What is a Database

- An abstraction for storing and retrieving related pieces of data
- Many different kinds of databases have been proposed
 - hierarchical, network, etc.
 - each kind supports a different abstract model for organizing data
 - in this class, we will only explain relational databases
 - sets of tables of related data

Example DB: Fortune 500 Companies

company

compname	sales	assets	netincome	empls	indcode	yr
allied	9115000	13271000	-279000	143800	37	85
boeing	9035000	7593000	292000	95700	37	82

industry codes

indcode	indname
42	pharmaceuticals
44	computers

The Relational Abstraction

- Information is in tables
 - Also called (base) relations
- Columns define attributes
 - Also called fields or domains
- Rows define records
 - Also called tuples
- Cells contain values
 - All cells in column have information of same type
 - e.g., integer, floating point, text, date

3

Operating on Databases: SQL

- Every abstraction needs an interface through which users invoke abstract operations
 - graphical interface
 - language
- Structured Query Language
- Has all those operations
- We'll focus only on queries
 - Query = question
 - Extract some data from one or more tables to answer a particular question

The Select Statement

- Every select statement yields a table of values as output
 - Sometimes there's only one row in the table!

select columns and/or expressions

from tables

where conditions on the rowsgroup by group rows togetherhaving conditions on the groups

order by order the rows

into temp save results of query in a temporary table

5

Display Company Data

SELECT *

FROM company;

Choose Columns

- Choosing a subset of columns is sometimes called "project" operation
- Display company name and income for each year
- SELECT compname, netincome, yr
 FROM company;

compname	netincome	yr
allied	-279000	85
boeing	292000	82

7

Choose Rows

- Find performance data for 1984 for boeing SELECT compname, netincome, yr FROM company WHERE yr = 84 AND compname = "boeing";
- Which companies lost money in 1984?

Compute Columns

Find return on assets for each year

```
SELECT compname, yr,
(netincome/assets) AS roa
FROM company;
```

- Nice names for output columns
 - Name following computed column (e.g., roa) will be used to name output column
- Find company-years with roa of more than 15%

9

Sorting

- Can sort output by contents of a column
 - sort in ascending or descending order
 - sort by more than one column (second one breaks ties)
- Sort companies by 1984 profits

```
SELECT compname, netincome
FROM company
WHERE yr = 84
ORDER BY netincome DESC;
```

Sort companies by 1984 return on assets

Aggregates

- Can make calculations on entire columns
 - sum, avg, max, min, count
- How many apparel companies are in database and what are their total sales for 1984?

```
SELECT Count(*) AS number,

Sum(sales) AS totalsales

FROM company

WHERE indcode = 40 and yr = 84;

• returns a table with just one row!
```

What is average percent roa for apparel companies in 1984?

11

Grouping and Aggregates

- Each different value for the group by fields defines a new group
- One row of output is produced for each group
- Several rows may belong to same group
 - Aggregate those using aggregation operator
- Compute total sales by all companies for each year

```
SELECT yr,

Sum(sales) AS totalsales

FROM company

GROUP BY yr;
```

yr	totalsales
82	575837090
83	612820552
84	721430558
85	744115766

More examples

Compute total sales by all companies for each year SELECT yr, Sum(sales) AS totalsales FROM company

GROUP BY yr;

- Compute total sales for each company
- What are the leading industries in total sales for 1984?

13

Joins

- Combine rows from one table with rows from another
- Usually join on some common column
 - Don't combine rows unless their value in the common column is the same
 - Where clause says the common column must be same in each table
- Find the industry name for each company

SELECT company.compname AS compname,
codes.indname AS industry
FROM company, codes
WHERE company.indcode = codes.indcode;

compnameindustryalliedaerospaceboeingaerospace

4.4

Example DB: Fortune 500 Companies

company

compname	sales	assets	netincome	empls	indcode	yr
allied	9115000	13271000	-279000	143800	37	85
boeing	9035000	7593000	292000	95700	37	82

industry codes

indcode	indname
42	pharmaceuticals
44	computers

15

SQL Summary

select columns and/or expressions

from tables

where conditions on the rowsgroup by group rows togetherhaving conditions on the groups

order by order the rows

into temp save results of query in a temporary table

Database Design Checklist

- Meaningful tables
- Each cell holds only 1 piece of data
- Each table has a key
- Tables related with foreign keys
- Avoid redundant storage of data
- Minimize empty cells

17

Meaningful Tables

- Each row should represent one instance of an entity or relationship
 - One employee
 - One project-employee relationship
- One table should not contain data about several entities
 - E.g., employee id and department location in separate tables
 - Even though employee is currently assigned to a department, which has a location
 - Easier to update if employee switches departments
- Litmus test: succinct answer to:
 - "What's in this table?"

Each cell holds only 1 piece of data

- PHONE_NUM field should contain only 1 phone number
- If more than one phone number
 - Add another column if exactly two
 - Separate phone numbers table if number of phones not predetermined

Employee_id	Phone1	Phone2
-------------	--------	--------

-19

Each table has a key

- Key: a set of columns that picks out a unique row from the table
 - Last name not a key
 - First name not a key
 - First + middle + last may be a key
 - Social security number may be a more reliable key
- A table can have several keys
 - Choose one as the primary key
- Each table must have at least one key
 - Just means no duplicate rows
 - Key could be the entire set of columns
- Key cannot be null (blank)

Tables related with foreign keys

- Tables can be related via column(s) in common
- Design goal
 - A row in one table that refers to another table must refer to an existing row in that table
 - Example: Employee table and Department table
 - Don't assign employee to department 10 if that department doesn't exist in other table
 - Foreign key design rule ensures that
- A set of columns in table 1 is a foreign key for table 2 if:
 - The foreign key takes on values from the same domain as the primary key of table 2
 - When the value of the foreign key in table 1 is not null, there is a row in table 2 that has that value

21

Avoid redundant storage of data

- Redundant storage is wasteful
- Example
 - Suppose employee table keeps track of department and its address for each employee
 - Address repeated for every employee in department
 - What can go wrong?
 - insert new employee
 - modify department address
 - delete last employee for department

Employee id Dept id Dept address

The Design Process

- Analyze the needs
 - Queries that will be made on database
 - Data entities (potential tables)
 - Relationships between entities
 - Constraints on data
- Fill out the design
 - What columns needed for each entity?
- Adjust design based on checklist above
 - May need to remove some columns into separate tables
 - Many-to-many relationships become their own tables
 - Employees table
 - Projects table
 - Employee assignments table