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Solutions for Practice Problems

1. Consider a 3-period model with ¢ = 0,1,2,3. There are a stock and a risk-free asset.
The initial stock price is $4 and the stock price doubles with probability 2/3 and drops
to one-half with probability 1/3 each period. The risk-free rate is 1/4.

(a) Compute the risk-neutral probability at each node.

Solution: Let g denote the risk-neutral probability of up-node and 1 — ¢ denote
risk-neutral probability of the down-node. Then by the definition of the risk-neutral

probabilities,
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with r = }1. Solving this equation gives ¢ = % Notice that this calculation holds

true at every non-terminal node. We conclude that the risk-neutral probability at each
node is given by % probability of up-node and % probability of down-node.

(b) Compute the Radon-Nikodym derivative (dQ/dP) of the risk-neutral measure with
respect to the physical measure at each node.

Solution: The original (physical) measure assigns probabilities p, = % and pg = % to
the up- and down-node, respectively. The risk-neutral measure assigns probabilities
Gu = % and ¢4 = % The Radon-Nikodym derivative at each node is a random variable

that takes on the value
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in the up-node and the value
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in the down-node. Again, notice that this calculation is valid at each and every node.
(c¢) Compute the state-price density at each node.

Solution: Fix the current node at time ¢ and let the state-price density at this node
be denoted by m;. Denoting the values of state-price densities at the childen nodes by



mir1 (u) and 71 (d), we have the following pricing equations:

27Tt+1 (u) lﬂ—t-f—l (d) ) 1

= ——2.2 =S,
St 3 m St 3 o 27
4 1 d
_ [ 2T () +_7Tt+1( ) S,
3 Tt 6 Tt

S 5 1ne(d)
3 m 4 3 m 4
_ (§7Tt+1 (u) LD M (d)>
n 6 m 12

Solving this system of equations in the unknowns ™% and T4 we get the solution
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Now, starting at the initial node at time ¢ = 0 and setting 7o = 1 allows us to solve for
the state-price density at every node recursively. This calculation leads us to conclude
that at a node w whose history consists of i up-movements and j down-movements,
the state-price density is given by

-

(d) Price a lookback option with payoff at ¢ = 3 equal to (maxg<;<3S;) — S3 using
risk-neutral probability.

Solution: The following binomial tree describes the evolution of stock price and the
bold-face numbers next to the final stock price are the payoffs from the lookback option:
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Recalling from part (a) that the risk-neutral probabilities of an up-movement and a

down-movement are both %, all terminal nodes have the same Q-probability of (%)3 =
%. Therefore the price of the lookback option is given by
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(e) Price the lookback option using state-price density and compare your answer to
(d).

Solution: Using the state-price density we computed in part (c), we can calculate the
price of the lookback option as

C = E[mDs]
= ) P(w)m(w)Ds(w)

where the sum is across all the possible time-3 nodes w. But note that for any w,
denoting the number of up-movements by i and the number of down-movements by 7,



we have

P(w)ms(w) =

Therefore,
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Of course, we get the same answer as we did in part (d) using the risk-neutral proba-
bilities.

. Show that, under the risk-neutral measure, the discounted gain process

is a martingale (i.e. EZ [@tﬂ] — () from the definition of risk-neutral measure in

lecture notes .
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~tp,
> 5

u

P, =E®

u=t+1

That is the reason why the risk-neutral measure is also called the ”equivalent martingale
measure” (EMM).

~

Solution: We want to show EtQ |:GAt+1:| = G,.



Now recall that
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Substituting this into the first expression, we have
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This shows that G, is a martingale under the risk-neutral measure.

. Consider the following model of interest rates. Under the physical probability measure
P, the short-term interest rate is exp(r;), where r; follows

dry = —0(ry — 7) dt + 0,dZ,,

where 7, is a Brownian motion.

Assume that the SPD is given by
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where 7, is stochastic, and follows

dny = —k(my — 1) dt + 0, dZ}

where 7 is a Brownian motion independent of Z;.

(a)

Derive the dynamics of the interest rate under the risk-neutral probability Q.

Solution: From the form of SPD ;, the price of risk at time ¢ is 1. Therefore
under the risk-neutral measure @,

dzl = dz2 — ndt

and the shock that drives the price of risk process, dZ;' remains unchanged under
(. Thus, the dynamics of the risk-free rate r; can be written as

dry = —0(ry—7)dt+ 0,dZ,
— O(r —T)dt + o, (dzf? - mdt)
= (=0 (r, —7) — o) dt + 0,dZ°
Compute the spot interest rates for all maturities. (Hint: look for bond prices in
the form P(¢,T) = exp(a(T —t) + b(T — t)ry + (T — t)n)).

