit Function Theorem that: 

h(x(θ)) = h(s(z(θ)), z(θ)) = 0 . 

Furthermore, for i = 1, . . . , l  we have: 

∂hi(x(θ)) 
= 

l 

· + 
∑ ∂hi(s(z(θ)), z(θ)) ∂sk(z(θ)) n−l ∂hi(s(z(θ)), z(θ)) ∂zk(θ)0 =  · . 

∂θ ∂yk ∂θ ∂zk ∂θ 
k=1 k=1 

Let rk = ∂sk(z(θ)) , and recall that ∂θ 
∂zk(θ) = pk. The above equation system ∂θ 

can then be re-written as 0 = Br + Np, or  r = −B−1Np  = q. Therefore, 
∂xk(θ) = dk for k = 1, . . . , n.∂θ 

For i ∈ I, 
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∣ ∣ 
∑ ∣ 

{ 

gi(x(θ)) = gi(x̄) +  θ ∂gi(x(θ)) ∣ + |θ|αi(θ)∂θ θ=0 

= θ k=1 
∂gi(x(θ)) ∂xk(θ) ∣n · ∣ xk ∂θ θ=0 

= θ∇gi(x̄)td + |θ|αi(θ), 

where αi(θ) → 0 as  θ → 0. Hence gi(x(θ)) < 0 for all i = 1, . . . , m  for θ >  0 
sufficiently small, and therefore, x(θ) is feasible for any θ >  0 sufficiently 
small. 

On the other hand, 

x) +  θ∇f(¯	 x)f(x(θ)) = f(¯ x)td + |θ|α(θ) < f(¯

for θ >  0 sufficiently small, which contradicts the local optimality of x.¯
Therefore no such d can exist, and the theorem is proved. 

7 Constrained Optimization Exercises 

1. Suppose that	 f(x) and  gi(x), i  = 1, . . . , m  are convex real-valued 
functions over �n, and that X ⊂ �n is a closed and bounded con-
vex set. Let I = (s, z) ∈ �m+1 : there exists an x ∈ X for which 
g(x) ≤ s, f(x) ≤ z}. Prove that I is a closed convex set. 

2. Suppose that	 f(x) and  gi(x), i  = 1, . . . , m  are convex real-valued 
functions over �n, and that X ⊂ �n is a closed and bounded convex 
set. Consider the perturbation function: 

∗z (y) = minimumx f(x) 

s.t. gi(x) ≤ yi, i  = 1, . . . , m  

x ∈ X .  

∗•	 Prove that z (·) is a convex function. 
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∑ ∑ 

∑ 

∗ ∗• Show that y1 ≤ y2 implies that z (y1) ≥ z (y2). 

3. Consider the program 

∗(P) : z = minimumx ‖c − x‖ 

s.t. ‖x‖ = α ,  

where α is a given nonnegative scalar. What are the necessary opti-
mality conditions for this problem? Use these conditions to show that 
∗ z = |‖c‖ − α|. What is the optimal solution x ∗? 

n4. Let S1 and S2 be convex sets in � . Recall the definition of strong 
separation of convex sets in the notes, and show that there exists a 
hyperplane that strongly separates S1 and S2 if and only if 

inf{‖x1 − x2‖ | x1 ∈ S1, x2 ∈ S2} > 0 . 

2 2 25. Consider S = {x ∈ � | x1 + x2 ≤ 1}. Represent S as the intersection 
of a collection of half-spaces. Find the half-spaces explicitly. 

6. Let C be a nonempty set in �n . Show that C is a convex cone if and 
only if x1, x2 ∈ C implies that λ1x1 + λ2x2 ∈ C whenever λ1, λ2 ≥ 0 
and λ1 + λ2 
= 0.  

7. Let S be a nonempty convex set in �n and let f(·) :  S → �. Show 
that f(·) is a convex function on S if and only if for any integer k ≥ 2 
the following holds true: ⎛ ⎞ 

k k 
1 x , . . . , x  k ∈ S ⇒ f ⎝ λj x

j ⎠ ≤ λj f(xj ) 
j=1 j=1 

k 
whenever λ1, . . . , λk satisfy λ1, . . . , λk ≥ 0 and  λj = 1. 


j=1


8. Let f1(·), . . . , fk (·) :  �n → �  be convex functions, and consider the 
function f(·) defined by: 

f(x) := max{f1(x), . . . , fk (x)} . 

Prove that f(·) is a convex function. State and prove a similar result 
for concave functions. 

26 



9. Let f1(·), . . . , fk (·) :  �n → �  be convex functions, and consider the 
function f(·) defined by: 

f(x) :=  α1f1(x) +  · · · + αk fk (x) , 

where α1, . . . , αk > 0. Prove that f(·) is a convex function. State and 
prove a similar result for concave functions. 

10. Consider the following problem: 

minimumx (x1 − 4)2 + (x2 − 6)2 

2s.t. −x1 + x2 ≥ 0 

x2 ≤ 4 

x ∈ �2 . 

Write a necessary condition for optimality and verify that it is satisfied 
by the point (2, 4). Is this the optimal point? Why or why not? 

