
15.561
Information Technology Essentials

Session 6
Relational Databases

Acknowledgments:

Adapted from Chris Dellarocas, U. Md..

Copyright © 2005 Thomas Malone, Chris Dellarocas

Outline

• What is a database?

• What is a database management system?

• An Introduction to Microsoft Access
– How to create a database
– How to retrieve data from a database
– How to build a nice Graphical User Interface on top of a database

Why are we learning this?

•	 Databases are perhaps the single most important class
of corporate applications

•	 Databases are surprisingly powerful data modeling
and analysis tools in situations where spreadsheets
fall short
–	 Students who plan to work in management consulting will soon

find this out

•	 MS Access is a great example of how easy it is to
build powerful applications without the need of a
background in technology

What is a database

• Boring answer
– A structured collection of data
– Example: A telephone directory

• Insightful answer
– A data-centered mirror of an organization’s business processes

– Structure of data reflects organizational processes
– Content of data reflects organization’s history

Example: Northwind Traders

Representing the Real World as Data
What Data Are Businesses Interested In?

•	 Entity
–	 a person, place, thing, or event on which we maintain information
–	 Examples: Employees, Customers, Products, Warehouses

•	 Attribute
–	 characteristic or quality of particular entity
–	 Examples: Employee’s SSN, Customer’s Address, Product’s Unit

Price

•	 Relationships Among Entities
–	 Examples:

» Customer - Orders - Product(s)

» Order - Serviced by - Employee

From Spreadsheets to Databases

•	 Spreadsheets are great for keeping track of data for
one type of entities
–	 Participants of a conference
–	 Students of a class
–	 Customers of a company
–	 ….

What is the basic spreadsheet “data
model”?

• Each row stores data about one entity

• Each column stores data about an attribute

• Each cell stores data about an attribute of an entity

Spreadsheet limitations

•	 Things get complicated when we want to keep track
of several inter-related entities

•	 For example:
–	 Customers
–	 Products
–	 Orders

•	 Let’s try it!

Spreadsheets are awkward for storing
relationships

•	 Main difficulty is that an “Order” is essentially a
relationship between one Customer and one or more
Products

Storage of information is not even half the
story

•	 The reason we build databases is in order to easily
retrieve information to answer questions that support
managerial decision-making

•	 For example:

Who are our top 10 customers based on their total
order value in the year 2002?

•	 Can you do this using a spreadsheet?

Enter Relational Databases

•	 A relational DB supports storage of data as a set of
inter-related tables
–	 Each table stores data about a set of Entities
–	 Each table row is a record about one such Entity
–	 Each record column is a field specifying an attribute of this Entity
–	 Each record has a field that acts as a unique identifier of an entity
–	 Relationships among entities are specified by referring to this

unique identifier from other tables

Customer Unique Id

Product Unique Id

Reference to a Customer

Order Unique Id

()
Relational Database Management

Systems DBMS

•	 Allows the creation of relational databases

•	 Supports specialized languages for easy retrieval of
data from a set of inter-related tables

•	 Supports easy construction of a Graphical User
Interface on top of the database

•	 Allows very large table sizes

•	 Provides security, fault tolerance, multi-user support,
etc.

SQL – Structured Query Language

• Every statement yields a table of values as output
– Sometimes there’s only one row in the table!

select columns and/or expressions

from tables

where conditions on the rows

group by group rows together

order by order the rows

Display an Entire Table

SELECT *

FROM Employees;

Choose Columns

•	 Choosing a subset of columns is sometimes called a "project"
operation

•	 Display first and last name of all employees

SELECT FirstName, LastName

FROM Employees;

•	 Display company name and contact name for all customers

Choose Rows

• Find US Employees
SELECT FirstName, LastName

FROM Employees

WHERE Country = “USA”;

• Find employees hired after Jan. 1, 1993

Compute Columns

• Find total inventory value of each product
SELECT ProductName,

UnitPrice*UnitsInStock AS TotalValue

FROM Products;

• Nice names for output columns
–	 Name following computed column (e.g., TotalValue) will be used to name output

column

• Find total price for each line item in “Order Details” table

Sorting

• Can sort output by contents of a column
– sort in ascending or descending order
– sort by more than one column (second one breaks ties)

• Sort products by total inventory value
SELECT ProductName,

UnitPrice*UnitsInStock AS TotalValue

FROM Products

ORDER BY TotalValue DESC;

• What are our 10 most expensive products?

Aggregates

• Can make calculations on entire columns
– sum, avg, max, min, count

• What is the total value of a given customer order
SELECT OrderID, Sum([UnitPrice]*[Quantity]*(1-[Discount]))

AS Subtotal

FROM [Order Details]

WHERE OrderID=11001;

– returns a table with just one row!

• What is average unit price of our products?

Grouping and Aggregates
•	 Each different value for the GROUP BY fields defines a new

group
–	 One row of output is produced for each group
–	 Several rows of input table may belong to same group. They are aggregated using

aggregation operator.

•	 Compute total value of all orders
SELECT OrderID,

Sum([UnitPrice]*[Quantity]*(1-[Discount]))

AS Subtotal

FROM [Order Details]

GROUP BY OrderID;

• Create a table that shows how many line items are in each order

Joins

• Combine rows from one table with rows from another

• Usually join on some common column
– Don't combine rows unless their value in the common column is the same
– WHERE clause says the common column must be same in each table

• Produce a list of all products and their categories
SELECT Products.ProductName,

Categories.CategoryName

FROM Categories, Products

WHERE

Categories.CategoryID = Products.CategoryID;

More Join examples

• Produce a list of all products and their suppliers

• Produce a list of all suppliers for Tofu

SQL Summary

select columns and/or expressions
from tables
where conditions on the rows
group by group rows together
order by order the rows

