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The Definite lntearal 

The integral of v(x) is an antiderivative f(x) plus a constant C. This section takes 
two steps. First, we choose C. Second, we construct f (x). The object is to define the 
integral-in the most frequent case when a suitable f (x) is not directly known. 

The indefinite integral contains "+ C." The constant is not settled because f (x) + C 
has the same slope for every C. When we care only about the derivative, C makes 
no difference. When the goal is a number-a definite integral-C can be assigned a 
definite value at the starting point. 

For mileage traveled, we subtract the reading at the start. This section does the 
same for area. Distance is f(t) and area is f(x)-while the definite integral is 
f (b) -f (a). Don't pay attention to t or x, pay attention to the great formula of integral 
calculus: 

~ ( t )lab dt = IabV(X)d~ =f (b) -f (a). 

Viewpoint 1: When f is known, the equation gives the area from a to b. 
Viewpoint 2: When f is not known, the equation defines f from the area. 

For a typical v(x), we can't find f (x) by guessing or substitution. But still v(x) has an 
"area" under its graph-and this yields the desired integral f (x). 

Most of this section is theoretical, leading to the definition of the integral. You 
may think we should have defined integrals before computing them-which is logi- 
cally true. But the idea of area (and the use of rectangles) was already pretty clear in 
our first examples. Now we go much further. Every continuous function v(x) has an 
integral (also some discontinuous functions). Then the Fundamental Theorem com- 
pletes the circle: The integral leads back to dfldx = u(x). The area up to x is the 
antiderivative that we couldn't otherwise discover. 

THE CONSTANT OF INTEGRATION 

Our goal is to turn f (x) + C into a definite integral- the area between a and b. The 
first requirement is to have area = zero at the start: 

f (a) + C = starting area = 0 so C = -f (a). (2) 

For the area up to x (moving endpoint, indefinite integral), use t as the dummy variable: 

-f (a) (indefinite integral) 

the a m  afro  a to b is v(x) dx =f (b)-f (a) (definite integral) 

EXAMPLE I The area under the graph of 5(x + 1)4 from a to b has f (x) = (x + 1)': 

The calculation has two separate steps-first find f (x), then substitute b and a. After 
the first step, check that df /dx is v. The upper limit in the second step gives plus f (b), 
the lower limit gives minus f(a). Notice the brackets (or the vertical bar): 

f(x)]: =f(b)- f(a) x31: = 8 - 1 [cos XI:'=cos 2t - 1. 

Changing the example to f (x) = (x + - 1 gives an equally good antiderivative- 

(x)f=dtv(t) 1; isxthe area from a to 



and now f (0)= 0. But f (b)-f (a)stays the same, because the -1 disappears: 

[ ( x  + 1)' - 11: = ((b+ 1)' - 1)- ((a+ 1)' - 1)= (b+ 1)' - (a+ 1)'. 

EXAMPLE 2 When v = 2x sin x2 we recognize f = -cos x2. m e  area from 0 to 3 is 

The upper limit copies the minus sign. The lower limit gives -(- cos 0), which is 
+cos 0. That example shows the right form for solving exercises on dejkite integrals. 

Example 2 jumped directly to f (x)= -cos x2. But most problems involving the 
chain rule go more slowly-by substitution. Set u =x2, with duldx = 2x:

IO3 lo3 du
2x sin x2 dx = sin u -dx = sin u du.

dx 

We need new limits when u replaces x2. Those limits on u are a' and b2.(In this case 
a' = O2 and b2= 32= 9.) Z fx  goes from a to b, then u goesfrom ~ ( a )to u(b). 

In this case u = x2 + 5. Therefore duldx = 2x (or du = 2x dx for differentials). We have 
to account for the missing 2. The integral is Qu4. The limits on u =x2 + 5 are 

O2 + 5 and u(1)u(0)= The6.to5That is why the u-integral goes from 5.+ 1' = 
alternative is to find f ( x )= Q(x2+ 5)4in one jump (and check it). 

EXAMPLE 4 1: sin x2 dx = ?? (no elementary function gives this integral). 

If we try cos x2, the chain rule produces an extra 2x-no adjustment will work. Does 
sin x2 still have an antiderivative? Yes! Every continuous v(x)has an f (x).Whether 
f (x )  has an algebraic formula or not, we can write it as J v(x) dx. To define that 
integral, we now take the limit of rectangular areas. 

INTEGRALS AS LIMITS OF "RIEMANN SUMS" 

We have come to the definition of the integral. The chapter started with the integrals 
of x and x2,from formulas for 1 + ..-+ n and l 2+ ..-+ n2.We will not go back to 
those formulas. But for other functions, too irregular to find exact sums, the rectangu- 
lar areas also approach a limit. 

That limit is the integral. This definition is a major step in the theory of calculus. 
It can be studied in detail, or understood in principle. The truth is that the definition 
is not so painful-you virtually know it already. 

Problem Integrate the continuous function v(x)over the interval [a, b]. 
Step 1 Split [a, b] into n subintervals [a, x,], [x,, x2] ,  ..., [xn- b]. 

The "meshpoints" x,, x2,  . .. divide up the interval from a to b. The endpoints are 
xo = a and x, = b. The length of subinterval k is Ax, = xk - xk- l .  In that smaller 
interval, the minimum of v(x)is mk.The maximum is M,. 
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Now construct rectangles. The "lower rectangle" over interval k has height mk. The
"upper rectangle" reaches to Mk. Since v is continuous, there are points Xmin and Xmax
where v = mk and v = Mk (extreme value theorem). The graph of v(x) is in between.

Important: The area under v(x) contains the area "s" of the lower rectangles:

fb v(x) dx > m Ax1 + m2Ax 2 + + m, nx, = s. (5)

The area under v(x) is contained in the area "S" of the upper rectangles:

f bv(x) dx MAx + M2 Ax 2 + + MAxn= S. (6)

The lower sum s and the upper sum S were computed earlier in special cases-when
v was x or x2 and the spacings Ax were equal. Figure 5.9a shows why s < area < S.
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Fig. 5.9 Area of lower rectangles = s. Upper sum S includes top pieces. Riemann sum S* is in between.

Notice an important fact. When a new dividing point x' is added, the lower sum
increases. The minimum in one piece can be greater (see second figure) than the
original mk. Similarly the upper sum decreases. The maximum in one piece can be
below the overall maximum. As new points are added, s goes up and S comes down.
So the sums come closer together:

s < s' < IS' < S. (7)

I have left space in between for the curved area-the integral of v(x).
Now add more and more meshpoints in such a way that Axmax -+ 0. The lower

sums increase and the upper sums decrease. They never pass each other. If v(x) is
continuous, those sums close in on a single number A. That number is the definite
integral-the area under the graph.

DEFINITION The area A is the common limit of the lower and upper sums:

s - A and S -+ A as Axmax -+ 0. (8)

This limit A exists for all continuous v(x), and also for some discontinuous functions.
When it exists, A is the "Riemann integral" of v(x) from a to b.

REMARKS ON THE INTEGRAL

As for derivatives, so for integrals: The definition involves a limit. Calculus is built
on limits, and we always add "if the limit exists." That is the delicate point. I hope
the next five remarks (increasingly technical) will help to distinguish functions that
are Riemann integrable from functions that are not.

Remark 1 The sums s and S may fail to approach the same limit. A standard
example has V(x) = 1 at all fractions x = p/q, and V(x) = 0 at all other points. Every
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interval contains rational points (fractions) and irrational points (nonrepeating deci-
mals). Therefore mk = 0 and Mk = 1. The lower sum is always s = 0. The upper sum
is always S = b - a (the sum of 1's times Ax's). The gap in equation (7) stays open. This
function V(x) is not Riemann integrable. The area under its graph is not defined (at
least by Riemann-see Remark 5).

