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Motivation


•	 Assembly-to-Order 

–	 hold component inventories 
–	 rapid assembly of many products 
–	 Dell - grown by 40% per year in recent years. PC industry - grown by less 

than 20% per year. 
–	 GE, American Standard, BMW, Timbuk2, National Bicycle. 

•	 Challenges of ATO 

–	 product prices? 
–	 production capacity for component (supply contract)? 
–	 dynamically ration scarce components to customer orders?
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Overview


Literature review • 

Model formulation • 

– Dynamic control problem 
– Static formulation 

• Asymptotic analysis 

• Delay bound and expediting component option
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Literature


•	 ATO survey by Song and Zipkin (2001) 

•	 not FIFO assembly 

–	 Agrawal and Cohen (2001), Zhang (1997) 

•	 one component and multi-product assembly sequencing — multi-class, single-
server queue 

–	 Wein (1991) , Duenya (1995)

– Maglaras and Van Mieghem (2002), Plambeck, Kumar, and Harrison (2001) 

fill rate constraints• 

–	 Lu, Song, and Yao (2003), Cheng, Ettl, Lin, and Yao (2002) 
–	 Glasserman and Wang (1998) 
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Model Formulation


Sequence of events:

1. set product prices, component production rates – remain fixed throughout 
time horizon 
2. dynamically sequence assembly of outstanding product orders


Objective: 
minimize infinite horizon discounted expected profit 

Trade-off: 
inventory vs. customer service (assembly delay, cash flow) 

Operational Assumptions: 
– assembly is instantaneous given necessary components 
– customer order for each product are filled FIFO 
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Model Formulation - notations 

J components 
K finished products 

akj no. of type j components needed by product k 
pk product price 
δj component production rate 
Ok product demand arrival renewal process, rate θk(p) 
Cj component arrival renewal process, rate δj 

cj component unit production cost 
Ak(t) cumulative no. of type k orders assembled up to t 

u = (pu, δu, Au) admissible policy 
(prices, production rates, assembly sequence rule) 

Qu,k(t) 
Iu,j (t) 

order queue-length, = Ou,k(t) − Au,k(t) √ 0 
inventory levels, = Cu,j (t) − 

�K 
k=1 akj Au,k(t) √ 0 
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Model Formulation - technical assumptions


θ(p) is continuous, differentiable, and the Jacobian matrix is invertible. guarantees 
p(θ) is unique, continuous, and differentiable. 

Customer demand for product k is strictly decreasing in pk, but may be increasing 
δθk(p)in pm, m =≤ k. δθk(p) < 0 while √ 0,m = k.

δpk δpm 
≤

Increase in the price of one product cannot lead to an increase in the total rate

δθmof demand for all products. −δθk > =k δpk 

.
δpk m∗

Revenue rates for each product class, rk(θ) = θkpk(θ) are concave. 

Renewal processes Ok and Cj started in steady state at time zero. 
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Model Formulation - profit expression


infinite horizon discounted profit: 

K � � J � � 

� = pke −�tdAk(t) − cje −�tdCj(t) 
k=1 o j=1 0 

K �
� � � � � J � � 

� = pke −�tdOk(t) − Qk(t)�e −�tdt − 
j=1 0 

cje −�tdCj(t), 
0 0k=1 

where Qk(t) is the order queue-length 

e −�tdOk(t) − e −�tdAk(t) = �e −�tQk(t)dt 
0 0 0 
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Model Formulation - static planning problem


if we assume that demand and production flow at the long run average rates 
continuously and deterministically, 

K	 J 

�̄ = max pkθk(p) − δj cj 
p�0,α�0 

k=1 j=1 

K 

s.t.	 akj θk(p) ∼ δj , j = 1, ..., J 
k=1 

– optimal solution (p�, δ�) assumed to be unique, positive. the first order 
condition imply that all constraints are tight (p�, δ�). 

– � is an upper bound on the expected profit rate.
¯


want to show that under high volume conditions, the optimal prices and production 
rates are close to (p�, δ�). 
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Asymptotic analysis - high demand volume conditions


any strictly increasing sequence {n} in [0, →), n tends to infinity. order arrival 
rate function θn, where θn 

k (p) = nθk(p), k = 1, ..., K. 

n�̄ upper bounds the expected profit rate in the nth system, 

�n ��e −�tdt = �−1 n¯∼ 
0 

n¯

plug (p�, nδ�) into the nth system, n−1�(p�,nα�,An) ∀ �−1 ̄� as n ∀ →, given 
that n−1Qn ∀ 0 a.s., as n ∀ →. 
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Asymptotic analysis - proposed assembly policy


component shortage process: 

K	 K 

Sj(t) = akjOk(t) − Cj(t) = akjQk(t) − Ij(t), j = 1, ..., J 
k=1 k=1 

min. instantaneous cost arrangement of queue-lengths and inventory levels

(Q�(S), I�(S)), 

K 

min	 pkQk 
Q,I�0 

k=1 

K 

s.t.	 Ij = akjQk − Sj √ 0, j = 1, ..., J 
k=1 
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Asymptotic analysis - proposed assembly policy


for the nth system, the review period ln = n−�, where � = (4(3 + 2σ1))
−1(6 + 

5σ1) > 1/2 
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Asymptotic analysis - system behavior
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(See Theorem 1 on page 12 of the Plambeck and Ward paper)



Review on Brownian Motion


A standard Brownian Motion (Wiener process) is a stochastic process W having

1. continuous sample paths 
2. stationary independent increments 
3. W (t) � N (0, t) 

A stochastic process X is a Brownian motion with drift µ and variance π2 if 

X(t) = X(0) + µt + πW (t), �t


then E[X(t) − X(0)] = µt, V ar[X(t) − X(0)] = π2t. 

variance of a Brownian motion increases linearly with the time interval. 
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Optimality of Nearly Balanced Systems
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System with delay constraints


propose a near-optimal discrete review control policies, which both sequences 
customer orders for assembly and expedites component production in an ATO 
system with delay constraints. 
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