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Nonlinear Least Sqaures

Consider the model

yt = h (xt ,θ) + εt

Here we assume that we know the functional form of h (xt ,θ)
and we need to estimate the unknown parameter θ . The
linear regression specification is a special case where
h (xt ,θ) = xt

′ ·θ .

The nonlinear least squares (NLS) estimator minimizes the
squared residuals (exactly the same as in the OLS):

T

θ̂NLS = arg min
θ

∑ (yt
t=1

−h (xt ,θ
2))

The first order condition is

T ∂h
0 = ∑

t=1

(
xt , θ̂NLS

)
y

∂θ
t −h xt , θ̂NLS

( ( ))
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NLS through QMLE

Pretend( that)the errors are normally distributed
εt ∼ N 0,σ2 . Then the log-likelihood function is

T

L (θ) = ∑
√

=1

[
− ln

t

( 2(
2πσ2

) y− t −h (xt ,θ))

2σ2

]

We can obtain a QMLE estimate of θ from the first order
condition when maximizing the log-likelihood function:

∂L
0 =

∂θ

1
= ∑

T
∂h (xt ,θ)

σ2
t=1

(
∂θ

· yt −h (xt ,θ))

This is exactly the same condition as before.

Brandon Lee Nonlinear Least Squares



NLS Viewed as GMM

Note that our optimality condition

T

0 = ∑
∂h (xt ,θ)

t=1

(
∂θ

· yt −h (xt ,θ))

can be rewritten as

0 = Ê

[
∂h (xt ,θ)

(
θ

· yt −h (xt ,θ))
∂

]
This is a GMM moment condition and thus our NLS estimator
can be interpreted as a GMM estimator. This is a simple, yet
extremely powerful observation because now we can use the
expressions for GMM standard errors (with Newey-West
procedure that is robust to both heteroskedastic and
correlated errors).
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Continued

This moment condition is not surprising because the
identification assumption E [εt |xt ] = 0 leads to the moment
condition

E [g (xt)εt ] = 0

or
E [g (xt)(yt −h (xt ,θ))] = 0

for any function g (·). We are simply picking

∂h (xt ,θ)
g (xt) =

∂θ

This choice of g (·) is motivated by QMLE.
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MIDAS

Suppose we are interested in the behavior of a monthly
volatility measure (say, sum of daily squared returns over a
month).

One possibility is to specify a GARCH structure to monthly
data series, but this approach throws away lots of valuable
data. Or we could use GARCH on daily data series, and try to
infer the behavior of monthly volatility measure from the
estimated daily volatility dynamics. A potential problem here,
though, is that small specification errors that may be
acceptable in the daily series may add up to large errors in the
monthly volatility measure.

The idea of Mixed Data Sampling (MIDAS) is to allow for a
very flexible and direct relationship between current month’s
daily data and next month’s monthly volatility measure.
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Continued

Specification:

K

VH
t+H,t = aH + φH ∑ bH (k,θ)Xt−k,t−k−1 + εHt

k=0

We have flexibility in 1) predictive variables: we could use
squared daily returns, absolute daily returns, etc and 2) the
functional form bH (k,θ): this facilitates easier curve fitting.

Once specified (after picking a functional form bH (k,θ)), we
can use NLS to estimate the unknown parameter θ . Use
numerical optimization routines to minimize the squared
residuals.

A very practical way to forecast volatility over a relevant
holding period.
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Probit Model

Suppose our dependent variable yi is binary and takes on
values 0 and 1. The running example will be models of
corporate defaults. In this case, let’s say yi = 1 means that
firm i defaults and yi = 0 if otherwise. We also have a set of
regressors Xi that influence yi . In our example, they may be
leverage ratios, profitability, or macroeconomic conditions.
The Probit specification says that yi and Xi are linked through

Prob (yi = 1|Xi ) = Φ Xi
′
β

We can also write this as

( )

yi = Φ Xi
′
β + εi

where E [εi |Xi ] = 0. We can se

(
e ho

)
w the Probit model is a

special case of nonlinear regression specification.
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Continued

Note that yi can only be either 0 or 1. That means that the
error term εi can only take on two values, so it is not valid to
assume that εi follows a continuous distribution (for example,
normal distribution).

We can write the likelihood function directly quite easily. Note
that

Prob (yi = 1|Xi ,β ) = Φ Xi
′
β

Prob (yi = 0|Xi ,β ) = 1−

(
Xi
′

)
β

and therefore the log-likelihood function

(
is give

)
n by

N

L (β |y ,X ) = ∑
i=1

[
yi ln

ˆ

(
Φ
(
Xi
′
β
)

+ (1−yi ) ln
(
1−Φ

(
Xi
′
β
)))]

We can find β that maximizes the above log-likelihood
function using very simple numerical algorithms.
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