Remark 2 The step function U(x) is discontinuous but still integrable. On every
interval the minimum mk equals the maximum Mk-except on the interval containing
the jump. That jump interval has mk = 0 and Mk = 1. But when we multiply by Axk,
and require Axmax -+ 0, the difference between s and S goes to zero. The area under
a step function is clear-the rectangles fit exactly.

Remark 3 With patience another key step could be proved: If s -+ A and S -+ A for
one sequence of meshpoints, then this limit A is approached by every choice of mesh-
points with Axmax , 0. The integral is the lower bound of all upper sums S, and it is
the upper bound of all possible s-provided those bounds are equal. The gap must
close, to define the integral.

The same limit A is approached by "in-between rectangles." The height v(x*) can
be computed at any point x* in subinterval k. See Figures 5.9c and 5.10. Then the
total rectangular area is a "Riemann sum" between s and S:

S= v(x )Ax 1 + v(x*)Ax 2 + ... + v(x*)Ax. (9)

We cannot tell whether the true area is above or below S*. Very often A is closer to
S* than to s or S. The midpoint rule takes x * in the middle of its interval (Figure 5.10),
and Section 5.8 will establish its extra accuracy. The extreme sums s and S are used
in 

0 -
the definition while S* is used in computation.
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Fig. 5.10 Various positions for x*' in the base. The rectangles have height v(x*).

Remark 4 Every continuous function is Riemann integrable. The proof is optional (in
my class), but it belongs here for reference. It starts with continuity at x*: "For any
e there is a 6 .... " When the rectangles sit between x* - 6 and x* + 6, the bounds Mk
and mk differ by less than 2e. Multiplying by the base Axk, the areas differ by less
than 2e(AXk). Combining all rectangles, the upper and lower sums differ by less than
2e(Ax 1 + Ax 2 + ... + Ax,)= 2e(b - a).

As e -+ 0 we conclude that S comes arbitrarily close to s. They squeeze in on a
single number A. The Riemann sums approach the Riemann integral, ifv is continuous.

Two problems are hidden by that reasoning. One is at the end, where S and s come
together. We have to know that the line of real numbers has no "holes," so there is
a number A to which these sequences converge. That is true.

Any increasing sequence, if it is bounded above, approaches a limit.

The decreasing sequence S, bounded below, converges to the same limit. So A exists.
The other problem is about continuity. We assumed without saying so that the
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width 26 is the same around every point x*. We did not allow for the possibility that 
6 might approach zero where v(x) is rapidly changing-in which case an infinite 
number of rectangles could be needed. Our reasoning requires that 

v(x) is unifomly continuous: 6 depends on E but not on the position of x*. 

For each E there is a 6 that works at all points in the interval. A continuous function 
on a closed interval is uniformly continuous. This fact (proof omitted) makes the 
reasoning correct, and v(x) is integrable. 

On an infinite interval, even v =x2 is not uniformly continuous. It changes across 
a subinterval by (x* + ~ 5 ) ~- (x* - 6)2=4x*6. As x* gets larger, 6 must get smaller- 
to keep 4x*6 below E. No single 6 succeeds at all x*. But on a finite interval [O, b], 
the choice 6 =~ / 4 bworks everywhere-so v =x2 is uniformly continuous. 

Remark 5 If those four remarks were fairly optional, this one is totally at your 
discretion. Modern mathematics needs to integrate the zero-one function V(x) in the 
first remark. Somehow V has more 0's than 1's. The fractions (where V(x) = 1) can 
be put in a list, but the irrational numbers (where V(x) =0) are "uncountable." The 
integral ought to be zero, but Riemann's upper sums all involve M ,  = 1. 

Lebesgue discovered a major improvement. He allowed infinitely many subintervals 
(smaller and smaller). Then all fractions can be covered with intervals of total width 
E. (Amazing, when the fractions are packed so densely.) The idea is to cover 1/q, 2/q, 
. . . ,q/q by narrow intervals of total width ~ 1 2 ~ .  Combining all q = 1,2, 3, .. . ,the total 
width to cover all fractions is no more than E(& +$ +$ + --.)= E. Since V(x) =0 
everywhere else, the upper sum S is only E. And since E was arbitrary, the "Lebesgue 
integral" is zero as desired. 

That completes a fair amount of theory, possibly more than you want or need- 
but it is satisfying to get things straight. The definition of the integral is still being 
studied by experts (and so is the derivative, again to allow more functions). By 
contrast, the properties of the integral are used by everybody. Therefore the next 
section turns from definition to properties, collecting the rules that are needed in 
applications. They are very straightforward. 

5.5 EXERCISES 
Read-through questions approach the same r ,that defines the integral. The inter- 

In J: v(t) dt =f (x)+ C, the constant C equals a . Then 
mediate sums S*, named after s ,use rectangles of height 

at x =a the integral is b . At x =b the integral becomes v(x,*). Here X$ is any point between t ,and S* = u 

.The notation f ($1: means d .Thus cos x]: equals approaches the area. 

e . Also [cos x +3]",quals t , which shows why If u(x) =dfldx, what constants C make 1-10 true? 
the antiderivative includes an arbitrary Q . Substituting 
u =2x - 1 changes J: Jndx into h (with limits 1 Jb, V(X) dx =f (b)+C 
on u). 2 j; v(x) dx =f (4) +C 

The integral J,b U(X)dx can be defined for any I func- 3 1: v(t) dt = -f(x) + C 
tion v(x), even if we can't find a simple i .First the mesh- 
points xl ,  x2, . . . divide [a, b] into subintervals of length 4 J:,, v(sin x) cos x dx =f (sin b) + C 

Axk= k . The upper rectangle with base Ax, has height 5 v(t) dt =f (t)+ C (careful) 
Mk= 1 . The upper sum S is equal to m . The lower 

6 dfldx =v(x) + C sum s is n . The o is between s and S. As more 
meshpoints are added, S P and s q . If S and s 7 1; (x2-l)j2x dx=j:, u3du. 

c 
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15 

21 

8 I:' v(t) dt =f(x2)+ C 26 Find the Riemann sum S* for V(x) in Remark 1, when 

-(changeC=v(- X) dx 1: 
=v(x) dx 1; 10 

x to t; also dx and limits) Ax = l/n and each xf is the midpoint. This S* is well-behaved 
but still V(x) is not Riemann integrable. 

C v(2t) dt. 
27 W(x) equals S at x = 3,4,4, .. ., and elsewhere W(x) = 0. 
For Ax = .O1 find the upper sum S. Is W(x) integrable? 

28 Suppose M(x) is a multistep function with jumps of 3, f ,
Choose u(x) in 11-18 and change limits. Compute the integral 4, ... at the points x = +,&,4, ... . Draw a rough graph with 
in 11-16. 

11 1; (x2+ l)lOx dx 
M(0)= 0 and M(1) = 1. With Ax = 5 find S and s. 

12 1:" sin8 x cos x dx 29 For M(x) in Problem 28 find the difference S -s (which 

13 El4tan x sec2 x dx 14 1; x2"+' dx (take u = x2) approaches zero as Ax -* 0). What is the area under the 
graph?

x d x / J m '  1; 16sec2'x tan x dx 
v(t) dt. 1: =(x)f0, explain 30 If dfldx = -V(X)and f (I)= 

17 1: dx/x (take u = l/x) -x3(1 1; 18 x ) ~dx (u = 1-x) 
31 (a) If df /dx = + v(x) and f(0)= 3, find f (x). 

(b) If df /dx = + v(x) and f (3)= 0, find f(x). 