Solution: Suppose the current time is ¢ and assume that the bond matures at
time 7. Denote its price P (t,7"). By the definition of risk-neutral measure @),

P(t,T) = E? [exp (— /tT rsds)]

Now let us guess the bond price P (¢,7") in the functional form
Pt T)=exp(a(T—t)+b(T —t)ri+c(T —1t)n)

On the one hand, by the definition of the risk-neutral measure, we know that

On the other hand, we can calculate the same expression using Ito’s Lemma:

dP(t,T) ,
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and therefore,
EF {%} = —(d(T—-t)+V(T—t)ri+ (T —t)n,)dt
+o(T =) (=0 (re = 7) —opme) dt + ¢ (T —t) (—r (mp — 7)) dt

3 (6T =) 02 4+ (e(T = ) )

Equating this expression to rdt, we get a system of three ODEs (match the
coefficients on constant, ry, and 7, terms):

0 = —d(r)+06rb(7)+ %03 (b(r))” + %(7727 (c(r))*
0 = =V (r)—1-6b(7)
0 = =d(1)—0ab(1) —Ke(r)

Also, we have a terminal condition that P (T,T) = 1, so that a (0) =0, b(0) = 0,
and ¢ (0) = 0.

Note that the second equation is an autonomous equation in b (7) and it is straight-
forward to solve. Given the solution for b (7) , we can then solve the third equation
for ¢ (7). Then, finally, we can solve for a (1) from the first equation. The solutions
are

b(r) = — (1—6_0T)

cr) = F(F0-em) - e o)

K
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and a (1) is not reported here for simplicity (it’s not difficult to compute, but the
resulting expression is long and messy). The solutions for a (1), b(7), and ¢ (1)
complete the characterization of bond price

Pt T)=exp(a(T—t)+b(T —t)ri+c(T —1t)n)

Compute the instantaneous expected rate of return on a zero-coupon bond with
time to maturity 7.

Solution: Suppose T'—t = 7, i.e., time to maturity is equal to 7. Then,

Ef [%] —rdt = EF {%} _E© [%}
= b(7)omdt

To understand this calculation, recall that the only difference between the two
instantaneous drifts is
dZ, = dZ8 — n,dt

and the coefficient in front of dZ; in % is b(T —t)o,.
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(d) Show that the slope of the term structure of interest rates predicts the excess
returns on long-term bonds. Discuss the intuition. Show that more volatility in
the price of risk, n, means more predictability in bond returns.

Solution: First, let us discuss what we mean by predictability. In the case that
returns are serially i.i.d and independent from any other random variables, there
is no predictability because there is no other piece of information that allows us
to “predict” the returns. In this question, we have shown in part (b) that the
bond prices are of the form

Pt,T)=exp(a(T—t)+b(T —t)re+c(T —t)n)

and in part (c) that the expected excess return on a bond with time to maturity
7 =T —1is given by

E, l%} —rdt = b (T —t) o,.mdt
When n; is high, we can see from the first equation that the term structure of
interest rates is steep and from the second equation that excess returns on long-
term bonds are high. Therefore, when the term structure is steeper, and excess
returns on long-term bonds are higher. The intuition is as follows: times of high
price of risk 7, are typically thought of as recessions when people are more risk-
averse. High price of risk drives down the price of bonds, resulting in high excess
returns (the terminal value of the bond is constant at $1 at maturity).

Another observation we can make is that more dispersion in the distribution of 7,
means more predictability in excess bond returns. Note that in the extreme case
when 7, is a constant, our problem reduces to a setting where returns are i.i.d over
time and we do not have any predictability (because expected excess bond returns
would equal b (T —t) 0,7, and excess bond returns would be random noise plus
this mean). As 7, becomes more variable, the fraction of variation in the excess
bond returns due to variation in the mean of the excess returns, b (7 — t) o,n,
becomes larger and we have more pre(%ictability. We can show that the variance

of the stationary distribution of 7, is g—:, so more variability in 7, could be due to
higher volatility of shocks (higher ¢,) or lower rate of mean-reversion (lower ).

4. Suppose that uncertainty in the model is described by two independent Brownian
motions, Z;, and Z,;. Assume that there exists one risky asset, paying no dividends,
following the process

s,

— = ,U/(Xt) dt + Ule,t
St

where

dXt - —9Xt dt + dZQ7t

The risk-free interest rate is constant at 7.



(a)

What is the price of risk of the Brownian motion Z; ;7

Solution: Let the price of risk for Z;; and Zy; be n, = [ Mt N2t }T. Then we
must have

/VL(Xt)St_ [ USt 0}7]:7”515

This gives
2 (Xt) Sy — Unl,tSt =S,

whereas there is no constraint for 7, ;. Hence, the price of risk of Z;; is

p(Xe) S =Sy p(Xy) —r

e = oSy n o
Give an example of a valid SPD in this model.
Solution: p
T ydt —ndZe,m =1
T

Any 1, such that n, satisfies the Novikov’s condition will be allowed. The simplest
example would be to let 1y, = 0.

