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1	 Karush Kuhn Tucker Necessary Conditions 

P: min f(x) 
s.t.	 gj(x) ≤ 0, j = 1, . . . , p 

hi(x) = 0, i = 1, . . . ,m 

Theorem. (KKT Necessary Conditions for Optimality) 
If x̂ is local minimum of P and the following Constraint Qualification Condition (CQC) 
holds: 

•	 The vectors ∇gj(x̂), j ∈ I(x̂) and ∇hi(x̂), i = 1, . . . ,m, are linearly indepen­
dent, where I(x̂) = {j : gj(x̂) = 0} is the set of indices corresponding to active 
constraints at x̂. 

Then, there exist vectors (u, v) s.t.: 

p	 m 

1. ∇f(x̂) + uj∇gj(x̂) + vi∇hi(x̂) = 0

j=1 i=1


2.	 uj ≥ 0, j = 1, . . . , p 

3.	 ujgj(x̂) = 0, j = 1, . . . , p (or equivalently gj(x̂) < 0 ⇒ uj = 0, j = 1, . . . , p) 

Theorem. (KKT + Slater) 
If x̂ is local minimum of P and the following Slater Condition holds: 

•	 There exists some feasible solution x̄ such that gj(x̄) < 0, ∀j ∈ I(x̂), where 
I(x̂) = {j : gj(x̂) = 0} is the set of indices corresponding to active constraints at 
x̂. 

Then, there exist vectors (u, v) s.t.: 

p	 m 

1. ∇f(x̂) + uj∇gj(x̂) + vi∇hi(x̂) = 0

j=1 i=1


2.	 uj ≥ 0, j = 1, . . . , p 
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3.	 ujgj(x̂) = 0, j = 1, . . . , p (or equivalently gj(x̂) < 0 ⇒ uj = 0, j = 1, . . . , p) 

Example. 
Solve 

min x2
1 + x2

2 + x2
3 

s.t. x1 + x2 + x3	 ≤ −18 

Solution. 
For some x to be a local minimum, condition (1) requires that ∃u s.t. 2xi + u = 0, i = 
1, 2, 3. 

Now, the constraint can either be active or inactive: 

•	 If it is inactive, then u < 0 by condition (3). This would imply x1 = x2 = x3 = 0, 
but x = (0, 0, 0)⊤ is infeasible, so this cannot be true of a local minimum. 

•	 If it is active, then x1 + x2 + x3 = −18 and 2xi + u = 0, i = 1, 2, 3. This is 
a system of four linear equations in four unknowns. We solve and obtain u = 
12, x = (−6,−6,−6)⊤ . Since u = 12 ≥ 0, there exists a u as desired. To check the 
regularity requirement, we simply confirm that ∇x = (1, 1, 1)⊤ � 0. Also, we could = 
have checked that the Slater condition is satisfied (eg use x̄ = (−10,−10,−10)⊤). 

Hence (−6,−6,−6)⊤ is the only candidate for a local minimum. Now, the question is: 
is it a local minimum? (Note that since this is the unique candidate, this is the same as 
asking if the function has a local minimum over the set.) 

Observe that the objective function is convex. Why? Because it is a positive combina­
tion of convex functions. Now, is the feasible set convex? Answer: yes, since it is of the 
form {x ∈ Rn : f(x) ≤ 0}, where f is a convex function. 

So we may apply a stronger version of the KKT condtions, the KKT sufficient condi­
tions, which imply that any x which satisfies the KKT necessary conditions and also 
meets these two convexity requirements is in fact a global minimum. 

So the point x = (−6,−6,−6)⊤ is the unique global minimum (unique since it was the 
only candidate). 

Example.1 

Solve 

min −log (x1 + 1) − x2 

s.t.	 g(x) � 2x1 + x2 − 3 ≤ 0 
x1, x2 ≥ 0 

1Thanks to Andy Sun. 
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Solution. 
Firstly, observe that this is a convex optimization problem, since f(x) is convex (a pos­
itive combination of the convex functions −x2 and −log (x1 + 1)), and the constraint 
functions g(x), −x1 and −x2 are convex (again, this is required for the feasible space to 
be convex, since we have ≤ constraints). Alternatively, in this case we can see that the 
feasible space is a polyhedron, which we know to be convex. 

Now, in order to use KKT, we need to assume which inequalities are active. Let’s start 
by assuming that at a local minimum x, only g(x) ≤ 0 is active. This leads to the 

−1 2 
system: x1+1 + u = 0, which gives u = 1 and x1 = −0.5, which is not feasible, so 

−1 1 
our assumption cannot be correct. 

