
MIT, 2.098/6.255/15.093J

Optimization Methods

Final Review, Fall 2009


December 11, 2009 

Pre Mid-term 

•	 Geometry of LP 

•	 Simplex Method 

•	 Duality Theory 

•	 Sensitivity Analysis 

•	 Large Scale Optimization 

•	 Networks 

Post Mid-term 

•	 Integer Optimization 

–	 Formulations 

– Algorithms : Cutting Planes, Branch and Bound, Heuristics 

–	 Lagrangean Duality 

•	 Dynamic Programming 

•	 Non-linear Optimization 

–	 Convex functions 

–	 Unconstrained Optimization : Steepest Descent, Newton’s Method and Con­
jugate Gradient 

– Constrained Optimization : KKT Conditions 
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•	 Interior Point Methods 

–	 Affine Scaling 

–	 Barrier Methods 

•	 Semi-definite Optimization 

1 Integer Optimization 

1.1 Formulations 

•	 Binary choice (x is 0 or 1 depending on the chosen alternative) 

•	 Forcing constraints (x ≤ y, decision x is made only if decision y is made) 

•	 Relations between variables ( i
n 
=1 xi ≤ 1, at most one of the variables can be one) 

•	 Disjunctive constraints (given m constraints, need that atleast k are satisfied ­
�k ′ yi ≥ k, aix ≥ biyi, yi ∈ {0, 1})i=1 

•	 Arbitrary piecewise linear cost functions 

Guidelines for Strong Formulations 

The quality of a formulation of an integer optimization problem with feasible solution 
set F can be judged by the closeness of the feasible set of its linear relaxation to the 
convex hull of F . 

•	 Facility Location - two formulations : PFL and PAFL but PFL is closer to the convex 
hull although it has many more constraints than PAFL. 

•	 In general, good formulations can have exponential number of constraints. 

1.2 Cutting Planes - Gomory Cuts 

Key idea is to cut off parts of the feasible region, so that all integer solutions are still 
feasible, but the solution from the LP relaxation is violated. 
Let x ∗ be an optimal basic feasible solution and let B be an associated optimal basis. 
We partition x into a subvector xB of basic variables and a subvector xN of nonbasic 
variables. WLOG, let the first m variables are basic, so that xB(i) = xi, i = 1, ..., m. Let 
N be the set of indices of nonbasic variables. Let AN be the submatrix of A with columns 
Ai, i ∈ N . From the optimal tableau, we obtain the coefficients of the constraints: 

xB + B−1ANxN = B−1b 

Let aij = (B−1Aj)i 
and ai0 = (B−1b)i. We consider one equality from the optimal 

tableau, in which ai0 is fractional: 
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xi + j∈N aijxj = ai0 

Since, xj ≥ 0, ∀j, we have 

xi + j∈N⌊aij⌋xj ≤ xi + j∈N aijxj = ai0 

Since xj should be integer, we obtain 

xi + j∈N⌊aij⌋xj ≤ ⌊ai0⌋ 

This inequality is valid for all ineteger solutions, but it is not satisfied by x ∗ . 

1.3 Branch and Bound 

The idea is to divide the entire feasible region into smaller regions, such that it is easier 
to compute lower bounds on these subproblems so that some of them can be eliminated 
given information on other parts of the tree. Let b(Fi) denote the lower bound to the 
optimal cost of subproblem Fi. Let U be an upper bound on the optimal cost, which 
could be the cost of the best feasible solution encountered thus far. 

•	 Select an active subproblem Fi. 

•	 If the subproblem is infeasible, delete it; otherwise, compute b(Fi) for the corre­
sponding subproblem. 

•	 If b(Fi) ≥ U , delete the subproblem. 

•	 If b(Fi) < U , either obtain an optimal solution to the subproblem, or break the 
corresponding subproblem into further subproblems, which are added to the list of 
active subproblems. 

1.4 Lagrangean Duality 

Integer Programming problems are hard to solve in general. However, there are some 
sets of constraints that can be sovled more efficiently than others. The main idea is to 
relax difficult constraints by adding penalties to the cost function instead of imposing 
them as constraints. 

