2.098/6.255/15.093 - Recitation 7

Michael Frankovich and Shubham Gupta
November 6, 2009

1 Integer Programming Formulations

1.1 An investment problem:

Suppose you are interested in choosing a set of investments 1,...,7 using binary variables.
Model the following constraints:

1. You cannot invest in all of them.

2. You must choose at least one of them.

3. At most one of investments 1 and 3 can be chosen.

4. Investment 4 can be chosen only if investment 2 is also chosen.

5. You must choose either both of investments 1 and 5, or neither.

6. You must choose at least one of investments 1,2,3 or at least two of investments
2,4,5,6.

Solution: Let z; be 1 if we choose investment ¢ (0 otherwise).

1. Z:zlxigfi
2.3 > 1
3. x1+23<1
4. x4 < 29
5. 1 = x5

6. 1 +xo+x3>Y, Totagtast+azs>2(1—y), ye{0,1}

1.2 BT 10.9. The fixed charge network design problem:

We are given a directed graph G = (N, A) and a demand or supply b; for each i € N,
such that » .\ b; = 0. There are two types of costs: transportation costs, c;;, of shipping
one unit from node i to node j, and building costs, d;;, of establishing a link (¢, j) between
nodes 7 and j of capacity u;;. We would like to build such a network in order to minimize
the total building and transportation costs, so that all demand is met. Formulate the
problem as an integer programming problem.

SOLUTION. There are two sets of decision variables. The first set x is used to decide which arcs to
build (« are binary). The second set of nonnegative variables f is used to route flow on the arcs that

are built. The problem formulation can be written as follows

min > e dij%ij + 2 jyea Cijfij
st b+ iere fii = Ljeowy fu ViEN
0< fij <wuiyzyy V(i,j) € A
Tij € {0, 1} V(Z,]) €A
The only difference from the normal network flow problem is the additional arc building cost and the

constraint f;; < w;jxi;. The latter constraints simply indicate that if an arc is not built then we cannot

route any flow through it. O

2 Exact Integer Algorithms

BT Examples 11.2 and 11.4

We want to solve the following IP:

min x1 — 2x9
s.t. —4xry+6x9 <9
T+ a9 < 4

r1,x2 > 0, integer.

Preliminary Note: The term LP relazation simply means the original problem without the integer
constraints. Since the LP relaxation has fewer constraints, its optimal solution must be less than or
equal to the optimal integral solution of the original IP (for a minimization problem). Thus the LP

relaxation gives a lower bound for the optimal IP cost.

2.1 Gomory Cutting Planes

After adding slack variables and solving the LP relaxation, we have the following optimal tableau:

35 3 2
0|90 % 1w
15 1 6
25 1 4

Remember that the tableau gives us the coefficients for the equation B~ Az = B~'b. The second
row of the tableau above thus gives us

s N
2T T 10T 10

Now since all the x; are nonnegative, we can round down the fractions on the left hand side to get

25
$2+0-$3+0'$4§E.

And since all the z; should be integer, we can round down the fraction on the right side to get
X9 § 2.

In standard form, this constraint is zo + x5 = 2, with x5 > 0. We can add these new constraints to

the LP formulation and solve again. The new optimal solution is (%, 2). One of the equations in the
optimal tableau is

1
$1*1£U3—|—L—L£U5—L—L.

The new Gomory cut is

r1 — w3+ x5 <0,

which is equivalent to
x1 — (9 + 4z — 6x2) + (2 —w2) = =321 + 5wy — 7 < 0.

Again we add this new constraint to the LP and solve. The new optimal solution is (1,2), and since it

is integer, it is an optimal solution to the original problem.

2.2 Branch and Bound

The basic idea behind branch and bound is divide and conquer, i.e., minimize the objective function
over different areas of the feasible region (integer lattice within the polyhedron) and choose the best

optimal solution.

e Branching The branching part of this method divides the feasible region into two or more disjoint
subregions. (Disjointness of subproblems can potentially save computation since each region will
not be checked repeatedly.) We can visualize branching as building up a tree from a starting
root. For IP minimization problems, we have the following relation between a parent node and
its children nodes: all the children subproblems have higher optimal values, because we impose

on each child more constraints on top of the ones it inherits from its parent.

e Bounding Let z* be the optimal solution of the original IP minimization problem. The root of the
tree is an LP relaxation of the original problem, which provides a lower bound on z* if the optimal
LP solution is not integral (otherwise we have an optimal integral solution and the problem is
solved). For a specific subproblem, if the optimal solution of its LP relaxation is integral, then
this provides an upper bound of z*. Throughout the algorithm, we keep track of the best known
upper bound U. If the optimal solution of the LP relaxation is not integral, then this gives a
lower bound for this specific subproblem. If this lower bound is at least U, then this node can be
deleted (or pruned). Why? The optimal values of all its children will be at least at high as its
own optimal value, but we know that z* < U, so the children nodes cannot possibly be useful in

leading us to the optimal solution of the original IP.

e In summary the branching process makes the tree grow while the bounding process restricts the
tree from growing too big by cutting off unnecessary branches. The method terminates when

there are no more subproblems to consider.

