Optimal Inventory Policies for Assembly Systems under Random Demands

Kaj Rosling

Presented by: Shobhit Gupta, Operations Research Center

Main Result

Remodel an assembly system as a series system

(See Figure 1 on page 566 of the Rosling paper)

(See Figure 2 on page 571 of the Rosling paper)

Simple re-order policies are optimal

Main Result

- Assembly system:
 - Ordered amounts available after a fixed lead time
 - Random customer demands only for the end product
 - Assumptions on cost parameters
- Under assumptions and restriction on initial stock levels, assembly system can be treated as a series system
- Optimal inventory policy can be calculated by approach in Clark and Scarf's paper (1960)*

^{*}Clark, A.J. and Herbert Scarf. "Optimal Policies for a Multi-echelon Inventory Problem." *Management Science* 6 (1960): 475-90.

Relevant Literature

- Clark and Scarf (1960) derive optimal ordering policy for pure series system
- Fukuda (1961) include disposal of items in stock
- Federgruen and Zipkin (1984) generalize Clark and Scarf approach to stationary infinite horizon case

Model

- N items (components, subassemblies, the end item)
- Each non-end item has exactly one successor
 - product networks forms a tree rooted in the end item
- Exactly one unit of each item required for the end item
- Notation:

```
s(i) = unique immediate successor of item i=1...N; s(1)=0
```

```
A(i) = the set of all successors of item i
```

P(i) = the set of immediate predecessors of item i

B(i) = the set of all predecessors of item I

 l_i = number of periods (lead-time) for assembly (or delivery) of item i

Model

- At the beginning of a time period:
 - Outstanding orders arrive and new ordering decisions made
 - 2. Old backlogs fulfilled and customer demands occur (for the end period)
 - Backlog and inventory holding costs incurred

Notation

- ξ_t = iid demand in period t for the end item with density $\phi(\cdot)$ and distribution $\Phi(\cdot)$
- $\lambda = E[\xi_t]$, expected value of ξ_t
- X_{it} = echelon inventory position of item i in period t before ordering decision are made (= inventory on hand + units in assembly/order units backlogged)
- Y_{it} = echelon inventory position of item *i* in period *t after* ordering decisions are made; $Y_{it} \ge X_{it}$
- $Y_{it} X_{it}$ = amount ordered for item *i* in period *t*; arrives after l_i periods

Notation: contd...

• X_{it}^{l} = echelon inventory on hand of item i in period t before ordering decisions are made but after assembles arrive

$$= Y_{i,t-l_i} - \sum_{k=t-l_i}^{t-1} \xi_k$$

• $Y_{kt} \le X_{it}^l$ if $i \in P(k)$ cannot order more than at hand (no intermediate shortage)

Model: Cost parameters

 H_i = unit installation holding cost per period of item i

 h_i = unit echelon holding cost per period of item i

$$h_i = H_i - \sum_{k \in P(i)} H_k$$

P = unit backlogging cost per period of the end item α = period discount factor $0 < \alpha \le 1$

Cost in period t

$$\sum_{i=2}^{N} H_{i}(X_{it}^{l} - X_{s(i)t}^{l}) + H_{1} \cdot \text{Max}(0, X_{1t}^{l} - \xi_{t}) + p \cdot \text{Max}(0, \xi_{t} - X_{1t}^{l})$$
Holding cost for end item/ Backlogging cost
Holding Cost

Model: Cost

Alternate Formulation:

(see page 567 of Rosling paper, left hand column)

- Using $X_{i,t+l_i}^l \xi_{t+l_i} = Y_{it} \sum_{s=1}^{t+l_i} \xi_s$
- Total Expected Cost over an infinite horizon:

(see equation 1 on page 567)

 $\Phi_1^{l+1}(\cdot)$: convolution of $\Phi(\cdot)$ over (l_1+1) periods

Long-Run Inventory Position

• M_i : total lead-time for item i and all its successors $M_i = l_i + \sum_{k \in A(i)} l_k$

 (See page 567, part 2 "Long-Run Inventory Position)

Long-Run Balance

 Assembly system is in long-run balance in period t iff for i=1,..,N-1

$$X_{it}^{M-\mu} \le X_{i+1,t}^{M-\mu}$$
 for $\mu = 1,...,M_i - 1$

- Inventory positions equally close to the end item increase with total lead-time
- Satisfied trivially if $(i+1) \in P(i)$

Assumptions on Cost parameters

- $h_i > 0$ for all i
 - All echelon holding costs positive

$$\sum_{i=1}^{N} h_i \cdot \alpha^{-M_{s(i)}}$$

- Better to hold inventory than incur a backlog

Long-run Inventory position

Lemma 1: (See page 568 of Rosling paper)

Lemma 2: (See page 568 of Rosling paper)

Long-run Inventory position

Theorem 1: "Any policy satisfying Lemmas 1 and 2 leads the system into long-run balance and keeps it there. This will take not more than M_N +1 periods after accumulated demand exceeds $Max_i X_{i1}$."