Consider the primal problem: 

′ min c x 
s/t. Ax ≥ b 

x ∈ X 

where X = {x ∈ Zn|Dx ≥ d}. Relax the difficult constraints Ax ≥ b with Lagrange 
multipliers p ≥ 0 (if the constraints are equalities, then p is unconstrained), we obtain 
the problem: 
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Z(p) = min c ′ x + p ′ (b − Ax) 
s.t. x ∈ X


Property: Z(p) is a piecewise concave function. 

The Lagrange dual problem is written as follows: 

ZD = maxp≥0 Z(p) 

Theorem: 

′ ZD =	 min c x 
s.t.	 Ax ≥ b 

x ∈ conv(X) 

N.b. X is a discrete set, with a finite number of points, while conv(X) is a continuous 
set, in fact a polyhedron. Why? Try drawing these sets for a small example. 

We have that the following integer programming weak duality inequalities always hold 
(for a minimization problem, of course): 

ZLP ≤ ZD ≤ ZIP . 

2 Dynamic Programming 

1. State xk; 

2. Control uk; 

3. Dynamics: xk+1 = fk(xk, uk); 

4. Boundary Conditions: JN(xN), ∀xN . 

5. Recursion: Jk(xk) = min gk(xk, uk) + Jk(xk+1) . 
uk∈Uk 

3 Non-linear Optimization 

How to determine whether a function is convex 

If a function is differentiable, we can use the following facts: 

• ∇2f(x) is PSD ∀x =⇒ f is convex 

• ∇2f(x) is PD (positive definite) ∀x =⇒ f is strictly convex 

Once we know a few basic classes of convex functions, we can use the following facts: 
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• Linear functions f(x) = a⊤x + b are convex 

• Quadratic functions f(x) = 
2
1 x⊤Qx + b⊤x are convex if Q is PSD (positive semi-

definite) 

•	 Norms are convex functions (the proof is left an exercise, using the properties of 
norms defined above) 

•	 g(x) = 
�k

i=1 aifi(x) is convex if ai ≥ 0, fi convex, ∀i ∈ {1, . . . , k} 

4 Unconstrained Optimization 

4.1 Optimality Conditions 

Consider the unconstrained problem: minx∈Rn f(x), where f(x) is twice differentiable, 
the optimality conditions are: 

1. Necessary conditions:

If x ∗ is a local minimum, then ∇f(x ∗) = 0 and ∇2f(x ∗) is PSD.


2. Sufficient conditions: 
If ∇f(x) = 0 and ∃ǫ > 0: ∇2f(x) is PSD for all x ∈ B(x, ǫ), then x is a local 
optimum. 

For a continuously differentiable convex function f , the sufficient and necessary condi­
tions for x ∗ to be a global minimum is ∇f(x ∗) = 0. 

4.2 Gradient Methods 

We are interested in solving the following nonlinear unconstrained problem: minx∈Rn f(x).

In general, gradient methods generate a sequence of iterates xk that converge to an op­

timal solution x ∗ .

Generic algorithm elements:


1.	 Iterative update xk+1 = xk + λkdk 

2. Descent direction ∇f(xk) ′ dk < 0; for example, dk = −Dk∇f(xk), where Dk is 
PSD. 

3.	 Best step length λk = argminλ>0f(xk + λdk). 

4.3 Methods of Unconstrained Optimization 

Steepest Descent 

The unnormalized direction −∇f(x) is called the direction of steepest descent at x. 
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For the steepest descent method, we set Dk to be the identity matrix I for all k. Thus 
the iterative step is just 

xk+1 = xk − λk∇f(xk). 