We apply the algorithm to the problem above:

Initialize U = co. As before, we solve the LP relaxation and find the optimal solution is (%, %—8), with
cos —%. Now how do we create subproblems? Observe that x5 is not integer (we could also use the
fact that =1 is not integer). We want the constraints of our subproblems to be violated by (%, %), SO
we create subproblems by adding the constraints x2 > 3 (subproblem F}) and z2 < 2 (subproblem Fj).
The LP relaxation of Fy turns out to be infeasible, so we delete it. The optimal solution of the LP
relaxation of Iy is (%, 2), with optimal cost —%. Now since the new x; is not integer, we break F5 into
two subproblems by adding the constraints x; > 1 (subproblem F3) and x; < 0 (subproblem Fy).

The optimal solution of the LP relaxation of Fj is (1,2), with optimal cost —3. Since we have the cost
of a feasible integer solution, we can update U = —3. We can stop exploring this subproblem since we
have an optimal integer solution for it. The optimal solution of the LP relaxation of Fj is (0, %), with
optimal cost —3. Now since this cost is at least U = —3, we do not need to explore F; anymore either.

At this point, there are no more subproblems to consider. The optimal integer solution to the original

problem is thus (1, 2).

2 Integer Programming Duality

2.1 Lagrangean Duality

Integer Programming problems are hard to solve in general. However, there are some
sets of constraints that can be sovled more efficiently than others. The main idea is to
relax difficult constraints by adding penalties to the cost function instead of imposing
them as constraints.

Consider the primal problem:

min cz
s/t. Az >b
rze X

where X = {z € Z"|Dx > d}. Relax the difficult constraints Az > b with Lagrange
multipliers p > 0 (if the constraints are equalities, then p is unconstrained), we obtain
the problem:

Z(p) = min dz +p'(b— Ax)
s.t. reX

Property: Z(p) is a piecewise concave function.

The Lagrange dual problem is written as follows:

Zp = max>o Z(p)

Theorem:
Zp = min cdx
s.t. Ax >b
x € conv(X)

N.b. X is a discrete set, with a finite number of points, while conv(X) is a continuous
set, in fact a polyhedron. Why? Try drawing these sets for a small example.

We have that the following integer programming weak duality inequalities always hold
(for a minimization problem, of course):

Zrp < Zp < Zpp.

2.2 BT Excercise 11.12 (Comparison of relaxations for an as-
signment problem with side constraints)

Note that from weak duality for integer programming problems, it follows that Z;p <
Zp1,Zp2, Zp3, Zps < Z1p.

Let F = {x € Z"|Dx > d}. Then, we have Z;p = Zp, for all cost vectors ¢, if and only
if conv(F) = {z|Dx > d}. Why?

Note the following relations:

« For={z€ 2|0 oy = 1,¥j; Y0z = 1,¥i)

o Fpp={x € ZM" 3L, >0 dizi; > b}

o Fpy={v € ZV" Y1 xi=1,¥i; Y0 30 dijvi; > b}
o Fos={z€ 20| 3y = 1,Vi}

Let Ppi1, Ppo, Pps and Ppy denote the polyhedra corresponding to the LP relaxation of
the constraints in Fpq, Fpe, Fpz and Fpy, respectively. Then the following relations
hold:

e conv(Fpq)

e conv(Fpo)

e conv(Fp3) C Pps
)

e conv(Fps) = Ppy

Why are these true? Well, we always have conv(Fp;) C Pp;. And we have equality
when the constraints Dz > d define an integral polyhedron (a polyhedron whose vertices
are all integer points), so conv(F) = conv({z € Z"|Dz > d}) = conv({z|Dzx > d}) =
{z|Dz > d} = Pp (the 2°¢ equality makes use of the fact that the polyhedron is integral).

Hence, it follows that Zpp = Zp; = Zps. Moreover, Zpp < Zps, Zps < Zrp. Finally,
since conv(Fp3) C conv(Fps), hence Zps < Zps. Therefore, we have Zp = Zp; =
Zps < Zpy < Zps < Zpp.

MIT OpenCourseWare
http://ocw.mit.edu

15.093J / 6.255J Optimization Methods
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

