Urban Air Pollution and Carbon Emissions in China

Kyung-Min Nam

Prepared for:
11.S945 Urbanizing China
October 16, 2013
Massachusetts Institute of Technology

Beijing Skyline on Jan 14, 2013

Photograph removed due to copyright restrictions.

Refer to: Image 5 in "China's Toxic Sky," H\Y'5h'Ubh]W Jan. 30, 2013.

Source: Photographs by Ed Jones (AFP).

Beijing Skyline on Feb 4, 2012

Photograph removed due to copyright restrictions. Refer to: Image 5 in "China's Toxic Sky," H\Y'5h'Ubh]W Jan. 30, 2013.

Source: Photographs by Ed Jones (AFP).

Conventional Air Pollutants

Pollutants	Primary Emission Sources
Ozone (O ₃)	Produced through chemical reaction between NO_x (see below) and VOC (mobile, solvent, industrial processes)
Particulate matter (PM ₁₀ or PM _{2,5})	Dust, fuel combustion, and mobile
Nitrogen oxides (NO _x)	Mobile and fuel combustion
Sulfur dioxide (SO ₂)	Fuel combustion
Carbon monoxide (CO)	Mobile

 All strongly associated with cardiopulmonary, cardiovascular, and respiratory diseases.

Air Pollution in China

Byproduct of miraculous economic growth

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Figure: Annual Mean PM_{10} concentration levels in China's major cities, 2005.

Source: Matus et al. (2012), p. 57.

GLOBAL CHANGE

Decomposition: China's Energy and Emissions

Source: Created from IEA and EDGAR.

Research Question (for Analysis 1)

How big is the cost of air pollution in China?

Preliminary answers from other studies

Study	Year of Interest	Cost Estimates
World Bank (1997)	1995	US\$34 billion (4.6% of GDP)
World Bank and SEPA (2007)	2003	US\$55 billion (3.8% of GDP)

Possibility of substantial underestimation: sole focus on PM + static method

Method: EPPA

- A modified version of the MIT Emissions Prediction and Policy Analysis (EPPA) model
- EPPA is a recursive dynamic computable general equilibrium (CGE) model, where China represents one of the 16 global regions.

GLOBAL CHANGE

Method in Brief

- Extend the conventional social accounting matrix (SAM) to include air pollution's impacts on human health.
- Construct exposure-response (ER) and valuation tables.
- Compute historical air quality levels.
- Construct reference and counterfactual scenarios.
- Simulate the model.
- Estimate economic damage from air pollution.

Modeling Strategy

Human health as a receptor of air pollution Main components of the cost:

 Labor loss (market), medical expenditure (market), leisure loss (non-market)

Extended Social Accounting Matrix

		INTERMEDIATE USE			}	HOUSEHOLD SI	HOUSEHOLD SERVICES		FINAL USE					
		1	2		j		n	Mitigation of Pollution Health Effects	Labor-Leisure Choice	Consumption	Investment	Government Purchase	Net-export	OUTPUT
	1													
\sim Z	2													
DOMESTIC	:													
EST	i													
DIC DIC	:													
DOMESTIC	Medical Services for Health Pollution							Medical Services		Health Services				
	n													
	1													
Γ S	2													
IMPORTS	:													
IP(i													
2	:													
	n													
	LEISURE								Leisure	Leisure				
ėΩ	Labor							Labor	Labor					
(U)	Capital													
VALUE- ADDED	Indirect Taxes													
✓	Resources													
	INPUT													

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Source: Nam et al. (2010), p. 5061.