Suppose that the price of risk of the second Brownian motion, Zy,, is zero. Char-

acterize the SPD in this model.

Solution:
@ = —rdt —ndZy 4
Tt

Let y, = Inm;, by Ito’s lemma,

1 1
dyt = —d’ﬂ't _ (dﬂ't>2

Tt 27Tt

1
= —rdt —mdZ; — 577%,tdt

1 t t
Y = —rt—é/ nitdt—/ M dZy
0 0

_Tt_% fot n%.tdt_fot M,tdZ1 ¢

So

Tt — €

Derive the price of a European Call option on the risky asset in this model, with
maturity 7" and strike price K.
Solution: Existence of SPD implies existence of risk-neutral measure. Under
risk-neutral measure, all traded assets must have drift » and the volatility is
unchanged. So under risk-neutral measure,

dS;

5 St odZy,



The physical drift does not matter at all.
C, = EF [e*T(T*t) [St — K]ﬂ
Standard Black-Scholes formula applies. So

Cy = SN (dy) — Ke "IN (dy)

where

g In(S/K)+ (r£ic*)T
b2 oVT

5. Consider a European call option on a stock. The stock pays no dividends and the stock
price follows an Ito process. Is it possible that, while the stock price declines between
t; and ty > t1, the price of the Call increases? Justify your answer.

Solution: Yes, it is possible. For instance, if volatility becomes extremely large once
price hits a low level, we could have the situation described in the question. The
underlying reason is that call option is an increasing function of both volatility and
stock price. So if price drop is accompanied by large increase in volatility, we may a
higher call price.

The easiest way to see this is through a 3-period binomial tree example: Suppose price
at time-0 is 100. At time-1, it may go up to 120 or go down to 10. If price goes up
to 120, it may go further up to 140 or down to 100 at time-2. If price goes down to
10, the volatility becomes huge. As a result, price may go up to 10000 or down to 1
at time-2. Let interest rate be 0 and consider an European call with strike at 150 and
maturity of two periods.

Let’s find the call option price at each node. If price goes up to 120 at time-1, then the
call is worth 0 since, under no circumstances at time-2, the call will be in the money
(both 140 and 100 are less than strike 150). If price goes down to 10, let’s find the call
price by solving the contingent claim prices. Let the time-1 price of 1 unit of payoff at
time-2 and state S; = 10000 be ¢19p00 and the time-1 price of 1 unit of payoff at time-2
and state Sy = 1 be ¢;. Since interest rate is 0, we have

G1o000 + 1 =1

Since the time-1 stock price is 10, we also have

10000g10000 + ¢1 = 10

Solving the simultaneous equation, we have

1110

dg = ——
D=0

q10000 = ﬁ an
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Since the call pays (10000 — 150) = 9850 dollars if price goes up to 10000 at time-2 and
0 dollars if price goes down to 1. We have the call price, at time-1 and state S; = 10,

Cio = 9850q10000 = T37 ~ 9.

Let’s solve for time-0 contingent claim prices ¢199 and q9 of time-1 payoffs. Zero
interest rate implies

Q120 + G0 =1
Stock price movements implies

120q120 + 1OQ10 = 100

This gives

= — d = —
4120 11 and {gio 11

Hence, the call price at time-0 is Cigog = Cioqi0 = i—f << 9 = (. So stock price

declines at time-1 but call price increases.

The same principle applies in continuous-time as long as we allow volatility to become
large once stock price hits a low level. This is certainly possible since the stock price
process follows a general Ito process.

. Suppose that the stock price S; follows a Geometric Brownian motion with parameters
p and o. Compute

Eo [(S7)*] -

Solution: Using [to’s lemma, we have
ds) = \SM1dS, + %)\ (A —1)S)2(dS,)”
= NS} (uSdt + 0S:dZ;) + %A (A —1)o%S)dt
S {)\ <u - % (A—1) 02> dt + /\adZt}

Let X; = S;. Then we have

dX,

Tt = ,Uth + deZt

where

px = )\(u+—(/\—1)02)

ox = AO



Hence, X; also follows geometric Brownian motion. As a result,

Xp = Xoe(”x_%ggf)T+UXZT

Therefore,

E[SY):} = E[XT]
Xo@“xT
Séex(w%(x—na?)zr

7. Suppose that, under P, the price of a stock paying no dividends follows

dsS;

? = N(St> dt + O'(St) dZt
t
Assume that the SPD in this market satisfies

d

o rdt - ndZy

Tt

(a)

How does 7, relate to r, us, and 0,7

Solution: By definition of SPD, we must have 7.S5; as a martingale.

lemma,

d (ﬂ'tst) = WtdSt + Std’/Tt + dStth
= U (St) WtStdt — TWtStdt — 0 (St) T]t'ﬂ—tSt + [] dZt
= 7TtSt (,LL (St> —Tr—0 (St) 77t) dt + [] dZt

To qualify for a martingale process, the drift of 7,5, must be 0. So

p(S) —r—o(S)m = 0
ne = p(S) —r
t o (5t)

By Ito’s

Suppose that there exists a derivative asset with price C(¢, S;). Derive the instan-

taneous expected return on this derivative as a function of ¢ and .S;.