11. Consider the problem to minimize	 f(x) subject to x ∈ S where S 
is a convex set in �n and f(·) is a differentiable convex function on 
S.	 Prove that x̄ is an optimal solution of this problem if and only if 
∇f(¯ x) ≥ 0 for every x ∈ S.x)t(x − ¯

12. Consider the following problem: 

2maximizex 3x1 − x2 + x3 

s.t. x1 + x2 + x3 ≤ 0 

−x1 + 2x2 + x2 = 03 

x ∈ �3 . 

• Write down the KKT optimality conditions. 

• Argue why this problem is unbounded. 
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( ) 

13. Consider the following problem: 
( )2 

minimizex x1 − 9 + (x2 − 2)2 
4 

x2 − x2s.t. 1 ≥ 0 

x1 + x2 ≤ 6 

x1 ≥ 0 

x2 ≥ 0 

x ∈ �2 . 

• Write down the KKT optimality conditions and verify that these 
3x = 2 , 

9 .conditions are satisfied at the point ¯ 4 

• Present a graphical interpretation of the KKT conditions at x̄. 

• Show that x̄ is the optimal solution of the problem. 

14. Let f(·) :  �n → �, gi(·) :  �n → �, i = 1, . . . , m, be convex functions. 
Consider the problem to minimize f(x) subject to gi(x) ≤ 0 for  i = 
1, . . . , m, and suppose that the optimal objective value of this problem 

∗ ∗is z and is attained at some feasible point x . Let  M be a proper 
subset of {1, . . . , m} and suppose that x̂ solves the problem to minimize 
f(x) subject to gi(x) ≤ 0 for  i ∈ M . Let  V := {i | gi(x̂) > 0}. If  
∗ ∗z > f(x̂), show that gi(x ) = 0 for some i ∈ V . (This shows that if 

an unconstrained minimum of f(·) is infeasible and has an objective 
∗value that is less than z , then any constrained minimum lies on the 

boundary of the feasible region.) 

15. Consider the following problem, where c 
= 0 is a vector in �n: 

minimized cT d 
s.t. dtd ≤ 1 

nd ∈ � . 

• Show that d ̄:= − c is a KKT point of this problem. Further-‖c‖2 

more, show that d ̄ is indeed the unique optimal solution. 
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∑ 

•	 How is this result related to the definition of the direction of 
steepest descent in the steepest descent algorithm? 

16. Consider the following problem, where b and aj , cj , j  = 1, . . . , n  are 
positive constants: 

n 
cjminimizex 

j=1 
xj 

n 
s.t.	 aj xj = b 

j=1 

xj ≥ 0, j  = 1, . . . , n  

nx ∈ � . 

Write down the KKT optimality conditions, and solve for the point ¯
that solves this problem. 

17. Let c ∈ �n , b ∈ �m , A ∈ �m×n, and  H ∈ �n×n. Consider the following 
two problems: 

tP1 : minimizex c x + 1 xT Hx2 

s.t. Ax ≤ b 

nx ∈ �
and


P2 : minimizeu htu + 1 uT Gu
2 

s.t. u ≥ 0 

mu ∈ � , 

where G := AH−1AT and h := AH−1c+b. Investigate the relationship 
between the KKT conditions of these two problems. 

18. Consider the problem to minimize f(x) subject to Ax ≤ b. Suppose 
that ¯ ¯ ¯x is a feasible solution such that Aβ x = bβ and Aη x < bη where 
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{	 } 

β, η are a partition of the rows of A. Assuming that Aβ has full rank, 
the matrix P that projects any vector onto the nullspace of Aβ is given 
by: 

P = I − AT [Aβ A
T ]−1Aβ .β β 

x). Show that if d ̄ 
•	 Let d ̄= −P∇f(¯ = 0 then d ̄ is an improving 
x + λd ̄ is feasible and f(¯ x) for all direction, that is, ¯	 x + λd̄) < f(¯

λ >  0 and sufficiently small. 

• Suppose that d ̄ = 0 and that u := −AT [Aβ A
T ]−1Aβ ∇f(x̄) ≥ 0.β β 

Show that x̄ is a KKT point. 

•	 Show that d ̄ is a positive multiple of the optimal solution of the 
following problem: 

minimized ∇f(x̄)T d 
s.t. Aβ d 0 0  

dT d ≤ 1 
d ∈ �n . 

•	 Suppose that A = −I and b = 0, that is, the constraints are of 
the form “x ≥ 0”. Develop a simple way to construct d ̄ in this 
case. 

19. Consider the problem to minimize f(x) subject to x ∈ X and gi(x) ≤ 
x be a feasible point, and let I := {i | gi(¯0, i  = 1, . . . , m. Let  ̄ x) = 0}. 

Suppose that X is an open set and gi(x), i  = 1, . . . , m  are continuous 
functions, and let J := {i | gi(·) is pseudoconcave}. Furthermore, 
suppose that 

d | ∇gi(¯	 x)td <  0 for  i ∈ I \ Jx)td ≤ 0 for  i ∈ J, ∇gi(¯

is nonempty. Show that this condition is sufficient to validate the KKT 
conditions at x̄. (This is called the “Arrow-Hurwicz-Uzawa constraint 
qualification.”) 
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