
 
Combinatorics: The Fine Art of Counting 

Week One Solutions 
 

1. According to legend the ancient Greeks used to play soccer using a 
regular icosahedron for a ball, until Archimedes came along and 
suggested that should shave off the corners of the icosahedron to create a 
truncated icosahedron.  This led to the modern soccer ball shape we use 
today which is semi-regular polyhedron with vertex degree 3 and two 
hexagons and one pentagon incident to each vertex. 
Compute the number of vertices, edges, and faces of the soccer ball and 
verify that they satisfy Euler’s formula V + F – E = 2. 
Slicing off each corner of the icosahedron replaces each vertex with a 
pengtagon with 5 new vertices of degree 3.  An icosahedron has 12 
vertices, so there are 5*12 = 60 vertices in the truncated icosahedron. 
2E = dV = 3 * 60, so the there are 90 edges.  The 12 new faces are all 
pentagons, and the 20 original triangular faces become 20 hexagons 
giving a total of 32 faces.  60 + 32 – 90 = 2. 

2. The complete graphs K1, K2, K3, and K4 are all planar.  Prove that K5 is not 
planar.  What about Kn for n > 5? 
K5 has 5 vertices each with degree 4, so it has 5*4/2 = 10 edges.  It is a 
connected graph and by corollary 1 of Euler’s formula, every connected 
planar graph must satisfy E ≤ 3V – 6, but 10 > 3*4 – 6 so K5 cannot be 
connected.  
For n > 5, note that Kn contains a copy of K5 (many copies in fact) inside it  
– pick any 5 vertices and the edges between them.  Thus any planar 
embedding of Kn would contain a planar embedding of K5 which is not 
possible since K5 is not planar. 
Alternatively, note that Kn is a connected graph with n vertices all of 
degree n-1, so it has n(n-1)/2 edges.  For n > 5, n/2 is at least 3 so we 
have E ≥ 3(n-1) = 3n – 3 > 3n – 6, which would contradict corollary 1 of 
Euler’s formula if Kn were planar. 

3. The hypercube graphs H1, H2, and H3 are all planar.   Prove that H4 is not 
planar.  What about Hn for n > 4? 

H4 has 24 = 16 vertices, each of which has degree 4 so it has16*4/2 = 32 
edges. H4 is a connected graph without any triangles (see below), so 
corollary 2 of Euler’s formula applies.  Thus. E ≤ 2V – 4, but 32 > 2*16 – 4 
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so H4 cannot be planar.  For n > 4, Hn contains a copy of H4 inside it so Hn 
cannot be planar either. 
One very useful way to think about the graph Hn is to construct Hn so that 
each vertex is labeled with a binary sequence of ‘0’s and ‘1’s which 
represent its coordinates in n-dimensional space – when we build Hn+1 out 
of two copies of Hn we just add a ‘0’ to all the vertex labels in one copy, 
and add a ‘1’ to all the labels in the other copy.  When constructed in this 
fashion, each edge will lie between vertices whose labels differ by exactly 
one bit, e.g. in H4 vertex 0101 would be adjacent to the vertices 1101, 
0001, 0111, and 0100.  Changing the ith bit means moving along an edge 
in the direction of the ith dimension. 
To see that Hn does not contain any triangles nor any cycles of odd length, 
notice that as we travel along a path starting from a vertex with some 
particular label, each vertex along our path has a label which differs from 
the starting label in some number of bits.  Each step along an edge either 
increases or decreases the number of bits which are different by exactly 1.  
Only a path with an even number of edges can bring this difference back 
to 0 (think of a sequence of +1s and -1s that add up to 0, there must be 
the same number of +1s and -1s).  Thus any cycle must have even length. 

4. Given a regular polyhedron with V vertices of degree d, F faces of degree 
c, and E edges, truncating the polyhedron will result in a semi-regular 
polyhedron.  Let V’, F’, E’, and d’ be the vertices, faces, edges and vertex 
degree of the truncated polyhedron and let c1‘ and c2‘ be the degrees of 
the faces of the truncated polyhedron. 
Find simple expressions for V’, F’, E’, d’, and c1‘ and c2’ in terms of V, F, E, 
c, and d.  Use these expressions to compute the result of truncating each 
of the five regular polyhedra. 
V’ = dV       F’ = F + V       E’ = E + dV       d’ = 3       c1‘ = 2c       c2’ = d 

Polyhedron F’ V’ E’ d’ c1’, c2’ 
 truncated tetrahedron 4+4=8 3*4=12 6+12=18 3 6,3 

truncated cube 6+8=14 3*8=24 12+24=36 3 8,3 
truncated octahedron 8+6=14 4*6=24 12+24=36 3 6,4 

truncated dodecahedron 12+20=32 3*20=60 30+60=90 3 10,3 
truncated icosahedron 20+12=32 5*12=60 30+60=90 3 6,5 

