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Abstract 
The course Prediction: Machine Learning 
and Statistics is taught currently at MIT to 
mathematically oriented non-experts. The 
course focuses generally on predictive mod­
eling from data, and contains topics within 
data mining, machine learning, and statistics, 
often going back and forth between machine 
learning and statistical views of various algo­
rithms and concepts. The course is struc­
tured in three parts: an overview of most 
of the “top 10” algorithms in data mining 
based on the ICDM survey (Wu et al., 2008), 
statistical learning theory and kernels, and 
Bayesian analysis. We present insights from 
this course. 

1. Course Motivation 

Here is the beginning of the course description for Pre­
diction: Machine Learning and Statistics : 

“Prediction is at the heart of almost every 
scientific discipline, and the study of general­
ization (that is, prediction) from data is the 
central topic of machine learning and statis­
tics, and more generally, data mining. Ma­
chine learning and statistical methods are 
used throughout the scientific world for their 
use in handling the information overload that 
characterizes our current digital age. Ma­
chine learning developed from the artificial 
intelligence community, mainly within the 
last 30 years, at the same time that statistics 
has made ma jor advances due to the avail­
ability of modern computing. However, parts 
of these two fields aim at the same goal, that 
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is, of prediction from data. This course pro­
vides a selection of the most important topics 
from both of these subjects.” 

The course Prediction: Machine Learning and Statis­
tics is an introductory course that serves primarily 
PhD and MS students from the MIT Operations Re­
search Center, though its audience includes other PhD 
students (e.g., from economics) and several undergrad­
uates. The students have a broad mathematical back­
ground, and know probability and sometimes opti­
mization, but very few of them previously know ma­
chine learning or statistics. So far, none of the students 
have come into the course intending to work in ma­
chine learning or statistics after they finish the course, 
and most do not expect to take another class on the 
topic afterwards. There are numerous challenges in 
teaching for this audience: first, how to provide stu­
dents with a truly practical knowledge of learning al­
gorithms and why or when they work well, how to give 
them a broader perspective of predictive modeling in 
terms of its role in knowledge discovery in data min­
ing, to give them an understanding of the relationships 
between the history and type of work done in machine 
learning and statistics in order to understand where 
these fields are moving, and to help them appreciate 
the beauty of the mathematical foundations underly­
ing statistical learning. 

The course’s title was inspired by a blog entry of Bren­
dan O’Connor called “Statistics vs. Machine Learning, 
Fight!” which aims to put into perspective whether 
there truly is a difference between machine learning 
and statistics, quoting several prominent researchers 
who lie at the intersection. The answer he finds is 
that clearly these two subjects are not very different, 
but the most interesting differences are “institutional,” 
including things like teaching style (using Ng’s lecture 
notes as an example of good teaching style, Ng, 2009), 
and the marketing of ideas and vibrancy (machine 
learning seems somehow much more vibrant). Much of 
this has to do with where the fields started, and how 
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they evolved over the last 30 years. Statistics started 
with things of interest to the state – like money, land, 
and population – modern statistics beginning perhaps 
with John Graunt studying the plague in England. 
Machine learning emerged instead from within arti­
ficial intelligence. The bottom line is that it is worth­
while to be able to combine the best of both worlds – 
in other words, to combine tried-and-true methodolo­
gies and understanding of statistics with the goals and 
excitement of machine learning – and that is what the 
course is about. 

In what follows, we will first overview the organiza­
tional structure of the course. In the process, we 
discuss specific choices that make the course unusual 
amongst machine learning courses, and other choices 
that help adapt the course to today’s students. 

2. Overview 

There are three components to the course: the “top 
10” algorithms in data mining, a theoretical compo­
nent, and Bayesian analysis. 

It is important that a ma jor algorithmic part of the 
course comes first in that students gain a practical un­
derstanding and appreciation of what it means to pre­
dict from data. This allows the students the possibility 
of approaching topics like Reproducing Kernel Hilbert 
Spaces, VC dimension, and covering numbers, even 
though many of them have not previously had back­
ground in functional analysis. By studying the “top 
10” algorithms, students feel like they understand why 
the material is important, and gain the excitement of 
having an overview worthy of approval by the world’s 
current data mining experts. The students come away 
with a toolbox of these algorithms that they can use on 
their own datasets after they leave the course, through 
functionality built into R (or Matlab). 