32 In your own words define the integral of v(x) from a to b. 

33 True or false, with reason or example. 
With Ax = 3 in 19-22, find the maximum Mk and minimum 
mkand upper and lower sums S and s. 

114 dx +(x' 1; 19 

x3 dx 

20 sin 2nx dx (a) Every continuous v(x) has an antiderivative f (x). 

22 x dx. (b) If v(x) is not continuous, S and s approach different 
limits. 

23 Repeat 19 and 20 with Ax = 4 and compare with the cor- (c) If S and s approach A as Ax + 0, then all Riemann 
rect answer. sums S* in equation (9) also approach A. 

24 The difference S -s in 21 is the area 23 Ax of the far right (d) If vl(x) + v2(x)= u3(x), their upper sums satisfy 
rectangle. Find Ax so that S < 4.001. 

25 If v(x) is increasing for a ,< x ,< b, the difference S -s is the 
area of the rectangle minus the area of the 

' 

S1 +S2 =S3. 
(e) If vl(x) + v2(x)= u3(x), their Riemann sums at the 
midpoints xf satisfy Sf + S t  = ST. 

rectangle. Those areas approach zero. So every increasing (f) The midpoint sum is the average of S and s. 
function on [a, b] is Riemann integrable. (g) One xf in Figure 5.10 gives the exact area 

15.6 Properties of the Integral and Average Value m 

The previous section reached the definition of 1:: v(x) dx. But the subject cannot stop 
there. The integral was defined in order to be used. Its properties are important, and 
its applications are even more important. The definition was chosen so that the 
integral has properties that make the applications possible. 

One direct application is to the average value of v(x). The average of n numbers is 
clear, and the integral extends that idea-it produces the average of a whole contin- 
uum of numbers v(x). This develops from the last rule in the following list (Property 
7). We now collect toget her seven basic properties of defirrite integrals. 

The addition rule for [v(x) + w(x)] dx will not be repeated-even though this 
property of linearity is the most fundamental. We start instead with a different kind 
of addition. There is only one function v(x), but now there are two intervals. 

The integral from a to b is added to its neighbor from b to c. Their sum is the integral 
from a to c .  That is the first (not surprising) property in the list. 
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Property 1 Areas over neighboring intervals add to the area over the combined
interval:

J v(x) dx + I' v(x) dx = J v(x) dx. (1)

This sum of areas is graphically obvious (Figure 5.1 la). It also comes from the formal
definition of the integral. Rectangular areas obey (1)-with a meshpoint at x = b to
make sure. When Axmax approaches zero, their limits also obey (1). All the normal
rules for rectangular areas are obeyed in the limit by integrals.

Property 1 is worth pursuing. It indicates how to define the integral when a = b.
The integral "from b to b" is the area over a point, which we expect to be zero. It is.

Property 2 fb v(x) dx = 0.

That comes from Property 1 when c = b. Equation (1) has two identical integrals, so
the one from b to b must be zero. Next we see what happens if c = a-which makes
the second integral go from b to a.

What happens when an integralgoes backward? The "lower limit" is now the larger
number b. The "upper limit" a is smaller. Going backward reverses the sign:

Property 3 fa v(x) dx = - f~ v(x) dx =f(a) -f(b).

Proof When c = a the right side of (1) is zero. Then the integrals on the left side
must cancel, which is Property 3. In going from b to a the steps Ax are negative. That
justifies a minus sign on the rectangular areas, and a minus sign on the integral
(Figure 5.1 1b). Conclusion: Property 1 holds for any ordering of a, b, c.

EXAMPLES t2 dt = - - dt = -1 _ = 0

Property 4 For odd functions Ja, v(x) dx = O0. "Odd" means that v(- x) = - v(x).
For even functions •-a v(x) dx = 2 fo v(x) dx. "Even" means that v(- x) = + v(x).

The functions x, x3 , x 5, ... are odd. If x changes sign, these powers change sign. The
functions sin x and tan x are also odd, together with their inverses. This is an impor-
tant family of functions, and the integral of an odd function from - a to a equals zero.
Areas cancel:

j•a 6x d= x]', a6 -(- a)6 = 0.

If v(x) is odd then f(x) is even! All powers 1, x2, x4 ,... are even functions. Curious
fact: Odd function times even function is odd, but odd number times even number is
even.

For even functions, areas add: J"a cos x dx = sin a - sin(- a) = 2 sin a.

v(-x) = - v(x)

a - o _ c a -1 o x -x x

I
Fig. 5.11 Properties 1-4: Add areas, change sign to go backward, odd cancels, even adds.
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The next properties involve inequalities. If v(x) is positive, the area under its graph
is positive (not surprising). Now we have a proof: The lower sums s are positive and
they increase toward the area integral. So the integral is positive:

Property 5 If v(x) > 0 for a < x < b then J v(x) dx > 0.

A positive velocity means a positive distance. A positive v lies above a positive area.
A more general statement is true. Suppose v(x) stays between a lower function 1(x)
and an upper function u(x). Then the rectangles for v stay between the rectangles for 1
and u. In the limit, the area under v (Figure 5.12) is between the areas under I and u:

Property 6 If 1(x) < v(x) < u(x) for a < x < b then

II 1(x) dx ~ a v(x) dx ~ a u(x) dx. (2)

EXAMPLE 1 cos t<1 =~ cosC t dt I 1 dt = sin x x

EXAMPLE 2 1 sec 2 t =• 1 dt <• sec 2tdtdt x <tanx

1
EXAMPLE 3 Integrating 1 2 1 leads to tan- x < x.

All those examples are for x > 0. You may remember that Section 2.4 used geometry
to prove sin h < h < tan h. Examples 1-2 seem to give new and shorter proofs. But I
think the reasoning is doubtful. The inequalities were needed to compute the deriva-
tives (therefore the integrals) in the first place.

Vave

Fig. 5.12 Properties 5-7: v above zero, v between 1 and u, average value (+ balances -).

Property 7 (Mean Value Theorem for Integrals) If v(x) is continuous, there is a
point c between a and b where v(c) equals the average value of v(x):

(c I v(x) dx = "average value of v(x)." (3)v(c) b-a a

This is the same as the ordinary Mean Value Theorem (for the derivative of f(x)):

f(b) -f(a)
f'(c) - (a)- average slope of f." (4)b-a

With f' = v, (3) and (4) are the same equation. But honesty makes me admit to a flaw
in the logic. We need the Fundamental Theorem of Calculus to guarantee that
f(x) = f v(t) dt really gives f'= v.

A direct proof of (3) places one rectangle across the interval trom a to b. Now raise
the top of that rectangle, starting at Vmin (the bottom of the curve) and moving up to
vmax (the top of the curve). At some height the area will be just right-equal to the
area under the curve. Then the rectangular area, which is (b - a) times v(c), equals
the curved area Jf v(x) dx. This is equation (3).
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/ u ( x ) = x  u(x>= x2 u(x) = sin2x 

Fig. 5.13 Mean Value Theorem for integrals: area/(b -a) = average height = v(c) at some c. 

That direct proof uses the intermediate value theorem: A continuous function v(x) 
takes on every height between v,,, and v,,,. At some point (at two points in 
Figure 5.12~) the function v(x) equals its own average value. 

Figure 5.13 shows equal areas above and below the average height v(c) = vaVe. 

EXAMPLE 4 The average value of an odd function is zero (between -1 and 1): 

For once we know c. It is the center point x = 0, where v(c) = vav, = 0. 

EXAMPLE 5 The average value of x2 is f (between 1 and -1): 

(note ,,-- 7  
Where does this function x2 equal its average value f? That happens when c2 = f ,  so 
c can be either of the points I/& and -1/J? in Figure 5.13b. Those are the Gauss 
points, which are terrific for numerical integration as Section 5.8 will show. 