Solution: Recall that in general, if X; is the price of a traded asset with the

dynamics

dX.
7; = [,Lxdt + O'XdZt

then the expected excess return is given by

(ux —r)dt = EF [‘%t] e {%]

= Ox Mt



Now note that the price of our derivative asset C (¢, S;) satisfies

aC (t,Sy) aC (t,S) 120 (t,S)

0 (4,5) = —gr—di+——pa—dSi+ 3 o5 (dS,)
(aog:t, 51) aca(g,tst) (1(5) St)%%(a 5 St)2> "
(5 o580 )z
and thus
4 <(tf755tt>) - C <t1, S) (60 o acégtst) (1 (5e) ) + i% (0(5) stf) dat
MG, (tl, St) <aca(gt5t) (7 (St) St)) dz,

= e (t,Sy)dt +oc (t,S;) dZ,

So we can express the expected excess return on this derivative as

o 0501 = g (2552 4 S s 0 + ;255 (0 (59807
oc (t,S)m = C (tl ) (aca(gtSt) (o (St) St)) : %

Derive the PDE on the price of the derivative C(t,S), assuming that its payoff is
given by H(Sr) at time 7.

Solution: Under risk-neutral measure, all traded securities have instantaneous
expected return r. So under risk-neutral measure, the stock has drift .S; and the
derivative

dC oC oC 19°C
Q _ = _— _— _——_— 2 2 =
E; lc] lat + aSrSt+2aSQU(St) S;|dt/C =rdt
We have a PDE

oCc  oC 10%°C
—-— + _TSt +

2
ot oS 50 (5)° 5, —rC=0

Suppose that there is another derivative trading, with a price D(¢,S;) which
does not satisfy the PDE you have derived above. Construct a trading strategy
generating arbitrage profits using this derivative, the risk-free asset and the stock.

Solution: Suppose for derivative D (t,S;), we have

oD 0D 190°D

T —|—6Sr5’t+28520(5’t) S; —rD >0

13



at some (t,.5;). Then consider holdlng the derivative, shorting 2 as shares and
financing the above position (D — St) by borrowing at short rate. The instan-
taneous gain is

oD 8D 1 62D oD oD
- _ = D— —
Gain from derivative Gain from stock Interest payment
oD 1 82 9 oD
oD 0D 10*°D 9
= <8t+85r5+2852 (S,)? St—rD)dt>O

This is a riskless arbitrage. We can form a similar riskless arbitrage if

2
oD 8DS 10°D

[EN— —_— 2_
at‘i‘aS?" t+2852 (St) St rD <0

8. Consider a futures contract with price changing according to

Fopn=F 4+ X+ + opey,
Pt = Phie + OpUy
where &, and wu; are independent IID N(0,1) random variables. Assume that the

interest rate is constant at r. Your objective is to construct an optimal strategy of
trading futures between ¢t = 0 and 7" to maximize the terminal objective

E [—e’O‘WT]

where Wy is the terminal value of the portfolio. Assume the initial portfolio value of

Wh.

(a) Formulate the problem as a dynamic program. Describe the state vector, verify
that it follows a controlled Markov process.

Solution: The state vector for this problem is (¢, Wy, uy). Let 6; be the control
variable that represents the number of futures contracts at time ¢. Clearly, 141
follows a Markov process given the state variable u,. Furthermore, to verify that
W, is a controlled Markov process, note that

Wi = (Fpn—F)+(1+r)W,
= O (At +epn) +(1+1) W,

and as such, the conditional distribution of W;,; only depends on the state vari-
ables Wy and pi;.

14



(b) Derive the value function at 7" and T'— 1 and optimal trading strategy at 7' — 1
and T — 2.