In between some of the top 10 algorithms, we cover 
processes of knowledge discovery, which seems to be 
a fairly unusual topic to cover in a machine learning 
course, and is not, for instance covered in many courses 
(e.g., that of Ng, 2009), nor is it covered in most ma jor 
machine learning textbooks (e.g., it is not covered in 
Hastie et al., 2009; Russell & Norvig, 2009; Mitchell, 
1997; Bishop, 2006; Barber, 2012). This topic includes 
CRISP-DM (Chapman et al., 2000) and the KDD pro­
cess (Fayyad et al., 1996), giving a history of CRISP­
DM, having been developed by several companies that 
aimed to make the process of discovering knowledge 
more formal and scientific. Students enjoy recognizing 
that predictive modeling is only one step in the formal 
process of discovering knowledge from data. 

There are several themes that are woven throughout 
the course. In particular, the theme of the regularized 
risk:  

 (f(xi), yi) + C Rreg(f). (1) 
i

The functional (1) appears in many different contexts, 
starting from the slack variables of SVM, to the max­
imum likelihood derivation of logistic regression and 
least squares regression, to the maximum a posteriori 
derivation of ridge regression, to the fortuitous equiv­
alence of AdaBoost to coordinate descent on the ex­
ponential loss, to the cost complexity pruning within 
CART. Each of these algorithms is provided with their 
usual derivation, and then the connection is made to 
(1). It is a surprise whenever a special case of (1) 
appears, having been derived in a new way each time. 

The regularized risk is explained at the beginning of 
the second lecture (after the Apriori algorithm in the 
first lecture). It is tied to the concepts of overfit­
ting/underfitting the bias/variance tradeoff, and the 
idea that generalization is “data plus knowledge.” The 
algorithms are introduced in a specific order, where 
the first four are the simplest to understand. The last 
several algorithms are ordered so that a concept from 
each algorithm carries over into the next algorithm. 

•	 Apriori: this is often described as a data miners’ 
first tool, but is often omitted from machine learn­
ing curricula (including again ma jor textbooks 
Bishop, 2006; Barber, 2012). 

•	 K-Means, K-NN, and Naive Bayes: these are the 
simplest to understand, which is why they are dis­
cussed early. 

•	 Decision Trees, with separate derivations for C4.5 
and CART. It is useful to study two decision tree 
algorithms to appreciate that there are a variety 
of ways to construct a decision tree. 

•	 Logistic Regression, which coincidentally is not 
one of the “top 10” algorithms in data mining. We 
give a derivation and history of the concepts of lo­
gistic regression, starting with Verhulst’s study of 
the growth of populations (1804-1849), through 
to the controversy of whether the logistic func­
tion could replace the cdf of the normal distribu­
tion in the mid-20th Century. Logistic regression, 
along with the next two algorithms, creates a lin­
ear model, and has an interpretation in terms of 
(1). 

•	 AdaBoost, which in many ways has a very strong 
relationship to logistic regression. In particular, 
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they both yield estimates of P (y = 1|x) from ex­
tremely similar formulas. Though we provide the 
intuition behind the original ideas of a weak learn­
ing algorithm being made into a strong learning 
algorithm, we derive AdaBoost using the statisti­
cal approach to boosting (Friedman et al., 2000). 
However, because of this choice, we could not use 
the original convergence rate calculations for Ad­
aBoost, so we adapted them to the “statistical 
approach” perspective. We end the topic by dis­
cussing the concept of the margin, and that Ad­
aBoost approximately maximizes the 1 margin, 
but does not always do so. This leads right into 
the motivation for support vector machines, which 
optimizes the 2 margin. 

•	 Support Vector Machines (SVM) - We provide a 
tutorial lecture for students on convex optimiza­
tion beforehand in case they need it. 

Each of these algorithms has an implementation in R 
that students use for their homework assignments, us­
ing a folder of processed datasets from the UCI repos­
itory that we provide for them (Frank & Asuncion, 
2010). Occasionally we ask them not to use the pre-
implemented versions of the algorithms, in order to de­
construct an algorithm to understand particular con­
cepts. For instance, one of our homework problems 
involved implementing K-Means to determine whether 
the cluster assignment step or the centroid move step 
generally reduces the cost more than the other one. 