EXAMPLE 6 The average value of sin2 x over a period (zero to n) is i :  

- 7(note -; 

The point c is n/4 or 344,  where sin2 c = $. The graph of sin2 x oscillates around its 
average value f .  See the figure or the formula: 

sin2 x = f - f cos 2x. (5) 

The steady term is f ,  the oscillation is - 4 cos 2x. The integral is f (x) = i x  - sin 2x, 
which is the same as fx -i sin x cos x. This integral of sin2 x will be seen again. Please 
verify that df /dx = sin2 x. 

THE AVERAGE VALUE AND EXPECTED VALUE 

The "average value" from a to b is the integral divided by the length b - a. This 
was computed for x and x2 and sin2 x, but not explained. It is a major application 
of the integral, and it is guided by the ordinary average of n numbers: 

1
V(X)dx comes from uave = - (vl + v2 + .. . + v,).Vave = - n 

Integration is parallel to summation! Sums approach integrals. Discrete averages 
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approach continuous averages. The average of 4, %,3 is 3. The average of f ,$,3, 4,
3 is 3. The average of n numbers from l/n to n/n is 

The middle term gives the average, when n is odd. Or we can do the addition. As 
n -,oo the sum approaches an integral (do you see the rectangles?). The ordinary 
average of numbers becomes the continuous average of v(x) = x: 

n + l  +-1 Iolx dx =and (note b-o -1 )
2n 2 

In ordinary language: "The average value of the numbers between 0 and 1 is 4." Since 
a whole continuum of numbers lies between 0 and 1, that statement is meaningless 
until we have integration. 

The average value of the squares of those numbers is (x2),,, = x2 dx/(b - a) = 4. 
Ifyou pick a number randomly between 0 and 1, its expected value is 5 and its expected 
square is 3.  

To me that sentence is a puzzle. First, we don't expect the number to be exactly 
&so we need to define "expected value." Second, if the expected value is 9, why is 
the expected square equal to 3 instead of i?The ideas come from probability theory, 
and calculus is leading us to continuous probability. We introduce it briefly here, and 
come back to it in Chapter 8. 

PREDlClABLE AVERAGES FROM RANDOM EVENTS 

Suppose you throw a pair of dice. The outcome is not predictable. Otherwise why 
throw them? But the average over more and more throws is totally predictable. We 
don't know what will happen, but we know its probability. 

For dice, we are adding two numbers between 1 and 6. The outcome is between 2 
and 12. The probability of 2 is the chance of two ones: (1/6)(1/6) = 1/36. Beside each 
outcome we can write its probability: 

To repeat, one roll is unpredictable. Only the probabilities are known, and they add 
to 1. (Those fractions add to 36/36; all possibilities are covered.) The total from a 
million rolls is even more unpredictable-it can be anywhere between 2,000,000 and 
12,000,000. Nevertheless the average of those million outcomes is almost completely 
predictable. This expected value is found by adding the products in that line above: 

Expected value: multiply (outcome)times (probability of outcome) and add: 

If you throw the dice 1000 times, and the average is not between 6.9 and 7.1, you get 
an A. Use the random number generator on a computer and round off to integers. 

Now comes continuous probability. Suppose all numbers between 2 and 12 are 
equally probable. This means all numbers-not just integers. What is the probability 
of hitting the particular number x = n? It is zero! By any reasonable measure, n has 
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no chance to occur. In the continuous case, every x has probability zero. But an 
interval of x's has a nonzero probability: 

the probability of an outcome between 2 and 3 is 1/10 
the probability of an outcome between x and x + Ax is Ax110 

To find the average, add up each outcome times the probability of that outcome. 
First divide 2 to 12 into intervals of length Ax = 1 and probability p = 1/10. If we 
round off x, the average is 63: 

Here all outcomes are integers (as with dice). It is more accurate to use 20 intervals 
of length 112 and probability 1/20. The average is 6$, and you see what is coming. 
These are rectangular areas (Riemann sums). As Ax -+ 0 they approach an integral. 
The probability of an outcome between x and x + dx is p(x) dx, and this problem has 
p(x) = 1/10. The average outcome in the continuous case is not a sum but an integral: 

dx x2 l 2
expected value E(x)= xp(x) dx = S212 x 10= 20]2 = 7. 

That is a big jump. From the point of view of integration, it is a limit of sums. From 
the point of view of probability, the chance of each outcome is zero but the probability 
density at x is p(x) = 1/10. The integral of p(x) is 1, because some outcome must 
happen. The integral of xp(x) is x,,, = 7, the expected value. Each choice of x is 
random, but the average is predictable. 

This completes a first step in probability theory. The second step comes after more 
calculus. Decaying probabilities use e-" and e-"'-then the chance of a large x is 
very small. Here we end with the expected values of xn and I/& and l/x, for a 
random choice between 0 and 1 (so p(x) = 1): 

A CONFUSION ABOUT "EXPECTED" CLASS SIZE 

A college can advertise an average class size of 29, while most students are in large 
classes most of the time. I will show quickly how that happens. 

Suppose there are 95 classes of 20 students and 5 classes of 200 students. The total 
enrollment in 100 classes is 1900 + 1000 = 2900. A random professor has expected 
class size 29. But a random student sees it differently. The probability is 1900/2900 
of being in a small class and 1000/2900 of being in a large class. Adding class size 
times probability gives the expected class size for the student: 

(20)(E)+ (200)(IWO) = 82 students in the class. 
2900 2900 

Similarly, the average waiting time at a restaurant seems like 40 minutes (to the 
customer). To the hostess, who averages over the whole day, it is 10 minutes. If you 
came at a random time it would be 10, but if you are a random customer it is 40. 

Traffic problems could be eliminated by raising the average number of people per 
car to 2.5, or even 2. But that is virtually impossible. Part of the problem is the 
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difference between (a) the percentage of cars with one person and (b) the percentage 
of people alone in a car. Percentage (b) is smaller. In practice, most people would be 
in crowded cars. See Problems 37-38. 

Read-through questions 

The integrals 1; v(x) dx and v(x) dx add to a . The 
integral v(x) dx equals b . The reason is c . If 
V(X)<x then v(x) dx < d .The average value of v(x) on 
the interval 1 <x <9 is defined by . It is equal to u(c) 
at a point x =c which is . The rectangle across this f 

interval with height v(c) has the same area as g . The 
average value of u(x) =x + 1 on the interval 1 <x <9 is 

h 

If x is chosen from 1, 3, 5, 7 with equal probabilities $, its 
expected value (average) is 1 . The expected value of x2 
is 1 . If x is chosen from 1, 2, ..., 8 with probabilities i, 
its expected value is k . If x is chosen from 1 <x <9, the 
chance of hitting an integer is I . The chance of falling 
between x and x +dx is p(x) dx = m . The expected value 
E(x) is the integral n . It equals 0 . 

In 1-6 find the average value of v(x) between a and b, and find 
all points c where vave =v(c). 

Are 9-16 true or false? Give a reason or an example. 

9 The minimum of S", v(t) dt is at x =4. 

10 The value of v(t) dt does not depend on x. 

11 The average value from x =0 to x = 3 equals 

$(vaVeon 0 <x < 1)+3(vav, on 1 <x < 3). 

12 The ratio (f (b) -f (a))/(b-a) is the average value of f (x) 
o n a < x < b .  

13 On the symmetric interval -1 <x < 1, v(x) -vave is an 
odd function. 

14 If l(x) < v(x) < u(x) then dlldx <dvldx <duldx. 

15 The average of v(x) from 0 to 2 plus the average from 2 
to 4 equals the average from 0 to 4. 

16 (a) Antiderivatives of even functions are odd functions. 
(b) Squares of odd functions are odd functions. 