Solution: Let us start from ¢t = T. The value function is simply given by
J (T, Wr, pr) = —exp (—aWr)
Now, for t =T — 1, the Bellman equation says

J(T =1, Wr_i,pr—1) = maxEp_q [J(T,Wr, pur)]

Or_1

= rnaxl}r_l[—-eXp(-—aVVTﬂ

Or_1
= maxBr [—exp (—a(Or—1 (A + pr—1 +er) + (L+7) Wr_1))]
T—-1

Simple algebra leads to the first order condition

g A+ pr—q
=1 ao®

Plugging this into the Bellman equation, we get the value function at time ¢t =
T—1:

1
J (T — 1, WT—IyHT—l) = —exp (_W ()\ + MT—1)2 -« (1 + 7”) WT—1>

F
For t =T — 2, the Bellman equation is given by

J(T =2, Wr_o,ur—2) = maxBEr o[J(T —1,Wr_1,ur—1)]

Or_2
1 2
= max FEp_o |—exp 55 ()\ + uT_l) — (1 + 7“) Wr_4
Or_o 20F
where
Fr1 = Fro+ A+ pur—as+oper—1
BWr—1 = ppT—2+ OyUT—1
Wr_1 = OpoA+pur—o+er—1) +(14+7) Wr_g

We can repeat a similar calculation as before and arrive at the optimal control

¥ A+ pr_g

T-2 7 a(l+r)o?

9. Suppose you can trade two assets, a risk-free bond with interest rate r and a risky

stock, paying no dividends, with price S;. Assume S;;1 = S; X exp(p + o&;) where ¢,
are IID N(0, 1) random variables.

15



Assume that whenever you buy the stock you must pay transaction costs, but you can
sell stock without costs. Specifically, when you buy X dollars worth of stock, you must
pay (14 7)X, so the fee is proportional, given by 7. Your objective is to figure out
how to trade optimally to maximize the objective

E [—e‘aWT]

where Wy is the terminal value of the portfolio.

(a)

What should be the state vector for this problem? Formulate the problem as
a dynamic program, verify the assumptions on the state vector and the payoff
function.

Solution: The state vector for this problem is (¢, Xy, B;), where X; and B, rep-
resent the dollar value of stock holdings and bond holdings at the beginning of
period t. Let A\; be the control variable that represents the net increase in the
dollar value of the stock holdings as a result of rebalancing at time ¢. So, for
example, if \; > 0, then we invest more in the stock at time ¢. Note that we incur
a transaction cost of 7); in period ¢ if \; > 0 and none otherwise. Under this
definition, the dollar value of stock holdings at the end of the period ¢ is X; 4+ A;.
Then the dynamics of X; and B, are given by

Xir1 = exp(p+oerr) (Xi + M)
Biy1i = (147)(B;— M\ —7-max (), 0))

It is clear that X; and B; are controlled Markov processes because their conditional
distributions of X;,; and By, only depend on the state variables X; and B; and
the control variable \;. Furthermore, as such, these state variables capture all the
relevant information regarding the dynamics of the variable of ultimate interest,
W, = X, + B;.

Write down the Bellman equation.
Solution: The Bellman equation is given by

J (t, Xt, Bt) = H{\aX Et [J (t —|— 1, Xt+1, Bt+1)]

where

Xir1 = exp(p+oerr) (Xi + M)
Biy1i = (147)(B;— M\ —7-max (), 0))

The Bellman equation in the terminal time period is simply

J(T, X7, Br) = —exp (—a (Xr + Br))

16



10. Suppose we observe returns on N independent trading strategies, ri’, n = 1,2, t =

1.

,T. Assume that returns are IID over time, and each strategy has normal distri-

bution:

T;L ~ N(Mm U2>

Assume j17 > po.

(a)

Estimate the mean return on each strategy by maximum likelihood. Express ji,
as a function of observed returns on strategy n.

Solution: It is a standard calculation (see, for example, lecture notes) to show
that the maximum likelihood estimate of the mean of a normal distribution is the
sample mean. Hence

Since returns are normally distributed, ji,, is also normally distributed. Describe
its distribution. (In general, for arbitrary return distribution, i, is only approxi-
mately normal).

Solution: Since ri’, t = 1,...,T, are drawn from IID normal distribution, the
sample mean [, is a sum of independent normal variables and is again normally

distributed. Since 7' ~ N (i, 0?), the sample mean i, is distributed N <un, %2>

What is the distribution of max,, (i, )? characterize it using the CDF function.

Solution: Note that ji; and i are independent so that the cumulative distribu-
tion function (CDF) of max (fi1, fi2), denoted Fq. (+), is given by

Fraz () = P (max (i, fiz) < 7)
= P(n<z) P2 <)
= Fi(2) F3 ()
- (\/T(x—m)> .q)<\/7(ff—u2)>

g

where we use the fact that i, ~ N (un, %2>

Suppose you are interested in identifying the strategy with the higher mean return.
You pick the strategy with the higher estimated mean. What is the probability
that you have made a mistake?

Solution: We are interested in the probability that fi, is greater than fi; (so
that we mistakenly infer that the second trading strategy has the higher mean).