−1 2 
Now try assuming g(x) ≤ 0 and −x1 ≤ 0 are active, giving the system x1+1 +u1 + 

−1 1 

−1 
u2 = 0, which gives u1 = 1, u2 = 1 and x2 = 3 (recall we assumed x1 = 0). 

0 

Now since it’s a convex optimization problem, and the Slater condition is trivially satis­
fied, this is a global minimum by the KKT sufficient conditions. 

Example. 
The following example shows that the KKT theorem may not hold if the regularity 
condition is violated: Consider 

min x1 + x2 

s.t.	 (x1 − 1)2 + x2
2 − 1 = 0 

(x1 − 3)2 + x2
2 − 9 = 0 

The feasible region is the intersection of two circles, one centered at the point (1, 0) with 
radius 1, the other at the point (3, 0) with radius 3. The intersection occurs at the origin, 
which is the optimal solution by inspection. 

We have ∇f(x̂) = (1, 1)⊤ , ∇h1(x̂) = (2x1 − 2, 2x2)
⊤ = (−2, 0)⊤, and ∇h1(x̂) = (2x1 − 

6, 2x2)
⊤ = (−6, 0)⊤ . So condition (1) cannot hold. 

2	 Conjugate Gradient Method2 

Consider minimizing the quadratic function f(x) = 1
2 x

⊤Qx + c⊤x. 

1. d1, d2, . . . , dm are Q-conjugate if 

d⊤ 
i Qdj = 0, ∀i � j= 

2Thanks to Allison Chang for notes 
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2. Let x0 be our initial point. 

3. Direction d1 = −∇f(x0). 

4. Direction dk+1 = −∇f(xk+1) + λkdk, where λk = ∇f(xk+1)
⊤dk in the quadratic 

d⊤ 
k Qdk 

||∇f(xk+1)||2 

case (and λk = 
||∇f(xk)||2 in the general case). It turns out that with each dk 

constructed in this way, d1, d2, . . . , dk are Q-conjugate. 

5. By Expanding Subspace Theorem, xk+1 minimizes f(x) over the affine subspace 
S = x0 + span{d1, d2 . . . , dk}. 

6. Hence finite convergence (n steps). 

3 Barrier Methods 

A barrier function G(x), is a continuous function with the propertiy that it approaches 
∞ as one of the gj(x) approaches 0 from below. 

Examples: 
p 

� 

p 
� 1 

− log[−gj(x)] and − 
gj(x)

j=1 j=1 

Consider the primal/dual pair of linear optimization problems 

P: min c⊤x D: max b⊤p 

s.t. Ax = b s.t. A⊤p + s = c 

s.t. x ≥ 0 s.t. s ≥ 0 

To solve P, we define the following barrier problem: 

BP: min Bµ(x) � c⊤x − µ 
�

j

n 

=1 log xj 

s.t. Ax = b 

Assume that for all µ > 0, BP has an optimal solution x(µ). This optimum will be 
unique. Why? 

As µ varies, the x(µ) form what is called the central path.


Theorem. limµ→0 x(µ) exists and x ∗ = limµ→0 x(µ) is an optimal solution to P.


Then the barrier problem from the dual problem is


BD: max b⊤p + µ 
�

j

n 

=1 log sj 

s.t. A⊤p + s = c 

4 



� �� � 

Theorem. Let µ > 0. Then x(µ), s(µ), p(µ) are optimal solutions to BP and BD if and 
only if the following hold: 

Ax(µ) = b 

x(µ) ≥ 0 

A⊤ p(µ) + s(µ) = c 

s(µ) ≥ 0 

xj(µ)sj(µ) = µ, ∀j 

To solve BP using the Primal path following algorithm, we: 

1. Start with a feasible interior point solution x0 > 0 

2. Step in the Newton direction d(µ) = I − X2A⊤(AX2A⊤)−1A Xe − 
µ 
1 X2c 

3. Decrement µ 

4. Iterate until convergence is obtained (complementary slackness above is ǫ-satisfied) 

Note if we were to fix µ and carry out several Newton steps, then x would converge to 
x(µ). By taking a single step in the Newton direction we can guarantee that x stays 
“close to” x(µ), i.e. the central path. Hence following the iterative Primal path following 
algorithm we will converge to an optimal solution by this result and the first theorem 
above. 
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