17 What number 8 gives j! (v(x)-8) dx =O? 

18 If f (2) = 6 and f (6)=2 then the average of df /dx from 
x = 2 t o x = 6 i s  . 
19 (a) The averages of cos x and lcos xl from 0 to n are 

(b) The average of the numbers v,, .. . ,v, is than 
the average of Ivll, ...,lu,l. 

20 (a) Which property of integrals proves ji v(x) dx < 
j: I.(x,I dx? 
(b) Which property proves -1: v(x) dx <j: Iv(x)l dx? 

Together these are Property 8: 11;v(x) dxl6  Iv(x)l dx. 

21 What function has vave (from 0 to x) equal to $ v(x) at all 
x? What functions have vave=v(x)at all x? 

22 (a) If v(x) is increasing, explain from Property 6 why 
j",(t) dt <xv(x) for x >0. 
(b) Take derivatives of both sides for a second proof. 

23 The average of v(x) = 1/(1 +x2)  on the interval [0, b] 
approaches as b -+ co. The average of V(x) = 

x2/(1+ x2) approaches . 

24 If the positive numbers v, approach zero as n -+ co prove 
that their average (vl + - - - + vJn also approaches zero. 

25 Find the average distance from x =a to points in the 
interval 0 <x < 2. Is the formula different if a < 2? 

26 (Computer experiment) Choose random numbers x 
between 0 and 1 until the average value of x2 is between .333 
and .334. How many values of x2 are above and below? If 
possible repeat ten times. 

27 A point P is chosen randomly along a semicircle (see 
figure: equal probability for equal arcs). What is the 
average distance y from the x axis? The radius is 1. 

28 A point Q is chosen randomly between -1 and 1. 
(a) What is the average distance Y up to the semicircle? 
(b) Why is this different from Problem 27? 

Buffon needle 
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29 (A classic way to compute n;) A 2" needle is tossed onto 37 Suppose four classes have 6,8,10, and 40 students, averag- 
a floor with boards 2" wide. Find the probability of falling ing . The chance of being in the first class is 
across a crack. (This happens when cos 8>y =distance from . The expected class size (for the student) is 
midpoint of needle to nearest crack. In the rectangle 
0 68<7r/2,O <y 6 1, shade the part where cos 8 >y and find 
the fraction of area that is shaded.) 

30 If Buffon's needle has length 2x instead of 2, find the 
38 With groups of sizes xl  ,. . . ,x, adding to G, the average 
size is . The chance of an individual belonging to 

probability P(x) of falling across the same cracks. group 1 is . The expected size of his or her group is 
31 If you roll three dice at once, what are the probabilities of E(x) =x, (xl /G) + -.-+x,(x,/G). *Prove Z: X?/G 2 G/n. 
each outcome between 3 and 18? What is the expected value? True or false, 15 seconds each: 

32 If you choose a random point in the square 0 6x < 1, (a) If f (x) <g(x) then df ldx 6dgldx. 
0 <y 6 1, what is the chance that its coordinates have yZ <x? (b) If df /dx 6 dgldx then f (x) <g(x). 

33 The voltage V(t) =220 cos 2n;t/60 has frequency 60 hertz (c) xv(x) is odd if v(x) is even. 

and amplitude 220 volts. Find Kvefrom 0 to t. (d) If v,,, d wave on all intervals then u(x) 6w(x) at all 
points. 

34 (a) Show that veve,(x) =$(v(x)+u(-x)) is always even. 
2x for x <3 x2 for x <3

(b) Show that vOdd(x) =$(v(x)-v(-x)) is always odd. If v(x) = then f(x) = 
-2x for x >3 -x2 for x > 3 '  

35 By Problem 34 or otherwise, write (x + and l/(x + 1) 
Thus v(x) dx =f (4)-f (0) =-16. Correct the mistake. as an even function plus an odd function. 
41 If v(x) = Ix -2) find f (x). Compute u(x) dx. 36 Prove from the definition of dfldx that it is an odd func- 

tion if f (x) is even. 42 Why are there equal areas above and below vave? -5.7 The Fundamental Theorem and Its Applications 

When the endpoints are fixed at a and b, we have a definite integral. When the upper 
limit is a variable point x, we have an indefinite integral. More generally: When the 
endpoints depend in any way on x, the integral is a function of x.  Therefore we can 
find its derivative. This requires the Fundamental Theorem of Calculus. 

The essence of the Theorem is: Derivative of integral of v equals v. We also compute 
the derivative when the integral goes from a(x) to b(x)-both limits variable. 

Part 2 of the Fundamental Theorem reverses the order: Integral ofderivative o f f  
equals f + C .  That will follow quickly from Part 1, with help from the Mean Value 
Theorem. It is Part 2 that we use most, since integrals are harder than derivatives. 

After the proofs we go to new applications, beyond the standard problem of area 
under a curve. Integrals can add up rings and triangles and shells-not just rectangles. 
The answer can be a volume or a probability-not just an area. 

THE FUNDAMENTAL THEOREM, PART 1 

Start with a continuous function v .  Integrate it from a fixed point a to a variable 
point x. For each x, this integral f(x) is a number. We do not require or expect a 
formula for f (x)-it is the area out to the point x. It is a function of x! The Fundamen- 
tal Theorem says that this area function has a derivative (another limiting process). 
The derivative df ldx equals the original v(x). 
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The dummy variable is written as t, so we can concentrate on the limits. The val 
of the integral depends on the limits a and x, not on t. 

To find df ldx, start with Af =f (x + Ax) -f (x) = diflerence of areas: 

~ ( t )~f= I."+Ax dt - 1; v(t) dt = v(t) dt. (1) 
Officially, this is Property 1.The area out to x + Ax minus the area out to x equals 
the small part from x to x + Ax. Now divide by Ax: 

1 x+Ax
Af - v(t) dt = average value = v(c).
Ax Ax I 

This is Property 7, the Mean Value Theorem for integrals. The average value on this 
short interval equals v(c). This point c is somewhere between x and x + Ax (exact 
position not known), and we let Ax approach zero. That squeezes c toward x, so v(c) 
approaches u(x)-remember that v is continuous. The limit of equation (2) is the 
Fundamental Theorem: 

dfAf-+ d f  and v(c) + u(x) SO -= v(x).
Ax dx dx 

If Ax is negative the reasoning still holds. Why assume that v(x) is continuous? 
Because if v is a step function, then f (x) has a corner where dfldx is not v(x). 

We could skip the Mean Value Theorem and simply bound v above and below: 

for t between x and x + Ax: umin 6 ~ ( t )G Vmax 

integrate over that interval: vminAxQ Af G vmaxAx (4) 

As Ax -,0, umin and vmax approach v(x). In the limit dfldx again equals v(x). tpj.(.\-+ A.v) Af *= u(.u)A.r 

f(.d 

x X + A K  x . \ - + A X  

Fig. 5.14 Fundamental Theorem, Part 1: (thin area Af)/(base length Ax) -+ height u(x). 

Graphical meaning The f-graph gives the area under the v-graph. The thin strip in 
Figure 5.14, has area Af. That area is approximately v(x) times Ax. Dividing by its 
base, AflAx is close to the height v(x). When Ax -* 0 and the strip becomes infinitely 
thin, the expression "close to" converges to "equals." Then df ldx is the height at v(x). 