Recalling that fi; and jis are independent and fi,, ~ N <un, %2>, we know that
. . 202
i — fo NN(/M—/%T)
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Furthermore,

P(in <jfiz) = P(jun—j2<0)
_ 1_¢(T(M1—M2)>

202

We see that this probability is decreasing in the distance between the true means
(1 — po and decreasing in the number of observations 7. On the other hand, this
probability is increasing in o2, reflecting the difficulty to estimate the mean when
the distribution has large variance.

11. Suppose interest rate follows an AR(1) process
Tt — r= 9(7’},1 — F) + Et

where ¢; are IID N(0, 0%) random variables. You want to estimate the average rate, T,
based on the sample r;, t = 0,1,...,T. Assume that we know the true value of 6.

(a) Derive the estimate of 7 by maximum likelihood.
Solution: It is easily seen that

T
L (f,9,<72|r1, o ,’I“T) = Hf (rt|f,0,02;r0, - ,Tt_l)

t=1

so that

T
E(f,0,02|7“0,...,7“T) = Zlnf(Tt|F,8,a2;T1,...,rt_1)
t=1

_ éln <\/% exp (—% ((re =7) =0 ria = f))2)>

In particular, the maximum likelihood estimate of 7, call it 7, satisfies the first
order condition

5Ye
"= o
_ 1;92((@—7«)—9(”_14))

It follows that

=p»

1 T
— m Z (Tt — 07}_1)

t=1

18



(b)

Show that this estimate is valid even if the shocks €, are not normally distributed,
as long as the mean of ¢; is zero.

Solution: Now we assume that ¢; are independent over time and E [¢;] = 0. Note
that

Q 1
r = m Z (T’t — 97},1)

- —T(l_e)Z((l—Q)f—i-Et)

By the Law of Large Numbers,
T(1-0) &"
t=1

in probability, and hence we establish that 7 converges in probability to the true
value 7 and therefore is consistent.

Treating ¢; as IID, derive the asymptotic variance of your estimator of 7. Do
not use Newey-West, derive the result from first principles. How does the answer
depend on 07

Solution: For this part, we maintain that ¢, are IID over time, E[¢] = 0, and
Varle] = o2. In the last part, we saw that

and hence

By the Central Limit Theorem,

T
— € = N 0 o )
23

and we conclude that

\/T(?—F):>N<O,(1i—28)2>
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Note that the asymptotic variance of our estimator is increasing in 6. This makes
sense, because in the limiting case where 6 = 0, r; are actually IID over time and
asymptotic variance of the sample mean is equal to the variance of the shocks.
In the other limiting case where # — 1, we are very close to the unit-root case
(random walk) where we do not have mean-reversion and hence estimation of the
long-run mean becomes increasingly difficult and imprecise.

Moreover, calculating theoretical asymptotic variance of the estimator as in this
question provides an alternative to constructing standard errors using the Newey-
West method. There are advantages and disadvantages to each method. The-
oretical asymptotic variance is a convenient way to see inner workings of the
estimator (in our example, the dependence of asymptotic variance on the persis-
tence of AR(1) process) with excellent finite sample properties, assuming correct
model specification. However, derivation of asymptotic variance of an estimator
may not be so straightforward in more complex situations and standard errors
obtained this way are more sensitive to model misspecification compared to the
more model-independent Newey-West standard errors.

12. Suppose you observe two time series, X; and Y;. You have a model for Y;:
Yig1 = pYe + (a0 + a1 Xy) €40, t=0,1,...,T

where ;.1 ~ N(0,1), IID. Assume that the shocks ¢; are independent of the process
X, and the lagged values of Y;. There is no model for X;.

(a) Using the GMM framework, which moment condition can be used to estimate p?
Solution: We first want to establish that

E (a0 + a1.Xy) €411|Yi] = 0
To see why this is true, note that
El(ao+ a1 Xy) eea|Vy] = Elao + arXo|Vs] - B [er41|Yi]
= F [CLO + alXtD/t] - B [€t+1]
-0

= E[&O—FCLlXt‘K]
=0

where the first equality follows from independence of the processes X; and ¢;, the
second equality follows from independence of €;,,; with the lagged values of X,
and the third equality follows from the assumption that ;.1 ~ N (0, 1).

Now having derived this condition, our usual arguments now allow us to derive
the moment conditions

Elg (Vi) (a0 + a1X¢) €41] = 0

for any function g.
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(b)

Argue why it is valid to estimate p using an OLS regression of Y;,; on Y;.