Another of our homework assignments asked students 
to derive a new algorithm, by considering the usual 
logistic regression model   

P (Y = 1|x, λ)
ln	 = λT x that is, 

P (Y = 0|x, λ)
P (Y = 1|x, λ) λT x = e . 
P (Y = 0|x, λ) 

λT 
Why does the right side need to be e x? Perhaps 
it could be replaced by another nonnegative function, 
like (λT x)2 . Then the students need to calculate the 
-log likelihood and derive a boosting-style coordinate 
descent algorithm to optimize it. Then they can figure 
out whether this is even a good idea. 

The second part of the course focuses on kernels and 
statistical learning theory, and we discuss kernels first. 
Kernels are motivated using support vector machines, 
and the fact that some of the most powerful predic­
tive algorithms gain their power through the choice of 
kernel. However, in order to use a kernel, we need to 
ensure that the kernel mapping and the higher dimen­
sional feature space really do exist. The notes start 

from standard linear kernels, and gradually build up 
to polynomial kernels of arbitrary degree d through a 
series of examples (in some sense following examples 
given by Shawe-Taylor & Cristianini, 2000; Schölkopf 
& Smola, 2001). With the intuition from these ex­
amples, we do a calculation in a finite dimensional 
state space, to show why that if a function k has any 
chance of being an inner product in a feature space, 
then every Gram matrix needs to be positive semi-
definite. After this, we officially define a kernel, and 
the first representation of its corresponding Reproduc­
ing Kernel Hilbert Space (RKHS), which is the one 
from the Moore-Aronszajn Theorem. This represen­
tation is useful for motivation because one can draw 
1-dimensional and 2-dimensional illustrations of the 
elements of the feature space, simply as real-valued 
functions (like gaussians). Then we go to the other 
representation of the RKHS, which is a generalized 
version of the finite state example we did. This comes 
from Mercer’s Theorem. We then use that representa­
tion of the RKHS to prove the Representer Theorem 
of Kimeldorf and Wahba. At that point it ties back to 
the general expression (1), because the theorem gives 
the form of the solution for any loss function, with the 
RKHS regularizer. The rest of the lectures on kernels 
discuss how to construct kernels that are well-known 
in practice (e.g, the gaussian). 

We motivate statistical learning theory as a way of for­
malizing that generalization is “data plus knowledge.” 
By this point, the class understands that simpler mod­
els that describe the data well are probably the ones 
that work well for prediction. How to formulate this 
abstract notion, in a mathematically elegant and pre­
cise way, is the goal of statistical learning theory. Be­
fore giving any notation, we give intuition through the 
train/test error vs. complexity tradeoff curves. Those 
curves illustrate what we are trying to prove, namely 
the closeness of the training error curve and the test 
error curve, which depends on the simplicity of the 
function class. The simplicity of a function class can 
be measured in many different ways, and we list some 
of them with a small description of each (VC dimen­
sion, covering number, Rademacher averages). Only 
after this intuition do we introduce notation and start 
to formalize the concepts. The learning theory notes 
follow mainly the outline of Bousquet et al. (2003). 
Illustrations are provided for as many of the concepts 
as possible, for instance for the regression function and 
Bayes Classifier, as well as for the idea of a uniform 
bound. 

The course finishes with Bayesian analysis, following 
Gelman et al. (2003). We start by explaining that most 
of the other machine learning tools that we discussed 
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(SVM, boosting, decision trees, etc.) do not make any 
underlying assumption about how the data were gen­
erated; whereas for the remainder of the course, we will 
assume that the underlying distribution is one of a set. 
Given our data, our goal is then to determine which 
of these probability distributions generated the data. 
The lecture follows the “coin flip” example through 
several concepts: maximum likelihood, MAP, conju­
gate priors and exponential families. While we are 
studying MAP, we give the example of linear regres­
sion, and show that a multivariate normal prior leads 
all the way back to the beginning of the course, back 
to (1) with a least square loss and 2 regularization. 

3. An Updated Teaching Style for 
Today’s Students 

Media : It is no longer the case that most graduate 
courses at MIT are taught on the blackboard. The 
blackboard, in our experience, is useful in that it allows 
the lecturer to regulate the speed of the lecture, and 
allows students to concentrate on the meaning of each 
symbol as it is written. The lectures of Ng (2009) and 
lectures at many other universities are still taught on 
the blackboard; however, we find that generally, MIT 
students no longer prefer this style. This is a dramatic 
change, for instance, from 5-8 years ago, and this is 
not yet the case at many other universities. Some of 
our students never developed the skill needed to copy 
and follow the lecture at the same time. 

