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1 Unconstrained Optimization 

1.1 Optimality Conditions 

Consider the unconstrained problem: minx∈Rn f(x), where f(x) is twice differentiable, 
the optimality conditions are: 

1. Necessary conditions: 
∗If x is a local minimum, then ∇f(x ∗) = 0 and ∇2f(x ∗) is PSD. 

2. Sufficient conditions: 
If ∇f(x) = 0 and ∃ǫ > 0: ∇2f(x) is PSD for all x ∈ B(x, ǫ), then x is a local 
optimum. 

For a continuously differentiable convex function f , the sufficient and necessary condi­
tions for x ∗ to be a global minimum is ∇f(x ∗) = 0. 
Example 1 (Cauchy inequality) Given n positive numbers xi, prove that 

� �1/n n n 
� 1 � 

xi ≤ xi 
n 

i=1 i=1 

Proof. First, we change the variables to yi = ln(xi). If we consider i
n 
=1 yi = c then 

what we need to prove is 
n 

min eyi ≥ nec/n 
Pn 

i=1 yi=c 
i=1 

This is a constrained optimization problem; however, we can transform it into an un­
constrained problem by subsituting yn = c − n−1 yi. The unconstrained problem is i=1 
then 

n−1 
n−1 yi c− i=1 yimin 

� 
e + e 

P

y∈Rn−1 
i=1 

1Thanks Allison Chang for notes. 
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n−1 c− n−1 
The necessary condition is ∇f(y) = 0, where f(y) = 

�

i=1 e
yi + e

P

i=1 yi . We have: 

n−1 

= eyi − e c−
P

j=1 yj 

∂yi 

∂f(y) 

Thus we obtain a system of equations 

n−1 

yi = c − yj ∀i = 1, . . . , n − 1 
j=1 

This system has a unique solution of yi = c/n for all i. If we know that the function 
f(y) has global minima (which it does), then this solution is the unique global minimum 
with the optimal value of nec/n. Thus the Cauchy inequality is proved. 

2 Gradient Methods 

We are interested in solving the following nonlinear unconstrained problem: minx∈Rn f(x).

In general, gradient methods generate a sequence of iterates xk that converge to an op­

timal solution x ∗ .

Generic algorithm elements:


1. Iterative update xk+1 = xk + λkdk 

2. Descent direction ∇f(xk)′dk < 0; for example, dk = −Dk∇f(xk), where Dk is 
PSD. 

3. Best step length λk = argminλ>0f(xk + λdk). 

3 Methods of Unconstrained Optimization 

3.1 Steepest Descent 

First of all, we might ask ourselves, why should the gradient be part of the direction in 
which we want to move? Suppose we are at a point x, and we want to move to a point 
x + λd such that f(x + λd) < f(x). The linear approximation of f at x + λd is 

f(x + λd) ≈ f(x) + λ∇f(x)T d. 

Thus we want to find a d such that ∇f(x)T d is as small (negative) as possible. Define 

d̃ = −
∇f(x) 

. 
‖∇f(x)‖ 

Note that ‖d̃‖ = 1. Let d be any other vector that satisfies ‖d‖ = 1. Then 

∇f(x)T d̃ = ∇f(x)T −
∇f(x)

= −
∇f(x)T∇f(x)

= −
‖∇f(x)‖2 

= −‖∇f(x)‖ = −‖∇f(x)‖‖d‖. 
‖∇f(x)‖ ‖∇f(x)‖ ‖∇f(x)‖ 
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Now the Cauchy-Schwarz inequality says that for any vectors a and b, |aT b| ≤ ‖a‖‖b‖, 
which implies −aT b ≤ ‖a‖‖b‖, or aT b ≥ −‖a‖‖b‖. Thus −‖∇f(x)‖‖d‖ ≤ ∇f(x)T d, so 
we have 

∇f(x)T d̃ ≤ ∇f(x)T d. 

We have shown that among all directions d with ‖d‖ = 1, d̃ makes ∇f(x)T d the smallest 
(most negative). The unnormalized direction −∇f(x) is called the direction of steepest 
descent at x. 
For the steepest descent method, we set Dk to be the identity matrix I for all k. Thus 
the iterative step is just 

xk+1 = xk − λk∇f(xk). 

The algorithm stops when ∇f(xk) = 0, or when ‖∇f(xk)‖ is very small. The only 
unspecified parameter in this algorithm is the stepsize λk. There are various methods for 
choosing a stepsize. If f(x) is a convex function, then one way to pick a stepsize is an 
exact line search. Since we already determined that the new point will be xk+λkdk, where 
dk = −∇f(xk), we just want to find λk to minimize f(xk+λkdk). Let h(λ) = f(xk+λdk). 
We want to find λ such that h′ (λ) = ∇f(xk + λdk)

T dk = 0. In some cases, we can find 
an analytical solution to this equation. If not, recognize that h(λ) is convex since it is 
the composition of a convex function with a linear function. Thus h′′ (λ) ≥ 0 for all λ, 
which implies h′(λ) is increasing. Notice that h′(0) = ∇f(xk)

T dk = −∇f(xk)
T∇f(xk) = 

−‖∇f(xk)‖
2 < 0. Since h′ (λ) is increasing, we can find some λ̄ > 0 such that h′(λ̄) > 0. 

Then we can keep bisecting the interval 0, λ̄ until we find λ∗ such that h′(λ∗) = 0. 

3.2 Newton’s Method 

Suppose we are at a point x and move to x + d. The second-order approximation of f 
at x + d is 

1 
h(d) = f(x) + ∇f(x)T d + dT H(x)d, 

2 

where H(x) is the Hessian of f at x. We minimize h by finding d such that ∇h(d) = 
∇f(x) + H(x)d = 0, i.e., d = −H(x)−1∇f(x), which is called the Newton direction or 
Newton step at x. This motivates Newton’s method, in which the iterative step is 

xk+1 = xk − H(xk)
−1∇f(xk). 

Here the stepsize is λk = 1 in every iteration, and Dk = H(xk)
−1 . Note that the Newton 

direction is not necessarily a descent direction, though it is as long as H(xk)
−1 is positive 

definite. 

3.3 Rates of Convergence 

We want to analyze the convergence rate, or the rate at which the error ek = ‖xk − x ∗‖ 
is decreasing, for the two methods described above. Suppose, for example, that the error 
was ek = 0.1k in iteration k. Then we would have errors 10−1 , 10−2 , 10−3 , . . . . This error 
is decreasing linearly. As another example, suppose the error was ek = 0.12k 

. In this 
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case, the errors would be 10−2 , 10−4 , 10−8 , . . . (much faster!). This error is decreasing

quadratically.

It can be shown that the convergence rate is linear for steepest descent and (locally)

quadratic for Newton’s method. Thus Newton’s method typically converges in fewer it­

erations than steepest descent, but the computation can be much more expensive because

Newton’s method requires second derivatives.


3.4 Example 

Suppose we want to minimize the one-dimensional function f(x) = 7x − ln x. We have 
∇f(x) = f ′(x) = 7 − 

x 
1 and H(x) = f ′′ (x) = 

x
1 
2 . We can initialize x0 = 1. The steepest 

descent iteration is then 
� � 

1 
xk+1 = xk − λk 7 − , 

xk 

and the Newton step is 

1 � � 
xk+1 = xk − x 2 

k 7 − = xk + xk − 7x 2 
k = 2xk − 7x 2 

k. xk 
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