DERIVATIVES WITH VARIABLE ENDPOINTS 


When the upper limit is x, the derivative is v(x). Suppose the lower limit is x. The 
integral goes from x to 6,instead of a to x. When x moves, the lower limit moves. 
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The change in area is on the left side of Figure 5.15. As x goesforward, area is removed. 
So there is a minus sign in the derivative of area: 

dgThe derivative of g(x) = v(t) dt is -= -v(x).
dx 

The quickest proof is to reverse b and x, which reverses the sign (Property 3):

1' dgg(x) = - v(t) dt so by part I -= - v(x).
dx 

Fig. 5.15 Area from x to b has dgldx = -u(x). Area v(b)db is added, area v(a)da is lost 

The general case is messier but not much harder (it is quite useful). Suppose both 
limits are changing. The upper limit b(x) is not necessarily x, but it depends on x. 
The lower limit a(x) can also depend on x (Figure 5.15b). The area A between those 
limits changes as x changes, and we want dAldx: 

dA db da
v(t) dt then -= v(b(x)) -- v(a(x))-.

dx dx dx 

The figure shows two thin strips, one added to the area and one subtracted. 
First check the two cases we know. When a = 0 and b = x, we have daldx = 0 and 

dbldx = 1. The derivative according to (6) is v(x) times 1 -the Fundamental Theorem. 
The other case has a = x and b = constant. Then the lower limit in (6) produces -v(x). 
When the integral goes from a = 2x to b = x3, its derivative is new: 

EXAMPLE 1 A = 5;: cos t dt = sin x3 - sin 2x 

dAjdx = (cos x3)(3x2) - (cos 2x)(2). 

That fits with (6), because dbldx is 3x2 and daldx is 2 (with minus sign). It also looks 
like the chain rule-which it is! To prove (6) we use the letters v and f :  

A = ~ ( t )dt =j(h(x)) -f (a(x)) (by Part 2 below) 

(by the chain rule) 

Since f '  = v, equation (6) is proved. In the next example the area turns out to be 
constant, although it seems to depend on x. Note that v(t) = l / t  so v(3x) = 1/3x. 

dA = ( ) (3) (&)(2)EXAMPLE2 A=[: - dt has - - = 0. 
t dx 
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dA
Question A = I.u(t) dt has -= u(x) + v(- x). Why does v(- x) have a plus sign? 

dx 

THE FUNDAMENTAL THEOREM, PART 2 


We have used a hundred times the Theorem that is now to be proved. It is the key 
to integration. "The integral of dfldx is f (x) + C." The application starts with v(x). 
We search for an f (x) with this derivative. If dfldx = v(x), the Theorem says that 

We can't rely on knowing formulas for v and f-only the definitions of and dldx. 
The proof rests on one extremely special case: dfldx is the zero function. We easily 

find f (x)= constant. The problem is to prove that there are no other possibilities: f '  
must be constant. When the slope is zero, the graph must be flat. Everybody knows 
this is true, but intuition is not the same as proof. 

Assume that df ldx = 0 in an interval. Iff  (x) is not constant, there are points where 
f (a) #f (b). By the Mean Value Theorem, there is a point c where 

f '(c) = (b)-f (this is not zero because f (a)#f (b)).
b - a  

But f '(c) # 0 directly contradicts df ldx = 0. Therefore f (x) must be constant. 
Note the crucial role of the Mean Value Theorem. A local hypothesis (dfldx = 0 

at each point) yields a global conclusion (f = constant in the whole interval). The 
derivative narrows the field of view, the integral widens it. The Mean Value Theorem 
connects instantaneous to average, local to global, points to intervals. This special 
case (the zero function) applies when A(x) and f(x) have the same derivative: 

IfdAldx = dfldx on an interval, then A(x) =f (x)  + C. (7) 

Reason: The derivative of A(x) -f (x) is zero. So A(x) -f (x) must be constant. 
Now comes the big theorem. It assumes that v(x) is continuous, and integrates 

using f (x): 

5D (Fu~tdamental Theorem, Part 2) If u(x) = u(x) dx =f (b) -f (a).dx 

Proof The antiderivative is f (x). But Part 1gave another antiderivative for the same 
v(x). It was the integral-constructed from rectangles and now called A(x): 

dA 
v ( t )d t  alsohas ---=v(x).

dx 

Since A' = v and f '  = v, the special case in equation (7) states that A(x) =f (x)+ C. 
That is the essential point: The integral from rectangles equals f (x)+ C. 

At the lower limit the area integral is A = 0. So f (a)+ C = 0. At the upper limit 
j'(b) + C = A(b). Subtract to find A(b), the definite integral: 

Calculus is beautiful-its Fundamental Theorem is also its most useful theorem. 
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Another proof of Part 2 starts with f' = v and looks at subintervals:

f(xi) - f(a) = v(x*)(xi - a) (by the Mean Value Theorem)

f(x 2) -f(x 1)= V(X2)(X2 - Xi) (by the Mean Value Theorem)

f(b) - f(x -,) = v(x,*)(b - x, _) (by the Mean Value Theorem).

The left sides add to f(b) -f(a). The sum on the right, as Ax -- 0, is J v(x) dx.

APPLICATIONS OF INTEGRATION

Up to now the integral has been the area under a curve. There are many other
applications, quite different from areas. Whenever addition becomes "continuous," we
have integrals instead of sums. Chapter 8 has space to develop more applications, but
four examples can be given immediately--which will make the point.

We stay with geometric problems, rather than launching into physics or engineering
or biology or economics. All those will come. The goal here is to take a first step
away from rectangles.

EXAMPLE 3 (for circles) The area A and circumference C are related by dA/dr = C.

The question is why. The area is 7r2. Its derivative 27nr is the circumference. By the
Fundamental Theorem, the integral of C is A. What is missing is the geometrical
reason. 
J 

Certainly rr2 is the integral of 2nrr, but what is the real explanation for A =
C(r) dr?
My point is that the pieces are not rectangles. We could squeeze rectangles under

a circular curve, but their heights would have nothing to do with C. Our intuition
has to take a completely different direction, and add up the thin rings in Figure 5.16.

shell volume = 4ntr 2Ar

Fig. 5.16 Area of circle = integral over rings. Volume of sphere = integral over shells.

Suppose the ring thickness is Ar. Then the ring area is close to C times Ar. This is
precisely the kind of approximation we need, because its error is of higher order (Ar)2.
The integral adds ring areas just as it added rectangular areas:

A = C dr = 2nr dr = 2Ir .

That is our first step toward freedom, away from rectangles to rings.
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The ring area AA can be checked exactly-it is the difference of circles:

AA = ir(r + Ar)2 - trr2 = 2rr Ar + 7r(Ar)2 .

This is CAr plus a correction. Dividing both sides by Ar - 0 leaves dA/dr = C.
Finally there is a geometrical reason. The ring unwinds into a thin strip. Its width

is Ar and its length is close to C. The inside and outside circles have different perime-
ters, so this is not a true rectangle-but the area is near CAr.

EXAMPLE 4 For a sphere, surface area and volume satisfy A = dV/dr.

What worked for circles will work for spheres. The thin rings become thin shells. A
shell goes from radius r to radius r + Ar, so its thickness is Ar. We want the volume
of the shell, but we don't need it exactly. The surface area is 47rr2 , so the volume is
about 47rr 2 Ar. That is close enough!

Again we are correct except for (Ar)2. Infinitesimally speaking dV= A dr:

V = A dr = 4rr2 dr = rr3 .

This is the volume of a sphere. The derivative of V is A, and the shells explain why.
Main point: Integration is not restricted to rectangles.

EXAMPLE 5 The distance around a square is 4s. Why does the area have dAlds = 2s?

The side is s and the area is s2. Its derivative 2s goes only half way around the square.
I tried to understand that by drawing a figure. Normally this works, but in the figure
dAlds looks like 4s. Something is wrong. The bell is ringing so I leave this as an
exercise.

EXAMPLE6 Find the area under v(x)= cos- x from x= 0 to x= 1.