Solution: In particular, if we pick g (Y;) = Y}, then the moment condition be-

comes
EY; (ag+ a1 Xy) €41] =0

and our sample analogue is
ErY:-(ap+ a1 Xy) €1) =0

or
Er[Ye- (Yo —pY))] =0

Note that the GMM estimate p that solves this sample moment condition is also
the OLS estimate from the regression

Yipn = pYs +uy

where u; represents unspecified error terms. The reason why the GMM estimate
of p coincides with the OLS estimate is that the sample moment condition for p
simply says that the residual term Y; 1 — pY; is orthogonal to the regressor Y;,
and this orthogonality between the fitted residuals and the regressors is the first
order condition of the OLS estimate. Hence it is valid to estimate p by simply
running the regression

Yigr = pYs +

to find the OLS estimate of p.

Suppose that the variance of the estimator pis (1/7)o?. Describe how you would
test the hypothesis that p = 0.

Solution: We are assuming that

L,

Var (p) = 7%

To test the hypothesis that p = 0, we make use of the x? test (refer to page 32 of
Lecture Notes 8). We construct the test statistic as

Var (p) o2

We reject the null hypothesis of p = 0 if the test statistic is sufficiently large, i.e.,
if B

£=>¢
where the cutoff point ¢ is such that

CDFXQ(l) (g) =1—-«

and « is the size of our hypothesis test.
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(d) Write down the conditional log-likelihood function L(p, ag, aq).

Solution: Given the model

Yi1 = pYi + (ap + a1 Xy) €141

where ¢4 are IID N (0, 1), the log-likelihood function is

L (p7 ap, al)

X1, Y0, .

T
Zlnf(}/HXO)"'a >Yt—1§07a0;a1)
t=1

. (Vi = ptic)’

> (W exp (‘T))
2 Y= p¥i)”

> (-3t - i)

t=1

where the conditional standard deviation of Yy, 1, denoted o2, is given by

Therefore,

= (ag + alXt)2

L(p,a a)——zln(%r ——Zln ag + a, X, _lzT: Yi—pYia
P, o, a1 0 1X1-1) 5

P (10+6l1Xt 1

(e) Suppose that the parameters ag and a; are known. Derive the maximum-likelihood

estimate for p.

Solution: We now suppose that ag and a; are known. Then the maximum
likelihood estimate of p satisfies the first order condition

and hence

oL
dp

i(n—pm ) ( Vi )
ap + a1 Xy 1 ag + a1 X1

tzT; (Ytl (Y, — PYtl))

—1 (ap + G1Xt—1)2

ZT Yi_1Y:
t=1 ao+a1Xt 1)?

Zt 1 a0+a1Xt 1)?

p=
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13. Suppose we observe a sequence of IID random variables X; > 0, t = 1,...,T, with
probability density
pdf(X) = Ae ™, X >0

(a) Write down the log-likelihood function £(\).
Solution: The log-likelihood function is given by

T
LAXy.. X)) = ) Inp (X))

t=1

I
] =

(ln )\ — )\Xt)

t=1

T
= T lnA—AZXt
t=1

(b) Compute the maximum likelihood estimate .
Solution: The maximum likelihood estimate \ satisfies the first order condition

0 = ==

and we get

(¢) Derive the standard error for .

Solution: To compute the standard error of the maximum likelihood estimator
A, we resort to the general GMM standard errors (refer to page 28 of the Lecture
Notes 8). We have

5 - [07Inp (XN A
i = E{TM_)\}
T
1 0*Inp (XN .
_ 1y (_i)
Tt:1 5‘2
B 1
Y



and

U
|
eSS

But we note that

and we can simplify S to

1 1 &
S=——+{%) X?

Finally, the variance of our estimator is given by

. S
Var </\> = -
T - d?
where all the matrix multiplications simplify a great deal since we are working in
the scalar case. In particular, putting together expressions for d and S, we get

var(\) = Ay (-1 (Ly
ar = T 5\2 Tt:l t
el
T Tt:l

1)
- (3]
t=1
14. Suppose you observe a series of observations X;, t = 1,...,7. You need to fit a model

X1 = f( Xy, Xio130) + €141

where

where Eley1]Xy, Xi—1, ..., X3] = 0. Innovations &;,; have zero mean conditionally on
Xi, Xi-1,...,X1. You also know that innovations €;,; have constant conditional vari-
ance:
Elel, || X, X X] =o?
t4+1 1Nt At—15 -0y A1 = O
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The parameter o is not known. 6 is the scalar parameter affecting the shape of the
function f(X;, X;_1;0).

(a) Describe how to estimate the parameter 6 using the quasi maximum likelihood
approach. Derive the relevant equations.