Exposure-Response (ER) Functions

Receptor	Impact category		ER function ^a	C.I. (95%)	Computed or	
				Low	High	adapted from ^b
Entire age groups	Respiratory hospital admissions	PM ₁₀	7.03E-06	3.83E-06	1.03E-05	ExternE (2005)
		O ₃	3.54E-06	6.12E-07	6.47E-06	ExternE (1999)
	Cerebrovascular hospital admissions	PM ₁₀	5.04E-06	3.88E-07	9.69E-06	ExternE (2005)
	Cardiovascular hospital admissions	PM ₁₀	4.34E-06	2.17E-06	6.51E-06	ExternE (2005)
	Respiratory symptoms days	O ₃	3.30E-02	5.71E-03	6.03E-02	ExternE (1999)
	Asthma attacks	O ₃	4.29E-03	3.30E-04	8.25E-03	ExternE (1999)
	Mortality from Acute Exposure	O ₃	0.03%	0.01%	0.04%	ExternE (2005)
		PM_{10}	0.06%	0.04%	0.08%	ExternE (2005)
	Mortality from Chronic Exposure	PM ₁₀	0.25%	0.02%	0.48%	Pope et al. (2002)
Children	Chronic Bronchitis	PM_{10}	1.61E-03	1.24E-04	3.10E-03	ExternE (1999)
	Chronic Cough	PM ₁₀	2.07E-03	1.59E-04	3.98E-03	ExternE (1999)
	Respiratory symptoms days	PM ₁₀	1.86E-01	9.20E-02	2.77E-01	ExternE (2005)
	Bronchodilator usage	PM ₁₀	1.80E-02 ^c	-6.90E-02	1.06E-01	ExternE (2005)
	Cough	O ₃	9.30E-02d	-1.90E-02	2.22E-01	ExternE (2005)
	Lower respiratory symptoms (wheeze)	PM ₁₀	1.86E-01 ^e	9.20E-02	2.77E-01	ExternE (2005)
		03	1.60E-02f	-4.30E-02	8.10E-02	ExternE (2005)
Adults	Restricted activity day	PM_{10}	5.41E-02g	4.75E-02	6.08E-02	ExternE (2005)
	Minor restricted activity day	O ₃	1.15E-02h	4.40E-03	1.86E-02	ExternE (2005)
		PM ₁₀	3.46E-02h	2.81E-02	4.12E-02	ExternE (2005)
	Work loss day	PM ₁₀	1.24E-02h	1.06E-02	1.42E-02	ExternE (2005)
	Respiratory symptoms days	PM ₁₀	1.30E-01 ⁱ	1.50E-02	2.43E-01	ExternE (2005)
	Chronic bronchitis	PM ₁₀	2.65E-05	-1.90E-06	5.41E-05	ExternE (2005)
	Bronchodilator usage	PM ₁₀	9.12E-02j	-9.12E-02	2.77E-01	ExternE (2005)
		O ₃	7.30E-02 ^j	-2.55E-02	1.57E-01	ExternE (2005)
	Lower respiratory symptoms (wheeze)	PM_{10}	1.30E-01 ^k	1.50E-02	2.43E-01	ExternE (2005)
Elderly 65+	Respiratory hospital admissions	O ₃	1.25E-05	-5.00E-06	3.00E-05	ExternE (2005)
annous trate and the	Congestive heart failure	PM_{10}	1.85E-05	1.42E-06	3.56E-05	ExternE (1999)

Source: Modified from Nam et al. (2010).

- b ExternE (1999) and ExternE (2005) refer to Holland et al. (1999) and Bickel and Friedrich (2005), respectively.
- ^c Defined on children aged 5–14 years meeting certain criteria (around 15–25% of child population).
- d ER functions on cough for O₃ are defined on general population of ages 5-14.
- e LRS values for PM₁₀ include impacts on cough.
- f LRS ER functions for O₃ are defined on general population of ages 5-14.
- g Restricted activity days include both minor restricted days and work loss days.
- h Part of restricted activity days.
- Defined on adults population with chronic respiratory symptoms (around 30% of adult population).
- Defined on population of >20 with well-established asthma (around 4.5% of total adult population).
- k LRS ER functions for PM are defined on adult population with chronic respiratory symptoms (around 30% of total adult population); ExternE (2005) LRS values for PM include impacts on cough.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

^a E–R functions for mortality from acute and chronic exposure have the unit of % increase in annual mortality rate/ $(\mu g/m^3)$, while the other E–R functions are measured in cases/(yr-person- $\mu g/m^3)$.

Valuation Table

Outcome	Unit	Cost (1997 US\$)
Hospital admission ^a	per admission	284
Emergency room visits for	per visit	23
respiratory illness ^a		
General practitioner visits		
Asthma ^a	per consultation	4
Lower respiratory symptoms ^a	per consultation	13
Respiratory symptoms in asthmatics ^a	per event	0.60
Respiratory medication use	per day	0
Restricted activity day	per day	2.32
Cough day	per day	0.60
Symptom day	per day	0.60
Work loss day	per day	1.43
Minor restricted activity day	per day	0.60
Chronic bronchitis ^a	per case	8,000
Mortality from acute exposure	per case	662
Mortality from acute exposure	per case	662

Note: All values displayed in this table are estimated by willingness-to-pay surveys and market data.

Source: ^aAs estimated for China by World Bank and SEPA (1997: 25); For other endpoints, we adjusted the European valuation table presented in Bickel and Friedrich (2005: 156) by using the average cost difference between the valuation table for China estimated by World Bank and SEPA (1997: 25) and that for Europe estimated by Bickel and Friedrich (2005: 156).

