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Fashion Industry

> LLong lead time
> Unpredictable demanad
> Complex Supply: Chain

> Enermous inventory. 1oss
o 25% Of retallisales

> Lost Sales




Quick Response

> |_ead time reduction through
o Efforts in I,
o LLOgIStics Improvement
o Reonganization of production precess

> Complications

o Production;planning (hew much and When)

» INeedia method to Incorperate ehsened
demand iniermation



This Paper

> Provides a model for response-based
production planning

> A IWo-Stage stechastic pregram

> Use! relaxations to obtain feasible solutions
and bounds

> Implementation’at Sport ©hermeyer



Time Line

Full Price Markdown
season season

l l

Mid Feb —— May Sept.1 —— Dec. 31 spring
N /
Y
LT=1 | Place Orders Reorders

Jan.1

—

Production period

Sept.l

(filled from avail. Inv)
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Notation

n

Aio

A

DiO (For notation descriptions, see page
Di 90 of the Fisher and Raman paper)
C)i

Ui

K

ci(%,D)) = O(%-D) + O (B; %)



> 1i(Djp, )
~ gi(Djp)

> hi(DDjp)
> 1(Dy,D)
> g(Dy)

> h(D|Dy)

Notation (2)

(For notation descriptions, see page
90 of the Fisher and Raman paper)



Model

Expected cost of demand mismatch:
G (x:D) =0, =D)"+ U, (D, =)’

c(x,D) = anci (%, D))

Epp,C(X, D) = Tc(x, D)h(D | D,)dD

Choose Xx,, observe D,, then choose x to
minimize total over and under production cost:

Z"=minZ(x,)=E, minE,, c(x, D)
X9 =0 ° X,>0 0

(P) Zn:xiSK+Zn:xi0




Z(X,) IS convex

Zl(X’ D,) = EDlDOC(X’ D)
(P2) ZZ(XO,DO)=ITlin Zl(X, DO)

Zn:xi <K +Zn:xio
i=1 i=1

Ci(X;,[D;) IS convex IniX; IHeWever, no closed
— C(X, D) convex in x fierm| expression for x
— Z'(X%, Dp) convex inx  In Dy, Soiconvex opt.
— ZZ CONVEX InIX; IS Not tractable



Approximation te P

“‘Replace the capacity constraint in 2% period with a lower limit on total
15t period preduction”

n
Xo - optimal value of %, Define
=1

W(L)=minE, minEpyp c(x, D) W(L) =minZ (x,) % 20

ino = szi < K"'ino Z;X'O_L where Z(x,) = ZE min Eoi, & (4 Do)
i=1 i=1 i=1

(P) (P)



Solve (P) for a Given L

1. Given hi(DilDiO)’

X, (D;p) = argmin c,(x;,D,) W (L) =minZ (x,) % >0

> X, =L where Z(%)=> E, minEyp, ¢ (%,D,)
i=1 i=1 X ZXio 10

(opt. newshboey solutien)
X = max(x (D), Xip) SClves min Epipio ci(x;,D)
Then Z(%y) canbe computed using numerical (P)

Integration

2. 1D, and [D; are pesitively correlated,
Thereexisisia D, Sit. for D <D, X = X,
and for Dj;>Diy % =% (Djy)

Partials off Z can be appreximated wWithr diiferences ==X



Choosing L

Xp (L) — value ofi X, that solves, P with given L
Use Monte Carloigeneration ofi D, te) evaluate
Z(Xo (L))

Choese L by line search algorithm te the
preblem min -—, Z(%g (L))



Lower bounds on W(L)

Relaxing the constraint x >= x, , we get:

W (L)=E, min Eg,, ¢(x, D)
(P,) =

ixi <K+L
=1

> W(L)iis a lewer hounad

> WE(L) Is a lower bound (a constrained Newshoy
problem that cani be selved with lagrangian
methoas.)

> W(LE)is smallestwhenr L=0; WE(LL) IS largest
when =0

— min .-y max (WL, WE(LD)H)is a nentrvial heunad
0Nl Z=



Minimum Preduction Quantities

Let S; defines the sets of products that satisfies a
min. initial production level M?, j=1,..., m

(See equations on page 92, left hand
column, of Fisher and Raman paper)

he RES)IS evaluated by the fellewing preblem:

(See equations on can be solved

page 92, left hand . .
column, of Fisher similarly as P

and Raman paper)



Minimum Preduction Quantities

> The modified problem can be solved as before with 2 changes:

« Only allow movement away from x, =0 to a point that satisfies the min
production constraints

« Change the estimation of the derivative of W(L) w.r.t. xJ at xJ =0 to:

(See equations on page 92, left hand
column, of Fisher and Raman paper)

« Z has the same form as (P), thus can be solved similarly



Sport Opermeyer

Full Price Markdown
season season

i Mid Feb — May Sept.+—— Dec. 32— spring
: N J

'
LT=1 | Place Orders Reorders

(filled from avail. Inv)

___________________________________________



Sport Obermeyer Application

»L=0.4D

> U. = wholesale price — variable cost

> O = variable cost — salvage value
(& consenvative measure)

> Im general; U, = 8~40;



Demand Density Estimation

> D, and D; fellow a bivariate nermal distrm

> EStimate Ly, |1 Gigy, 6; and p; (Correlation)

Y Seles estimaie of product |
Py MEMBEN |

Actual deviatien'is\well cerrelated
Wit predicied standard deviation



Estimate

»Assume that p; IS the same for all products
Within S major preduct categories

> Estimate p, as the cornelation between totalland
nitial demand iR the: previeus; seasen

~Let k be the fiiaction| off seasen salesin pered 1

~LLet & be the conrelation coeff. between [D:; and
(Prepesitien 1)




Proposition 1

Q-Q plot shoewsithat the
student’s t distripution

WIth =2 may. ke better
appreximanoen:

(For equations and
explanation, see
Proposition 1 on page
95 of the Fisher and
Raman paper)



Closed-form solution

Assume that all products have the same Ui and O,
and have normally distributed demand with the same p

(See Theorem 2 on page 96 of the
Fisher and Raman paper.)



Results




Bounding Results

(See Figures 6 and 7 on page 98 of the



Summany.

> Provides a model for response-based
production planning

> A IWo-Stage stechastic pregram

> Use! relaxations to obtain feasible solutions
and bounds

> Results at Sport Obermeyer



Critigue

> Clear and practical motivation

> lake advantage of both expert opinion and eanly
demand infermation

> Simple moadel

> Seme details of the nmedell s not explained veny
clearly;

> Accuracy of the lewerr bounds s net discussed

> Applicatien didinet use: the appreximate methed
developed intne paper
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