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Kolmogorov Backward Equation

Consider a stochastic process Xt . Xt is a martingale if for s > t,

Et [Xs ] = Xt

In other words, conditional expectation of future value is simply the
current value (example: fair gamble). The notion of a martingale
makes sense for both discrete and continuous time processes.

Now let’s look at this concept when Xt is an Ito process. Suppose

dXt = µ (t,Xt)dt + σ (t,Xt)dZt

If Xt were a martingale, then over a small time interval dt,

Et [Xt+dt ] = Xt

Et [Xt+dt −Xt ] = 0

Et [dXt ] = 0

This is another way of thinking about martingales: expected

changes are zero.
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Continued

But now recall the dynamics of dXt :

Et [dXt ] = Et [µ (t,Xt)dt + σ (t,Xt)dZt ]

= µ (t,Xt)dt

So Xt is a martingale if and only if µ (t,Xt) = 0. This is
intuitive: the drift term is responsible for expected change
whereas the diffusion term is responsible for variance of
change.

The Kolmogorov Backward Equation simply formalizes this
idea.
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Continued

Suppose we have an underlying process Xt where

dXt = µ (t,Xt)dt + σ (t,Xt)dZt

Consider Yt = f (t,Xt). Suppose we know for some reason
that Yt is a martingale. We have seen two such examples: 1)
conditional expectation, 2) security price discounted at
risk-free rate under the risk-neutral measure. Then by the
above argument, we know that the drift term of
dYt = d (f (t,Xt)) should be zero.
By Ito’s Lemma,
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So if Yt = f (t,Xt) is a martingale, then
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Option Replication

How do you dynamically replicate an European option in the
lack-Scholes setting? Answer: Match the “delta”.

uppose you have the option price f (t,St) on the one hand and the
alue of a replicating portfolio consisting of the stock and the bond,

t . At time t, this replicating portfolio holds θt number of stocks
nd the rest is invested in the risk-free bond. This means

dWt = θtdSt + r (Wt −θtSt)dt

o have perfect replication, we need

d (f (t,St)) = dWt

n particular we need the coefficient in front of dSt to match:

∂ f (t,St)
= θ
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his argument is exactly as in yesterday’s lecture where we tried to

eplicate an option in an environment with stochastic volatility using
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a stock and another option.
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e can always move from one to the other very easily in both
iscrete time and continuous time settings.

n discrete time, if the state price density is given by
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e can always decompose the state price density into time discount

nd change of measure from P to Q.

State Price Density and Risk-Neutral Measure
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Change of Measure in Continuous Time

Similar as(in the discrete time case. If
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then the Brownian motion under P, ZP

t acquires a drift but its
diffusion coefficient does not change. Therefore

dZP
t = dZQ

t −ηtdt

Suppose W P
t is another Brownian motion under P and it has

correlation ρ with ZP P
t . How does Wt look under the

Q-measure?
Do the decomposition

W P
t = ρZP

t +
√

1−ρ2V P
t

where V P
t is another Brownian motion under P that’s

independent of ZP
t . Conclude

dW P = dWQ
t ρηtdtt −
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