The algorithm stops when ∇f(xk) = 0, or when �∇f(xk)� is very small. The only 
unspecified parameter in this algorithm is the stepsize λk. There are various methods for 
choosing a stepsize. If f(x) is a convex function, then one way to pick a stepsize is an 
exact line search. Since we already determined that the new point will be xk+λkdk, where 
dk = −∇f(xk), we just want to find λk to minimize f(xk+λkdk). Let h(λ) = f(xk+λdk). 
We want to find λ such that h ′ (λ) = ∇f(xk + λdk)

T dk = 0. In some cases, we can find 
an analytical solution to this equation. If not, recognize that h(λ) is convex since it is 
the composition of a convex function with a linear function. Thus h ′′ (λ) ≥ 0 for all λ, 
which implies h ′ (λ) is increasing. Notice that h ′ (0) = ∇f(xk)

T dk = −∇f(xk)
T∇f(xk) = 

−�∇f(xk)�
2 < 0. Since h ′ (λ) is increasing, we can find some λ̄ > 0 such that h ′ (λ̄) > 0. 

Then we can keep bisecting the interval 0, λ̄ until we find λ∗ such that h ′ (λ∗) = 0. 

Newton’s Method 

Suppose we are at a point x and move to x + d. The second-order approximation of f 
at x + d is 

1 
h(d) = f(x) + ∇f(x)T d + dT H(x)d, 

2 

where H(x) is the Hessian of f at x. We minimize h by finding d such that ∇h(d) = 
∇f(x) + H(x)d = 0, i.e., d = −H(x)−1∇f(x), which is called the Newton direction or 
Newton step at x. This motivates Newton’s method, in which the iterative step is 

xk+1 = xk − H(xk)
−1∇f(xk). 

Here the stepsize is λk = 1 in every iteration, and Dk = H(xk)
−1 . Note that the Newton 

direction is not necessarily a descent direction, though it is as long as H(xk)
−1 is positive 

definite. 

Conjugate Gradient Method 

Consider minimizing the quadratic function f(x) = 
2
1 x⊤Qx + c⊤x. 

1. d1, d2, . . . , dm are Q-conjugate if 

d⊤Qdj = 0, ∀i � j= i 

2. Let x0 be our initial point. 

3. Direction d1 = −∇f(x0). 

∇f(xk+1)⊤dk4. Direction dk+1 = −∇f(xk+1) + λkdk, where λk = 
d⊤Qdk 

in the quadratic 
k 

||∇f(xk+1)||
2 

case (and λk = 
||∇f(xk)||2 in the general case). It turns out that with each dk 

constructed in this way, d1, d2, . . . , dk are Q-conjugate. 
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5. By Expanding Subspace Theorem, xk+1 minimizes f(x) over the affine subspace 
S = x0 + span{d1, d2 . . . , dk}. 

6.	 Hence finite convergence (n steps). 

Rates of Convergence 

We want to analyze the convergence rate, or the rate at which the error ek = �xk − x ∗� 
is decreasing, for the two methods described above. Suppose, for example, that the error 
was ek = 0.1k in iteration k. Then we would have errors 10−1 , 10−2 , 10−3 , . . . . This error 
is decreasing linearly. As another example, suppose the error was ek = 0.12k 

. In this 
case, the errors would be 10−2 , 10−4 , 10−8 , . . . (much faster!). This error is decreasing 
quadratically. 

•	 Linear convergence rate for steepest descent. 

•	 Quadratic (locally) for Newton’s method. 

•	 Newton’s method typically converges in fewer iterations than steepest descent, but 
the computation can be much more expensive because Newton’s method requires 
second derivatives. 

•	 Conjugate Gradient converges in less than n steps. 

5	 Karush Kuhn Tucker Necessary Conditions 

P: min f(x) 
s.t.	 gj(x) ≤ 0, j = 1, . . . , p 

hi(x) = 0, i = 1, . . . , m 

(KKT Necessary Conditions for Optimality) 
If x̂ is local minimum of P and the following Constraint Qualification Condition (CQC) 
holds: 

•	 The vectors ∇gj(x̂), j ∈ I(x̂) and ∇hi(x̂), i = 1, . . . , m, are linearly indepen­
dent, where I(x̂) = {j : gj(x̂) = 0} is the set of indices corresponding to active 
constraints at x̂. 