The issue of copying can be somewhat assisted by 
scribe notes, where one student from the class is as­
signed to type up the lectures. Scribe notes, in our 
experience, are very useful, but often have errors, and 
do not convey intuition of the same quality as is pro­
vided by the lecturer. Timing of scribe notes is also an 
issue: if the lecturer has never taught the topic before, 
the scribe notes might not be available until days af­
ter the lecture is over. Further, if the lecturer changes 
the lecture from year to year, the scribe notes from 
the previous year do not completely reflect the lecture 
from the current year, and cannot be used to follow 
the current lecture. We do not use scribe notes in our 
course. 

To address this new generation of students, we use pre-
prepared LaTeX lecture notes in large font, that are 
designed to be self-contained, but with specific denoted 
gaps missing for blackboard examples and questions 
for the class. Each blackboard example is designed 
to show a specific point (for instance, how to get from 
one stage of Apriori to the next). The questions for the 
class are placed in a box, so students can see a question 
coming, and think about how to answer before we get 

to it. Using a large font format is important, as the 
notes appear directly on the screen, and it forces us 
to use short intuitive explanations of each topic, and 
lots of pictures, in order to avoid large paragraphs on 
the screen. Having these notes pre-prepared eliminates 
problems with copying off the blackboard, and focuses 
the students on the material directly. Further it elimi­
nates the need for scribe notes and the errors and other 
issues associated with them. We find that as long as 
the speed of the lecture is regulated very carefully, the 
students seem to really enjoy this format. 

The lecture notes are written in an unusual style, 
where the English is very informal, but with precise 
mathematical derivations. This allows us in the de­
scriptions to focus on providing useful intuition, while 
at the same time, being clear technically. The English 
explanations are written the same as we would provide 
intuition verbally. 

Powerpoint and internet resources are also used for 
showing practical examples from recent research, and 
to illustrate the convergence of different algorithms. 
For instance, we use videos to demonstrate the con­
vergence of K-Means, we use Yoav Freund’s applet 
demonstrating AdaBoost1, and Yann LeCun’s LeNet2 

webpage and an example of our own work (on smart 
grid maintenance, Rudin et al., 2010) to show machine 
learning in practice. 

Schedule: We also usually take a break an hour into 
the lecture (which is 1 hour and 20 minutes), and en­
courage students to come up and ask additional ques­
tions. This allows us to gauge the understanding of 
the students in the earlier part of the lecture, without 
having to embarrass anyone by cold-calling in front 
of a crowd to see whether they understood something 
only a few minutes after they had heard it for the first 
time. Very often we get excellent questions during the 
break, and formally clarify the answers to the class 
before moving on. 

Diversity : The audience for this course has a diverse 
mathematical background, as is true for courses taught 
in an interdisciplinary department. This course is 
taught at a management school, which is extremely 
interdisciplinary. Since it is a mix of students from 
almost all academic levels at the university (advanced 
PhD, early PhD, masters, and advanced undergradu­
ates), it needed to be very self-contained, include in­
troductory material, and provide a lot of intuition. At 
the same time, the lectures needed to cover a range 
of material that would be interesting to advanced stu­

1http://cseweb.ucsd.edu/∼yfreund/adaboost/index.html 
2http://yann.lecun.com/exdb/lenet/ 
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dents in other fields. 

4. Summary 

We presented the course “Prediction: Machine Learn­
ing and Statistics” that aims to bridge the best of 
both ML and statistics, and to unify ideas from both 
fields. The course is designed for mathematically-
oriented non-experts, with a very wide range of exper­
tise and personal interest in the topic. We presented 
ideas about i) merging themes from ML and statistics, 
ii) deriving most of the top 10 algorithms in the begin­
ning of the course, iii) relating as many algorithms as 
possible to the risk functional (1), iv) considering top­
ics from the broader data mining perspective (Apriori, 
processes for knowledge discovery) and v) using the 
format of large font lecture notes and blackboard ex­
amples, with an informal style. 
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