That is a conventional problem, but we have no antiderivative for cos- x. We could
look harder, and find one. However there is another solution-unconventional but
correct. The region can be filled with horizontal rectangles (not vertical rectangles).
Figure 5.17b shows a typical strip of length x = cos v (the curve has v = cos'- x). As
the thickness Av approaches zero, the total area becomes J x dv. We are integrating
upward, so the limits are on v not on x:

area cos v dv = sin v]-' 2 = O2 = 1.

The exercises ask you to set up other integrals-not always with rectangles. Archi-
medes used triangles instead of rings to find the area of a circle.

------
t

S OS-lX
OS V

s s do

S

T

AA = 4sAs? dx 1

Fig. 5.17 Trouble with a square. Success with horizontal strips and triangles.
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5.7 EXERCISES
Read-through questions 24 Suppose df/dx = 2x. We know that d(x 2)/dx = 2x. How

J do we prove that f(x) = x2 + C?The area f(x) = v(t) dt is a function of a . By Part 1 of
the Fundamental Theorem, its derivative is b . In the 25 If JSx v(t) dt = Sx v(t) dt (equal areas left and right of
proof, a small change Ax produces the area of a thin c zero), then v(x) is an function. Take derivatives to
This area Af is approximately d times o . So the prove it.
derivative of J t2 dt is f 26 Example 2 said that 2x dt/t does not really depend on x

The integral Sb t2 dt has derivative . . The minus sign (or t!). Substitute xu for t and watch the limits on u.
is because h . When both limits a(x) and b(x) depend on 27 True or false, with reason:
x, the formula for df/dx becomes I minus __j_. In the (a) All continuous functions have derivatives.
example X" t dt, the derivative is k (b) All continuous functions have antiderivatives.

By Part 2 of the Fundamental Theorem, the integral of (c) All antiderivatives have derivatives.
df/dx is I . In the special case when df/dx = 0, this says (d) A(x) = J~ dt/t 2 has dA/dx = 0.
that m . From this special case we conclude: If dA/dx =
dB/dx then A(x) = n . If an antiderivative of 1/x is In x Find f~ v(t) dt from the facts in 28-29.
(whatever that is), then automatically 1Sb dx/x = o

28 dx = v(x) 29 o v(t) dt- xThe square 0 < x < s, 0 < y < s has area A = p. If s o x+2"
is increased by As, the extra area has the shape of .....

30 What is wrong with Figure 5.17? It seems to show thatThat area AA is approximately r . So dA/ds = s
dA = 4s ds, which would mean A = J 4s ds = 2s2.

Find the derivatives of the following functions F(x). 31 The cube 0 < x, y, z s has volume V= . The

2 three square faces with x = s or y = s or z = s have total area
xf CoS t dt 2 1S cos 3t dt A = . If s is increased by As, the extra volume has
2 That 1 t" dt 4 JS x"dt the shape of . volume AV is approximately

fX2 3 du . So dV/ds =
U 6 Sfx v(u) du

32 The four-dimensional cube 0 < x, y, z, t < s has hyper-
7 jx+1 v(t) dt (a "running average" of v) volume H= . The face with x= s is really a

1 tX . Its volume is V = . The total volume of
8 - v(t) dt (the average of v; use product rule) the four faces with x = s, y = s, z = s, or t = s is

x o When s is increased by As, the extra hypervolume is

1 0 x + 2 AH ; . So dH/ds =
9 - sin 2 t dt 10 x 3t dt

x o 2 x 33 The hypervolume of a four-dimensional sphere is H =
2 4

So 12 jx (df/dt)2 dt -1 r . Therefore the area (volume?) of its three-dimensional
[fo v(u) du] dt surface x 2 +y2 + Z2 + t2 = r2 is_

Jo v(t) dt + Sl v(t) dt 14 Sx v(- t) dt 34 The area above the parabola y = x 2 from x = 0 to x = 1
fXX sin 2t dt 16 Ix sin t dt is 4. Draw a figure with horizontal strips and integrate.

18 J(x) 5 dt 35 The wedge in Figure (a) has area ½r2 dO. One reason: It is
17 Sx u(t)v(t) dt f(x) a fraction dO/2n of the total area ,7r2. Another reason: It is

20 dfdt close to a triangle with small base rdO and height19 0osin x sin- t dt x) 
dt Integrating ½r2 dO from 0 = 0 to 0 = gives the area

of a quarter-circle.
21 True or false

2 
If df/dx = dg/dx then f(x) = g(x). 36 A = So - x dx is also the area of a quarter-circle.

If d2 f/dx2 2 Show = d2 why, with a graph and thin rectangles. Calculate thisg/dx then f(x) = g(x) + C.
integral by substituting x = r sin 0 and dx = r cos 0 dO.

If 3 > x then the derivative of fJ v(t) dt is - v(x).
The derivative of J1 v(x) dx is zero. (c)

22 For F(x) = 1Sx sin t dt, locate F(n + Ax) - F(Xi) on a sine (b)graph. Where is F(Ax)- F(0)?

23 Find the function v(x) whose average value between 0 and Sr
x is cos x. Start from fo v(t) dt = x cos x. x
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37 The distance r in Figure (b) is related to 0 by r = 

Therefore the area of the thin triangle is i r 2d0 = 

Integration to 0 = gives the total area 4. 
38 The x and y coordinates in Figure (c) add to 
r cos 0 +r sin 0 = .Without integrating explain why 

39 The horizontal strip at height y in Figure (d) has width dy 
and length x = . So the area up to y =2 is . 
What length are the vertical strips that give the same area? 

40 Use thin rings to find the area between the circles r =2 
and r =3. Draw a picture to show why thin rectangles would 
be extra difficult. 

41 The length of the strip in Figure (e) is approximately 
. The width is . Therefore the triangle has 

area da (do you get i?). 

42 The area of the ellipse in Figure (f) is 2zr2. Its derivative 
is 4zr. But this is not the correct perimeter. Where does the 
usual reasoning go wrong? 

43 The derivative of the integral of v(x) is ~ ( x ) .  What is the 
corresponding statement for sums and differences of the num- 
bers vj? Prove that statement. 

44 The integral of the derivative of f(x) is f(x) + C. What is 
the corresponding statement for sums of differences of f,? 
Prove that statement. 

45 Does d2f /dx2 =a(x) lead to (It a(t) dt) dx =f ( I )  -f(O)? 

46 The mountain y = -x2 + t has an area A(t) above the x 
axis. As t increases so does the area. Draw an xy graph of the 
mountain at t = 1. What line gives dA/dt? Show with words 
or derivatives that d 2 ~ / d t 2  >0. 

5.8 Numerical Integration 

This section concentrates on definite integrals. The inputs are y (x )and two endpoints 
a and b. The output is the integral I. Our goal is to find that number
1; y(x)  d x  = I, accurately and in a short time. Normally this goal is achievable-as 
soon as we have a good method for computing integrals. 

Our two approaches so far have weaknesses. The search for an antiderivative 
succeeds in important cases, and Chapter 7 extends that range-but generally f ( x )  
is not available. The other approach (by rectangles) is in the right direction but too 
crude. The height is set by y(x)  at the right and left end of each small interval. The 
right and left rectangle rules add the areas ( A x  times y): 

R ,=(Ax) (y ,+y ,+  -..+y, )  and L n = ( A x ) ( y o + y l +  . - -+y,- , ) .  

The value of y(x)  at the end of interval j is yj .  The extreme left value yo = y(a) enters 
L, . With n equal intervals of length A x  = ( b- a)/n, the extreme right value is y, = 
y(b). It enters R,.  Otherwise the sums are the same-simple to compute, easy to 
visualize, but very inaccurate. 