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Results

- Total pollution-health costs for China was estimated at US\$69 bn (7%) of consumption loss or US\$112 bn (5%) of welfare loss.
- PM_{10} and O_3 account for **87%** and **13%** of the 2005 pollution-health costs, respectively.
- Chronic exposure to PM as primary contributor (62%)
- **Broader Economic Losses** category account for **28%** of the welfare loss in 2005.
 - Includes impacts of distorted resource allocation and cumulative loss.
 - Larger in fast-growing economies (e.g., 12% for Western Europe)

- Direct loss due to mortalities from chronic exposure
- Direct loss due to other health outcomes
- Broader economic losses

Source: Created from Matus et al. (2012).

Comparison with World Bank Studies

World Bank Studies:

Year of Interest	Cost Estimates	Note
1995	US\$34 bn (4.6% of GDP)	PM ₁₀ only, no threshold
2003	US\$55 bn (3.8% of GDP)	PM ₁₀ only, threshold

VS.

Year of Interest	Cost Estimates	Note
1995	US\$64 bn (8.7% of GDP)	PM ₁₀ only, no threshold
2005	US\$104 bn (5.9% of GDP)	PM ₁₀ only, no threshold

Source: Matus et al. (2012), p. 63.

Research Question (for Analysis 2)

 How will China's pollution regulations interact with carbon mitigation policies?

Motivations

- Linkage between conventional air pollutants (e.g., NO_x and SO₂) and CO₂
 - Common source of emissions: fossil fuel combustion
- Challenge in reaching global consensus on national carbon mitigation targets
 - Leakage across countries
- Major GHG emitters are more interested in regulating pollution than mitigating carbon emissions.

China's Latest Policy Targets

	NO _x	SO₂	CO ₂
FYP12	10% emissions reduction from the 2010 level by 2015	8% emissions reduction from the 2010 level by 2015	17% intensity reduction from the 2010 level by 2015
Copenhagen Accord			40-45% intensity reduction from the 2005 level by 2020

Source: Modified from Nam et al. (forthcoming).

Pollution-Abatement Structure in EPPA

Figure: (a) Fuel-related pollution, (b) Non-fuel-related pollution.

Source: Adopted from Nam et al. (2012), pp. 6-7.

** Main responses to a policy shock **

Fuel-switching, output reduction (less consumption of energy), adoption of non-fossil power-generation technologies, and **adoption of pollution-abatement technologies**

Example: Flue-gas Desulfurization

A power plant before installation of flue-gas desulfurization equipment.

Source: Wikipedia.

http://en.wikipedia.org/wiki/Flue-gas_desulfurization

Schematic design of the absorber of an FGD and Scrubber removed due to copyright restrictions.

Results

Policy Compliance Costs

Carbon Emissions Reductions

Conclusions (from Analysis 1)

- In China, welfare loss from air pollution has been substantial.
 - In 2005, US\$69 billion of consumption loss (7% of historical level) or US\$112 billion of welfare loss (5% of historical level).
 - Pollution health costs have increased with time in \$ terms, but have declined in % terms.
- A dynamic approach is necessary.
 - Around 28% of the total welfare loss belongs to the "broader economic loss" category whose effect remains the economy beyond one period of time.
 - Crucial for fast-growing economies like China.

Conclusions (from Analysis 2)

- Substantial synergy between pollution and climate abatement policies.
 - US\$3 bn-586 bn (0.1-5.1% of baseline consumption) in any given year between 2015-2050, in terms of saved compliance costs
 - 1.5-21.5 bmt of ancillary CO₂ emissions reduction in any given year between 2015-2050
- China's proposed CO₂ intensity targets are not likely to bind.
 - Need to pay more attention to the synergy.
 - But still good news for the global community from a GHG mitigation perspective.

Recap and Discussion

- Does pollution regulation hurt economic growth?
 - Cost of NOT regulating pollution may be even greater in fast-growing economies.
- Key lessons learned from a policy perspective
 - More attention to coordination among policies
 - Need for a forward-looking approach that encourages earlier actions toward cleaner technologies
- Local actions for global impacts
 - Reversed policy logic would be more realistic.
 - Local air pollution control, not climate policy, should be placed at the center of global carbon mitigation strategy.

Need for Policies Requiring Earlier Actions

Policy Targets: STR1 and STR2 set to ensure same cumulative reduction

Simulation Results: Policy Compliance Costs

When compared with STR1, STR2 will bring a net cost saving of **US\$298 billion** to the Chinese economy by 2050.

Source: Nam et al. (forthcoming).

Why the difference?

Early Lock-in vs. Forward-looking Investment

Thank you!

 For further information on my publications, please visit https://www.researchgate.net/profile/Kyung-Min_Nam/ publications.

MIT OpenCourseWare http://ocw.mit.edu

11.S945 Urbanizing China: A Reflective Dialogue

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.