Then, there exist vectors (u, v) s.t.: 

p	 m 

1. ∇f(x̂) + uj∇gj(x̂) + vi∇hi(x̂) = 0

j=1 i=1


2.	 uj ≥ 0, j = 1, . . . , p 

3.	 ujgj(x̂) = 0, j = 1, . . . , p (or equivalently gj(x̂) < 0 ⇒ uj = 0, j = 1, . . . , p) 
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(KKT + Slater) 
If x̂ is local minimum of P and the following Slater Condition holds: 

•	 There exists some feasible solution x̄ such that gj(x̄) < 0, ∀j ∈ I(x̂), where 
I(x̂) = {j : gj(x̂) = 0} is the set of indices corresponding to active constraints at 
x̂. 

Then, there exist vectors (u, v) s.t.: 

p	 m 

1. ∇f(x̂) + uj∇gj(x̂) + vi∇hi(x̂) = 0

j=1 i=1


2.	 uj ≥ 0, j = 1, . . . , p 

3.	 ujgj(x̂) = 0, j = 1, . . . , p (or equivalently gj(x̂) < 0 ⇒ uj = 0, j = 1, . . . , p) 

Example. 
Solve 

min x2
1 + x2

2 + x2
3 

s.t. x1 + x2 + x3 ≤ −18 

6 Interior Point Methods 

6.1 Affine Scaling Methods 

6.1.1 The Algorithm 

Inputs: (A, b, c), an initial primal feasible solution x0 > 0, an optimality tolerance ǫ > 0 
and parameter β ∈ (0, 1) 

1.	 Initialization 

2.	 Computation of dual estimates and reduced costs 

3.	 Optimality Check, Unbounded Check 

4.	 Update of primal solution 

Theorem 

If we apply the long-step affine scaling algorithm with ǫ = 0, the following hold:

(a) For the long-step variant and under assumptions A and B, and if 0 < β < 1, xk and

pk converge to the optimal primal and dual solutions.

(b) For the second long-step variant, and under assumption A and if 0 < β < 2/3, the

sequences xk and pk converge to some primal and dual optimal solutions, respectively.


•	 simple mechanics. 

•	 imitates simplex near the boundary. 
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6.2 Barrier Methods 

A barrier function G(x), is a continuous function with the property that it approaches 
∞ as one of the gj(x) approaches 0 from below. 

Examples: 
p 

� 

p 
� 1 

− log[−gj(x)] and − 
gj(x)

j=1 j=1 

Consider the primal/dual pair of linear optimization problems 

P: min c⊤x D: max b⊤p 
s.t. Ax = b s.t. A⊤p + s = c 
s.t. x ≥ 0 s.t. s ≥ 0 

To solve P, we define the following barrier problem: 

BP: min Bµ(x) � c⊤x − µ 
�

j

n 

=1 log xj 

s.t. Ax = b 

Assume that for all µ > 0, BP has an optimal solution x(µ). This optimum will be 
unique. Why? 

∗As µ varies, the x(µ) form what is called the central path. limµ→0 x(µ) exists and x =

limµ→0 x(µ) is an optimal solution to P.

Then the barrier problem from the dual problem is


BD: max b⊤p + µ 
�

j

n 

=1 log sj 

s.t. A⊤p + s = c 

Let µ > 0. Then x(µ), s(µ), p(µ) are optimal solutions to BP and BD if and only if the 
following hold: 

Ax(µ) = b 

x(µ) ≥ 0 

A⊤ p(µ) + s(µ) = c 

s(µ) ≥ 0 

xj(µ)sj(µ) = µ, ∀j 

To solve BP using the Primal path following algorithm, we: 

1. Start with a feasible interior point solution x0 > 0 

2. Step in the Newton direction d(µ) = I − X2A⊤(AX2A⊤)−1A Xe − 
µ 
1 X2c 

3. Decrement µ
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4. Iterate until convergence is obtained (complementary slackness above is ǫ-satisfied) 

Note if we were to fix µ and carry out several Newton steps, then x would converge to 
x(µ). By taking a single step in the Newton direction we can guarantee that x stays 
“close to” x(µ), i.e. the central path. Hence following the iterative Primal path following 
algorithm we will converge to an optimal solution by this result and the first theorem 
above. 
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