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Expectation of a Lognormal Variable

@ Suppose X ~ N (/.1,0'2). We want to know how to compute E [ex}.
This calculation is often needed (e.g., page 30 of Lecture Notes 1)
because we usually assume that log return is distributed normally.
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Change of Measure

e Given a probability measure (think probability distribution), a
random variable that is positive and integrates to one defines
a change of measure. In other words, suppose we have a
probability measure P and a random variable & such that
EP[E] =1. Then we can define a new probability measure Q
through & by

Q(A):/Aajdp

@ We can think of & as a redistribution of probability weights
from P to Q. Hence it's called “change of measure” and
denoted %.
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Normality-Preserving Change of Measure

@ Now, there is a special class of random variables called
exponential martingales that, as change of measures, preserve
normality. In more concrete terms, suppose probability
measure P is given by the normal distribution N(uP,GZ).
Then, if % is an exponential martingale, then the new
probability measure Q is also normally distributed, with a
different mean but with the same variance, N ([.LQ,G2).

@ Such exponential martingales take on the form
p 15
E=exp|—me" —on

for arbitrary numbers 1 (later in Lecture Notes 2, we'll see
that 1 can be stochastic processes as well).

o Furthermore, we know the exact relationship between u* and
u®: uP —u® =no (the previous notes had a typo and had
o2 instead of o).
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Black-Scholes Formula

@ Suppose under Q (the risk-neutral measure), the stock return
is given by

St+1 1, Q
= = — -0’4 o0¢
s, oP\rTo T

where €2 ~ N (0,1) under the Q-measure.

@ Let's derive the Black-Scholes formula in this simple setting.
Suppose Sp =1 and we have a call option that matures at
T =1 with a strike price K. The price of this call option is

C=e"E?[max(S; — K,0)]
—e /Sl_K(s1 ~ K)dQ

:e*f/ sldo—e*f/ KdQ
Si1=K S1=K
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@ Call the first term C; and the second term Gs.
@ Let's calculate them separately.

Ci = e_'/w 51dQ
S1=K
= er/lr::a; exp (r— 622 +G€Q> : \/1277rexp <—; (£Q)2) de
— /'ijg; \/127:exp (—; ((8Q)2 —268Q+62>> de
= /:;;%3 \/%exp <—; (SQ — G)2> de
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@ Now for G

Co—e " / KdQ
51=K

o0 1 1 2
o Q
=€ r/nK;—%—o-; K\/ﬂexp <—2 (8 ) >d£
=e 'K § 2 —1 ex —1 (EQ)2 de
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2
:equ)(—InK—i—r—‘E)
c

@ So the option price is given by the Black-Scholes formula

C=0G-G

2 2
o (—'K++> e Ko (—'K+—>
(o) (o)
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Numerical Integration

@ Definite integrals can rarely be computed analytically. In those
cases, we need to resort to numerical methods. Here, we
present the simplest method using the Riemann sum
approximation.

@ As an example, let's say we want to compute

@ We have to worry about two things: summation on the right
tail and fineness of approximating rectangles.

o Refer to the MATLAB ® code.
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