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Objective of the paper
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Overcome limits of Materials Requirements 
Process models

Capture key dynamics in the planning process 

Develop a new model for requirements 
planning in multi-stage production-inventory 
systems



Quick Review of MRP
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At each step of the process, production of 
finished good requires components

MRP methodology: iteration of
Multiperiod forecast of demand
Production plan
Requirements forecasts for components (offset 
leadtimes and yields)

Assumptions: 
accuracy of forecasts
Deterministic parameters

Widely used in discrete parts manufacturing 
firms: MRP process is revised periodically

Limits: deviations from the plan due to 
incertainty



Literature Review
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Few papers about dynamic modeling of 
requirements

No attempt to model a dynamic forecast process, 
except:

Graves (1986): two-stage production inventory system
Health and Jackson (1994): MMFE

Conversion forecasts-production plan comes from 
previous Graves’ works.



Methodology and Results
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We model:
Forecasts as a stochastic process
Conversion into production plan as a linear system

We create:
A single stage model

From which we can built general acyclic networks of 
multiple stages 

We try it on a real case (LFM program, Hetzel)

demandproduction



Overview
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Single-stage model

Extension to multistage systems

Case study of Kodak

Conclusion



Overview
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Single-stage model
Model

Forecasts process
Conversion into production outputs
Measures of interest

Optimality of the model

Extension to multistage systems

Case study of Kodak

Conclusion



The forecast process model
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Discrete time
At each period t:

ft(t+i) , i<=H
ft(t+i)= Cte , i>H
ft(t) is the observed demand

Forecast revision:

i-period forecast error:

Demand forecasts
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The forecast process properties
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Property 1: The i-period forecast is an unbiased estimate of 
demand in period t

Property 2: Each forecast revision improves the forecast

Property 3: The variance of the forecast error over the 
horizon MUST equal the demand variance
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Production plan: assumptions
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At each period t:
Ft(t+i) is the planned production (i=0, actual completed)
It(t+i) is the planned inventory
We introduce the plan revision:

We SET the production plan Ft(t+i) so that It(t+H)=ss>0
(cumulative revision to the PP=cumulative forecast revision)

From the Fundamental conservation equation:

We find:
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schedule update as 
a linear system
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Linear system assumption

7/6/2004 15.764 The Theory of Operations Management 11

we model:

wij = proportion of the forecast revision for t+j that is added to the 
schedule of production outputs for t+i

Weights express tradeofftradeoff between Smooth productionSmooth production and InventoryInventory

Decisions variables OR parameters

wij =1 / (H+1) wii =1 ; wij = 0 (i!=j)
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Smoothing production

7/6/2004 15.764 The Theory of Operations Management 12

F(t) constant ; needed capacity = 1 ; Average inventory = 1,5
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Minimizing inventory cost
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Measures of interest
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we note:

We obtain :

We can now measure the smoothnesssmoothness AND the stability of the stability of the 
production outputsproduction outputs, given by:

And if we consider the stockthe stock:

t tF f∆ = ∆W
(H+1) by (H+1) matrix
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(see section 1.3, “Measures of Interest,” in 
the Graves, Kletter, and Hetzel paper)

(see section 1.3, “Measures of Interest,” in 
the Graves, Kletter, and Hetzel paper)



Global view
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smoothness and stability of the production outputs

smoothness and stability of the forecasts for the 
upstream stages 

var ( )tF ′∆ = ΣW W
var [ ]tf∆ = Σ

( ) ( )t tE I k Iσ>

Service level = stock out probability

= ss How to 
choose W?



Optimization problem
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Tradeoff between production smoothing and inventory:

min var[ ( )]tF t capacity)= Min(required

subject to

2var[ ( )]tI t K≤ on amount of ss= constraint
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Resolution (1/2)
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Lagrangian relaxation:

We assume:

We get a decomposition into H+1 subproblems
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Resolution (2/2)

7/6/2004 15.764 The Theory of Operations Management 18

Convex program Karush-Kuhn-Tucker are necessary AND 
sufficient

Which can be transformed

Which defines all elements (with the convexity constraint)
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Solution
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The Matrix W is symmetric about the diagonal and the off-
diagonal

Wij >0, increasing and strictly convex over i=1…j
Wij >0, decreasing and strictly convex over i=j…H

The optimal value of each subproblem is 

we show:

And then:
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Computation
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interpretation
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Wjj 1 when 
Lambda increases

low inventory but no
production smoothness

(See Figures 2 and 3 on 
pages S43 of the Graves, 
Kletter, and Hetzel paper)

Wjj (1/H+1) when 
Lambda 0

High inventory 
but  great production
smoothness



Overview
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Single-stage model

Extension to multistage systems

Case study of Kodak

Conclusion



Multi stage model assumptions
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Acyclic network on n stages, m end-items stages, m<n
1…m End items forecasts independent
Downstream stages decoupled from upstream ones.
Each stage works like the single-one model

We note:

We find again:

, 1, ,
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for each stagei i iF f i∆ = ∆W



Stages linkage assumptions
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At each period, each stage must translate outputs into 
production starts
We use a linear system

Ai can model leadtimes, yields, etc.
Push or pull policies

We show that each      is an iid random vector

All previous assumptions are satisfied

i i iG F= A

if∆



Overview

7/6/2004 15.764 The Theory of Operations Management 25

Single-stage model

Extension to multistage systems

Case study of Kodak

Conclusion



Kodak issue
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Multistage system: film making supply chain. 
Three steps, with

Growth of items
Growth of value
Decrease of leadtimes

How to determine optimal safety stock level at 
each stage ?
Use DRP model

Wide data collection
W = I (no production smoothing)
Estimation of forecasts covariance matrix
A captures yields 



Practical results
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-20 % recommendation

Inventory pushed upstream
Risk pooling
Lowest value

Shortcomings of DRP model:
Lead time variability
Stationary average demand
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Single-stage model

Extension to multistage systems

Case study of Kodak

Conclusion



Conclusion
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Model a single inventory production system as 
a linear system
Multistage Network: 

Following research topics…

Forecast 
of demand

Production plan
Forecast 
of demandProduction plan

Material flow

Information flow
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