15.561
Information Technology Essentials

Session 5
Programming Languages

Acknowledgments:
Copyright © 2005 Thomas Malone, Stuart Madnick Slides marked “SM” are adapted from Stuart Madnick, MIT.

Outline

* Types of software
* Types of programming languages

 Examples
— Java
- Y2K

Types of software

e System software
— Operating systems
— Programming languages
— Database systems

* Application software
— General office tasks (word processing, etc.)
— Accounting
— Design
— Factory automation

Programming languages

* Machine language
* Assembly language
* High-level languages

* Fourth-generation languages

A sample LMC program

(MASSEMBLY LANG = MACHINE LANG.

(Source Program) (Object Program)

INSTRUCTIONS :
STEP INSTRUCTION E LOC INSTRUCTION
op- :
C(F))de symbolic | 00 get i 00 901
01 store w 01 398
000 stop | 02 gef 02 901
Ixx add 03 store b i 03 399
2XX subtract | o4 load W | 04 598
3xx store 05 add b ! 05 199
5xx load 06 out 06 902
901 get 07 stop i 07 000
902 put |

Source: S. Madnick, MI'

Machine language

* Binary
* Machine dependent
e Stored in the computer when the program is running

* Example:
01110110001010010010 ...

Assembly language

* Mnemonic
* Symbolic addressing
* One-to-one correspondence with machine language

* Example:
Get X
AddY
Store Z

Automatically translating assembly
language to machine language

Get X 11001000100
Add Y 01100100011
Store Z Assembler 10001011001

Assembly Machine
language language
program program

(”Source COde”) (”Ob]‘ect Code”)

High-level languages

® Closer to how people think about their problems
* No one-to-one correspondence to machine language
e General purpose

* Example:
Z=X+Y

High-level languages - Examples

e Fortran

e Basic

e Visual Basic
o C

o C++

* Java

Example 1 - Basic

‘AVERAGING INTEGERS ENTERED THROUGH THE KEYBOARD
CLS
PRINT “THIS PROGRAM WILL FIND THE AVERAGE OF INTEGERS YOU ENTER”
PRINT “THROUGH THE KEYBOARD. TYPE 999 TO INDICATE THE END OF DATA.”
PRINT
SUM=0
COUNTER =0
PRINT “PLEASE ENTER A NUMBER”
INPUT NUMBER
DO WHILE NUMBER <> 999
SUM=SUM+NUMBER
COUNTER=COUNTER+1
PRINT “PLEASE ENTER THE NEXT NUMBER”
INPUT NUMBER
LOOP
AVERAGE=SUM/COUNTER
PRINT “THE AVERAGE OF THE NUMBER 1S”; AVERAGE
END

Example 2 - C++

/I AVERAGING INTEGERS ENTERED THROUGH THE KEYBOARD

#include <iostream.h>
main ()
{
float average;
int number, counter = 0; int sum = 0;
cout << “THIS PROGRAM WILL FIND THE AVERAGE OF INTEGERS YOU ENTER \n”;
cout << “THROUGH THE KEYBOARD. TYPE 999 TO INDICATE END OF DATA. \n”;
cout << “PLEASE ENTER A NUMBER?”;
cin >> number;
while (number !1=999)

{

sum =sum + number;

counter++;

cout << “\nPLEASE ENTER THE NEXT NUMBER?”;
cin >>number;

}

average = sum / counter;
cout << “\nTHE AVERAGE OF THE NUMBERS IS “<< average;

Example 3 - Java

{

import java.io.”; . BufferedReader in = new BufferedReader(new
import java.lang.”; InputStreamReader(System.in));

/ , String cin = "0";

** Prompts user for list of numbers and outputs average System.out.printin("Please enter a number.");
**/

while (!(cin=in.readLine()).equals("999"))
{

class AverageNumbers { sum = sum + Integer.parselnt(cin);

public static void main (String[] args) { counter = counter + 1;
float sum = 0; System.out.printin("Please enter another
float average = 0; number.");
int counter = 0; }
_ in.close();
System.out.printin("THIS PROGRAM WILL FIND THE average = sum/counter:

AVERAGE OF THE INTEGERS YOU ENTER

System.out.printin("The average of the numbers is :
THROUGH THE KEYBOARD. TYPE 999 TO

"+average);
INDICATE END OF DATA.");)

catch (IOException e)
try {

System.out.printin("Ooops..");

}
}
}

Automatically translating high-level
language to machine language

11001000100
: 01100100011
Compiler 10001011001

High-level Machine
language language
program program

(”SOUI'CQ COde”) (”Ob]‘ect Code”)

“Interpreting” high level languages

Interpreter

High-level
language
program

(“source code”)

Interpreting high level languages

e Advantages
— Can give machine independence
» (e.g., one machine can “look” like another)
— Can be easier to debug and modify

— Can give more flexibility at “run time”

* Disadvantages

— Slower

“Fourth-generation” languages

e Even closer to how people think about their problems
* Special purpose

* Examples:
— Scripting languages
» FIND ALL RECORDS WHERE NAME IS “SMITH”
— Spreadsheet formulas?

Object-oriented programming

* A special kind of high-level language

e Can increase programming efficiency and software
re-use

* Combines procedures and data into “objects”
e Arranges objects in “class hierarchies”

e “Inherits” properties of objects in this hierarchy

Bank account
Owner
Balance

Open
Deposit
Withdrawal

Class inheritance in
object-oriented programming

Credit card account

Credit limit

Authorize charge

Checking account

Minimum balance: $100

Joe’s checking account

Joe
$400

What's good about Java?

* Highly interactive
— Traditional Web - application software runs on server
— Java applets dynamically downloaded and run on clien
(e.g., input data validation)
* “Nice” programming language
— Simpler than C/C++
— Object-oriented
« Secure programming environment
— “Sandbox” approach
 Portable (“write once, run anywhere”™)
— Based on Java byte-code interpreter

SM

Java Operation Servers

Internet
Sun/UNIX J

- Static pages (S)
» Dynamic pages (D)
« Java applets (J)

Windows 2000

, HTML | Java | Java i } same

L' page applet applet
Windows XP HTML Java HTML Java
Interpreter | interpreter Interpreter | interpreter
Netscape (Win 2000) Netscape (Mac OS) different
Windows 2000 OS Mac OS
PC Hardware PowerMac Hardware

Client environments SM

Java reality check

 Highly interactive - or too slow (interpretive)

* “Nice” programming language— or too limited

« Secure environment— or (1) not secure enough or

(2) too secure (restrictive)

* Portable — only if consistent Java interpreter availabl
(Java “dialects”)

SM

What will happen with Java?

Y2K problem

* Why was this a hard problem?

e Was money wasted?

