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OverviewOverview

• Problem

• Methodology

• Key Results



Multi-product Multi-location Multi-period 
with Capacity and Trans-shipment

Multi-product Multi-location Multi-period 
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Planning Sequence of EventsPlanning Sequence of Events

Month 2Month 0 Month 1

2. Deterministic 
LP derive 
production plan

3. Implement 
the current 
month 
production 
plan

1. At the end of 
the month 
forecast demand 
M-month out

4. Roll horizon 
and re-forecast



Solving the Inventory ProblemSolving the Inventory Problem

• Find an economical safety stock factor for 
each product at each DC for each month

– A DP approach difficult

– A simulation approach

Use MMFE to simulate forecast

Use a similar LP to simulate decisions

Tally costs and service level for different 
safety stock factor



The Martingale Model of Forecast 
Evolution (Additive)

The Martingale Model of Forecast 
Evolution (Additive)
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Justifying ε are i.i.d. multivariate normal 
with mean 0

Justifying ε are i.i.d. multivariate normal 
with mean 0
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• Information set Fs grows with time s
• εs is uncorrelated with all εu for u ≤ s-1 

and E[εs]=0
• εs is a stationary process
• εs is normal



Why is it called a Martingale Model?Why is it called a Martingale Model?

If forecast is conditional expectation 
based on current information set Fs
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Thus, Ds,t is a martingale and
]|[]|[ 1,,, −−= sttsttts FDEFDEε is uncorrelated with Fs-1

0][ , =tsE ε



Conditional Expectation as Best  Mean-
Square Predictor of Dt,t

Conditional Expectation as Best  Mean-
Square Predictor of Dt,t

Using the  best Mean-square predictor 
definition of conditional probability
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Thus, true also under linear predictor



The Multiplicative ModelThe Multiplicative Model
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i.i.d. multivariate normal with mean of 
each coordinate being the negative of 
one half of its variance



Characterize the Simulation SystemCharacterize the Simulation System

• The variance-covariance matrix Σ for εs
(MN Х MN) – estimated using past demand 
and forecast

• The initial state of the system (D0,0, D0,1, …, 
D0,M, D)



Why not Simulate the Time Series of 
Forecast Directly

Why not Simulate the Time Series of 
Forecast Directly

• “Simulate the complicated forecast 
process based on past demand, 
competitors’ prices, weather forecast etc. 
is no more credible than assuming the 
forecast process is MMFE and estimating 
the variance-covariance matrix”



Simulating the Forecast Evolution Using 
the Variance-covariance Matrix Σ

Simulating the Forecast Evolution Using 
the Variance-covariance Matrix Σ

• Properties of Σ
– Σ is symmetric and PSD
– Σ = CC’ = (UD1/2)(UD1/2)’ where D is the 

diagonal matrix with eigenvalues sorted 
in decreasing order

• The standard multivariate normal 
representation: εs= CZ where Z is a 
standard normal random vector



Forecast Variability Resolving Over Time Forecast Variability Resolving Over Time 

• The 1st column of C captures the 1st order 
magnitude of εs

• The signs and values of entries in the 1st

column of C reveals how forecast 
variability resolves over time and how they 
are correlated
– e.g. C0,1 = -.5511, C0,41 = -.4343 61.7%

variability resolved in month of sale, 38.3%
variability resolved 1 month out

– e.g. C0,1 = .1616, C0,41 = .3143, C0,81 = -.0880, C0,121
= -.2636 12%, 49%, 4%, 34%



The Experiment The Experiment 

• Traditional Forecast Method (2 month out)
– 80 X 80 Σ from four years of past 

forecast and actual demand data

• Statistical Forecast Method (4 month out)
– (160 X 160) Σ from two years actual 

demand and simulated forecast

• Initial state – forecast for the year of 1990-
1991 fiscal year

• Cost and service metrics averaged over 10 
– 20 simulated years



The Results The Results 

• Safety stock factor can be reduced without 
sacrificing much fill rate, if using the 
Statistical Forecast Method resulting in 
significant cost savings

• Reducing safety stock factor using the 
Traditional Forecast Method does not show 
much benefit

• More important to increase forecast 
accuracy than to increase capacity



RecapRecap

• MMFE to model forecast evolution

• Simulate the system using MMFE

• Evaluate the performance of the two 
systems with two different forecast 
methods