Proof: Outline

$$-X_{it} \leq X_{i+1,t}^{L}$$
 for all $t \geq q(i)$ by Lemma 1

- long-run balance for *i* for $t \ge q(i) + M_i$
- Upper bound q(i)

Equivalent Series System

Theorem 2: If the Assumptions hold and system is initially in long-run balance, then optimal policies of the assembly system are equivalent to those of a pure series system where:

- i succeeds item i+1
- lead-time of item i is L_i
- holding cost $h_i \leftarrow h_i \cdot \alpha^{l_i L_i}$

Proof: Cost function

$$\underset{\mathbf{Y}}{\operatorname{Min}} \operatorname{E} \left\{ \sum_{i=1}^{\infty} \alpha^{t-1} \cdot \left(\sum_{i=1}^{N} \alpha^{L_i} \cdot (h_i \alpha^{l_i - L_i}) Y_{it} + \alpha^{L_1} \cdot (p + H_1) \int_{Y_{it}}^{\infty} (\xi - Y_{it}) \phi_1^{L+1}(\xi) d\xi \right) \right\} + \operatorname{Constant}$$

Equivalent Series System

Easy to show, using Theorem 1,:

$$X_{it} \leq X_{kt}^{M-M_i}$$
 for all i, t and $k \in P(i)$

Hence, using Lemma 1,

$$X_{it} \leq Y_{it}^* \leq X_{i+1,t}^L$$

Use this constraint in Problem P.

New Formulation for P

$$\underset{Y}{\text{Min }} E\left\{\sum_{i=1}^{\infty} \alpha^{t-1} \cdot \left(\sum_{i=1}^{N} \alpha^{L_i} \cdot (h_i \alpha^{l_i - L_i}) Y_{it} + \alpha^{L_1} \cdot (p + H_1) \int_{Y_{it}}^{\infty} (\xi - Y_{it}) \phi_1^{L+1}(\xi) d\xi\right)\right\} + Constant$$

such that

$$X_{it} \leq Y_{it} \leq X_{i+1,t}^{L}$$
 for all i, t

where

$$X_{i+1,t}^{L} = Y_{i+1,t-L} - \sum_{s=t-L}^{t-1} \xi_{s}$$

and

$$X_{it} = Y_{i,t-1} - \xi_{t-1}$$

Equivalent Series System

Corollary 2: There exist S_i 's such that the following policy is optimal for all i and t

$$Y_{it}^* = \operatorname{Min}(S_i, X_{i+1,t}^L) \text{ if } X_{it} \leq S_i$$

$$Y_{it}^* = X_{it} \text{ if } X_{it} \geq S_i$$

 S_i – obtained from Clark and Scarf's (1960) procedure

- Critically dependent on initial inventory level assumption (long-run balance initial inventory levels)
- Generally optimal policy by Schmidt and Nahmias (1985)

Equivalent Series System

Corollary 3: If L = 0, then

- Optimal order policy with $S_i = S_{i-1}$
- i and i-1 can be aggregated
- lead time of aggregate L_{i-1}
- holding cost coefficient $h_{i-1} + h_i \alpha^{-L_{i-1}}$

General Assumption on Costs

Generalized Assumption

(See page 571, section 4)

- Allowed to have $h_i \le 0$ for some i
- Examples: Meat or Rubber after cooking/ vulcanization
 - Components more expensive to store than assemblies
 - May have negative echelon holding costs

Generalized Assumption

- Aggregation procedure to eliminate *i* for which $h_i \le 0$
- Leads to an assembly system satisfying the original assumption

Practical Necessity of Generalized Assumption

1. If
$$h_i \cdot \alpha^{-M_{s(i)}} + \sum_{k \in B(i)} h_k \cdot \alpha^{-M_{s(k)}} < 0$$
 for some i

Minimal cost of P is unbounded

2. If
$$h_i \cdot \alpha^{-M_{s(i)}} + \sum_{k \in B(i)} h_k \cdot \alpha^{-M_{s(k)}} = 0$$
 for some i

- item *i* is a free good, hence predecessors of
 i may be neglected
- 3. If assumption (ii) not satisfied
 - production eventually ceases

Summary

- Assembly system:
 - Ordered amounts available after a fixed lead time
 - Random customer demands only for the end product
 - Assumptions on cost parameters
- Under assumptions and restriction on initial stock levels, assembly system can be treated as a series system
- Simple optimal inventory policy can be calculated by approach in Clark and Scarf's paper (1960)*

^{*}Clark, A.J. and Herbert Scarf. "Optimal Policies for a Multi-echelon Inventory Problem." *Management Science* 6 (1960): 475-90.

Comments

- Series analogy does not work for:
 - Non stationary holding/production costs
 - Non-zero setup costs