Solution: Assume that e;,41|X;,...X; follows Gaussian distribution N (0,0?).
Then the logged likelihood is

T-1 1 22
l<X37"'7XT;070-> - ——11127T—1n(7—t—+21

p— 2 20

-— (Xt+1 —f (Xt, Xi1; 9))2

In27 —Ino —

N | —

202
t

||
N

To maximize the logged likelihood, we differentiate w.r.t # and F.O.C gives

T-1
1
0 : = E (X1 — [ (Xe, Xyo130))
=2

8f (XtaXt—l;H)
00

=0

Upon simplifying, we have

~
—

0= <Xt+1 —f (Xt, Xi-1; é)) o <Xt(;;(t1; é) = z:l Ett1 o (Xt(;;(tl; é)

t

I
)
~+~
Il
I\

The equivalent moment condition is

af (XtaXt—l;H) -0
00

E [€t+1

which is valid.

(b) Describe in detail how to use parametric bootstrap to estimate a 95% confidence
interval for 6.

Solution: Parametric bootstrap can be done through the following steps:
(1)Estimate 6 using QMLE and obtain a sample of residuals ;17 = X1 —

e )

(2)Fix 0. Generate ith sample (fori=1,2,..,N) of (Xl(i), ...,X¥)> by drawing
randomly from the sample residuals with replacement to get éﬁgl and Xt(_?l =
f (Xt(i), Xt(i)l; é) + égl. Note that we need to exclude the ”burn-in” sample and

keep only last T" observations. For ith sample, estimate 0 with (X fi), e X;i)).

Q?)) Get 632.5% and égm% (5th and 95th percentile) from the sample of estimates
09 i=1,2,..,N.

(4) The bootstrapped confidence interval is given by (é — <é97,5% — é) 0 — <0A2,5% — é)) )
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()

Describe how to estimate the bias in your estimate of # using parametric boot-
strap.

Solution: The bias can be estimated using
E|0—0] ~ Ey |89 0]

where Ey [-] represents the sample average of N bootstrapped estimates.

Derive the asymptotic standard error for ) (large T') using GMM standard error
formulas.

Solution: Recall that the moment condition for 8 is

af (XtaXt—Ue)} -0

E [(Xt—&-l — [ (Xt Xi150)) 90
. N
Asymptotic variance of 6 is 7 <d’ S _1d> :

~ A

d - ET

(X1 — f (X, Xoo130)) 902 00

f (X, X,_1:0) Of (X, Xy-1;0)\°
002 _( a0 )

O%f (Xy, Xy_1:0) 5 Of (X1, Xy-1;0)\°
902 }_ ( a0 )

<0f (X0, X e)ﬂ . (af (X Yo 9))2]

00
of (X, Xi-1; 9)5 A Of (Xi—j, Xi—j-150)
o0 o o0

Pf (Xe, Xi1:0) (af <Xt,xt1;e>>2]

— E (X — [ (X, Xi_1:0))

= F e

= 0-E

Since for 57 > 0,

E |:5t+1

9 X,X,;Q 0 X?<7X7.7;9
- E{E[5t+1|Xt,Xt_1,...] f(Xe, Xi1;0) (X, Xija )}

90 Fijt 90
— 0
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there is no autocorrelation. As a result,

. 2

S = Er (X1 — f(Xt,Xt_l;g)f (af (Xt,ajthe)) ]
] -

o B (X1 — f (X0, Xio130))° (af(Xt,ag(tl,e)) ]

_ ol (8f(Xt,Xt1;9)>2]

i 00

= FE E[g§+1|Xt,Xt_1]<

_ <af (Xtégftls 9))2]

af(xt,xt1;6)>2] .

00

Of (X, X1 9))2]

= o’F

Thus, asymptotic variance is %02 /E {( 50

15. Consider an estimator § for a scalar-valued parameter #. Suppose you know, as a
function of the true parameter value 6y, the distribution function of the estimator, i.e.,
you know

CDF§790 (x)

(In practice, you may be able to estimate the above CDF using bootstrap). Note that
this CDF does not depend on model parameters.

Based on the definition of the confidence interval, derive a formula for a confidence
interval which covers the true parameter value with probability 95%.

Solution: Since the CDF of § — 6y is independent of the paramter 6y, the 2.5 and
97.5 percentiles of the distribution, denoted as ass59 and agrs9, are fixed numbers
independent of y. As a result,

Pr (assm < 0 — 0y < agrn ) = 0.95
Rearranging the inequalities, we have
Pr (é — Qo757 < 60 < é — &2_5%) =0.95

~

Hence, a 95% confidence interval is [0 — a97.5%,9 — a2‘5%], which illustrates why we

have [9 («9;7 5% é) ( 5 5% — )} as the bootstrapped confidence interval. 0*—0
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has approximately the same distribution as § — 6. The 2.5 and 97.5 percentiles of the
two distributions are also approximately the same. As a result, ag 594 and agr59 can

be approximated by (9;5% — é) and (9;7.5% — é)
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