 
5. An extreme way to truncate a regular polyhedron is to slice off the vertices 

at a depth which bisects the edges creating a single vertex at the center of 
each edge, rather than two vertices along each edge as in a normal 
truncation.  The resulting polyhedron will be different from than the one 
obtained by the normal truncation process, but it will produce either a 
semi-regular or in one case a regular polyhedron. 
As above, find simple expressions for V’, F’, E’, d’, and c1‘ and c2’ in terms 
of V, F, E, c, and d.  Use these expressions to compute the result of 
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truncating each of the five regular polyhedra in this fashion.  How many 
new semi-regular polyhedra can be obtained in this way? 
V’ = dV/2       F’ = F + V       E’ = dV       d’ = 4       c1‘ = c       c2’ = d 
Each vertex in the resulting polyhedron will have degree 4 with two 
opposing pairs of congruent faces incident to each vertex.  Truncating the 
tetrahedron in this extreme way simply yields an octahedron since the 
opposing pairs are both triangles. 
The extreme truncations of the cube and octahedron both result in the 
same polyhedron known as the cuboctahedron.  Similarly the extreme 
truncation of the dodecahedron and icosahedron both result in the same 
polyhedron, known as the icosidodecahedron.  Thus only two new semi-
regular polyhedra are obtained. 

Polyhedron F’ V’ E’ d’ c1’, c2’ 
 cuboctahedron 6+8=14 3*8/2=12 3*8=24 4 4,3 

icosidodecahedron 20+12=32 5*12/2=30 5*12=60 4 3,5 
 

Desert 

6. All of the proofs of non-planarity we have seen rely on showing that the 
graph in question has “too many edges” to be planar (either E > 3V – 6 or 
E > 2V – 4 for triangle-free graphs).  While having a small number of 
edges is a necessary condition for a graph to be planar, it is not always 
sufficient. 

Give an example of a non-planar graph where E ≤  2V – 4. 
Add a vertex in the middle of one edge of the graph K3,3 splitting the edge 
into two adjacent edges.  The resulting graph has 10 edges and 7 vertices 
and 10 ≤  2*7 – 4, but it is still non-planar since if we could embed it in the 
plane we could then remove the vertex we added and simply merge the 
two adjacent edges to obtain a planar embedding of K3,3, but we have 
already shown that K3,3 is not planar. 

7. There are seven distinct semi-regular polyhedra which can be obtained by 
truncating or completely truncating the five regular polyhedra as described 
in problems 4 and 5 above.  There are six other convex semi-regular 
polyhedra which together with these seven make up the thirteen 
Archimedean solids.  There are also two infinite families of convex semi-
regular polyhedra which are usually not classified as Archimedean solids. 
How many of these semi-regular polyhedra can you find?  (Hint: one of the 
infinite families is a very familiar class of solid shapes). 
The two infinite families of convex semi-regular polyhedra are the regular 
prisms and anti-prisms.  A regular prism consists of two parallel congruent 
regular polygons with edges between the corresponding vertices. A 
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regular prism has n+2 faces (2 n-gons and n squares), 2n vertices of 
degree 3, and 3n edges.  A square prism is a cube. 
A regular anti-prism consists of two parallel congruent regular polygons 
with one rotated with respect to the other so that each vertex is positioned 
opposite the center of an edge on the opposing polygon.  Each vertex in 
the anti-prism is connected to both vertices on the opposing edge, yielding 
2n+2 faces (2 n-gons and 2n triangles), 2n vertices of degree 4, and 4n 
edges.  A triangular anti-prism is an octahedron. 
The six other semi-regular polyhedra are listed in the table below. 
 

Polyhedron Faces Vertices Edges d Faces/Vertex
rhombicuboctahedron 8+18=26 24 48 4 1 triangle 

3 squares 
snub cube 32+6=38 24 60 5 4 triangles 

1 square 
snub dodecahedron 80+12=92 60 150 5 4 triangles 

1 pentagon 
 truncated 

cuboctahedron 
12+8+6=26 48 72 3 1 square 

1 hexagon 
1 octagon 

truncated 
icosadodecahedron 

30+20+12=62 120 180 3 1 square 
1 hexagon 
1 decagon 

rhombicosidodecahedron 20+30+12=62 60 120 4 1 triangle 
2 squares 

1 pentagon 
 

For more information about Archimedean solids including animated images of 
each solid, check out the two web-sites below: 
http://en.wikipedia.org/wiki/Archimedean_solids
http://mathworld.wolfram.com/ArchimedeanSolid.html
For those who just can’t get enough polyhedra, some interesting departure points 
for further exploration are: 
The duals of the 13 Archimedean solids are known as the Catalan solids.  The 
duals of the cuboctahedron and the icosidodecahedron, are particularly 
interesting in that they are also edge uniform.   See the web-site below: 
http://en.wikipedia.org/wiki/Catalan_solid
There are analogs of the Platonic Solids in higher dimensions.  An n-dimensional 
polyhedron is called an n-polytope (or polychoron in dimension 4).  There are 6 
convex regular 4-polytopes.  They include the tesseract (4-cube) and its dual the 
hexadexachoron, the pentachoron (4-d tetrahedron or 4-simplex), and 3 others.  
For more details check out wikipedia and/or the web-site below: 
http://members.aol.com/Polycell/nets.html
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