This section goes from slow methods (rectangles) to better methods (trapezoidal 
and midpoint) to good methods (Simpson and Gauss). Each improvement cuts down 
the error. You could discover the formulas without the book, by integrating x and 
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x2 and x4. The rule R, would come out on one side of the answer, and L, would be
on the other side. You would figure out what to do next, to come closer to the exact
integral. The book can emphasize one key point:

The quality of a formula depends on how many integrals
f 1 dx, f x dx, f x 2 dx, ..., it computes exactly. If f xP dx
is the first to be wrong, the order of accuracy is p.

By testing the integrals of 1, x, x2, ..., we decide how accurate the formulas are.
Figure 5.18 shows the rectangle rules R, and L,. They are already wrong when

y = x. These methods are first-order: p = 1. The errors involve the first power of
Ax-where we would much prefer a higher power. A larger p in (Ax)P means a
smaller error.

n Yn E= E= -• Ax(yj+- 1 -2yj) e=-E
· ·

Yn- 1 Yj+ Yj+1
¥

Y 1

I I
Yj

U I Ii
Ax Ax Ax AxAxAx 

Fig. 5.18 Errors E and e in R. and L, are the areas of triangles.

When the graph of y(x) is a straight line, the integral I is known. The error triangles
E and e have base Ax. Their heights are the differences yj+ 1 - yj. The areas are
'(base)(height), and the only difference is a minus sign. (L is too low, so the error
L - I is negative.) The total error in R. is the sum of the E's:

R, - I = ½Ax(y - Yo) + -.- + ½Ax(y - yn-_1)= Ax(y. - yo). (1)

All y's between Yo and y, cancel. Similarly for the sum of the e's:

L- - I - ½Ax(Yn - Yo) = - Ax[y(b - y(a)]. (2)

The greater the slope of y(x), the greater the error-since rectangles have zero slope.
Formulas (1) and (2) are nice-but those errors are large. To integrate y = x from

a = 0 to b = 1, the error is ½Ax(1 - 0). It takes 500,000 rectangles to reduce this error
to 1/1,000,000. This accuracy is reasonable, but that many rectangles is unacceptable.

The beauty of the error formulas is that they are "asymptotically correct" for all
functions. When the graph is curved, the errors don't fit exactly into triangles. But
the ratio of predicted error to actual error approaches 1. As Ax -+ 0, the graph is
almost straight in each interval-this is linear approximation.

The error prediction ½Ax[y(b) - y(a)] is so simple that we test it on y(x) = x:

I = o  dx n 1 10 100 1000

error R - I= .33 .044 .0048 .00049

error L, - I= -. 67 -. 056 -. 0052 -. 00051

The error decreases along each row. So does Ax = .1, .01, .001, .0001. Multiplying n
by 10 divides Ax by 10. The error is also divided by 10 (almost). The error is nearly
proportional to Ax-typical of first-order methods.

The predicted error is ½Ax, since here y(1) = 1 and y(O) = 0. The computed errors
in the table come closer and closer to ½Ax = .5, .05, .005, .0005. The prediction is the
"leading term" in the actual error.
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The table also shows a curious fact. Subtracting the last row from the row above
gives exact numbers 1, .1, .01, and .001. This is (R, - I) - (L, - I), which is R, - L,.
It comes from an extra rectangle at the right, included in R. but not L,. Its height is
1 and its area is 1, .1, .01, .001.

The errors in R. and L. almost cancel. The average T, = ½(R, + L,) has less error-
it is the "trapezoidal rule." First we give the rectangle prediction two final tests:

n = l n= 10 n = 100 n= 1000

J (x2 - x) dx: errors 1.7 10- ' 1.7 10- 3  1.7 10-5 1.7*10 - 7

J dx/(l0 + cos 2nx): errors -1 10-3 2 . 10-'4 "0" "0"

Those errors are falling faster than Ax. For y = x2 - x the prediction explains why:
y(O) equals y(l). The leading term, with y(b) minus y(a), is zero. The exact errors are

2, dropping from 10-1 to 10- 3 to 10- 5 to 10- 7'(Ax) . In these examples L, is identical
to R. (and also to T,), because the end rectangles are the same. We will see these
((Ax) 2 errors in the trapezoidal rule.

The last row in the table is more unusual. It shows practically no error. Why do
the rectangle rules suddenly achieve such an outstanding success?

The reason is that y(x) = 1/(10 + cos 2nrx) is periodic. The leading term in the error
is zero, because y(O) = y(l). Also the next term will be zero, because y'(0) = y'(1). Every
power of Ax is multiplied by zero, when we integrate over a complete period. So the
errors go to zero exponentially fast.

Personal note I tried to integrate 1/(10 + cos 27rx) by hand and failed. Then I was
embarrassed to discover the answer in my book on applied mathematics. The method
was a special trick using complex numbers, which applies over an exact period.
Finally I found the antiderivative (quite complicated) in a handbook of integrals, and
verified the area 1/-99.

THE TRAPEZOIDAL AND MIDPOINT RULES

We move to integration formulas that are exact when y = x. They have second-
order accuracy. The Ax error term disappears. The formulas give the correct area
under straight lines. The predicted error is a multiple of (Ax) 2. That multiple is found
by testing y = x2-for which the answers are not exact.

The first formula combines R. and L,. To cancel as much error as possible, take
the average !(R, + L,). This yields the trapezoidal rule, which approximates
Sy(x) dx by Tn:

RT.= + ULn= Ax(½yo + yl + Y2 + .. + y.n-1 + yn). (3)

Another way to find T.is from the area of the "trapezoid" below y = x in Figure 5.19a.

T =- Ax I(Yo + )+ - + + 
n + I(Y1 Y2) "'

2 2 1 E= (Ax)2 ( V,, ) e=--I E
Yn 12 "J+ 1J 2

yi
YO

I

j+l j j+ 1
Ax Ax Ax Ax Ax

Fig. 5.19 Second-order accuracy: The error prediction is based on v = x2.
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The base is Ax and the sides have heights yj-l and yj. Adding those areas gives 
+(L,+ R,) in formula (3)-the coefficients of yj combine into f + f = 1. Only the first 
and last intervals are missing a neighbor, so the rule has fyo and fy,. Because 
trapezoids (unlike rectangles) fit under a sloping line, T,, is exact when y = x. 

What is the difference from rectangles? The trapezoidal rule gives weight fAx to 
yo and y,. The rectangle rule R, gives full weight Ax to y, (and no weight to yo). 
R, - T,is exactly the leading error fy, -+yo. The change to T,,knocks out that error. 

Another important formula is exact for y(x) = x. A rectangle has the same area as 
a trapezoid, if the height of the rectangle is halfway between yj - and yj . On a straight 
line graph that is achieved at the midpoint of the interval. By evaluating y(x) at the 
halfway points fAx, AX, AX, ..., we get much better rectangles. This leads to the 
midpoint rule Mn: 

f(4)+3+2+1+(0)fx dx, trapezoids give 1; For = 8. The midpoint rule gives 
4 + 4+ 3 + 3= 8, again correct. The rules become different when y = x2, because y,,, 
is no longer the average of yo and y,. Try both second-order rules on x2: 

I = x2 dx n =  1 10 100 

error T,- I = 116 l/600 1/60000 

error M ,  - I = -1112 -1/1200 -1/120000 

The errors fall by 100 when n is multiplied by 10. The midpoint rule is twice as good 
(- 1/12 vs. 116). Since all smooth functions are close to parabolas (quadratic approxi- 
mation in each interval), the leading errors come from Figure 5.19. The trapezoidal 
error is exactly when y(x) is x2 (the 12 in the formula divides the 2 in y'): 

For exact error formulas, change yt(b) - yt(a) to (b - a)yM(c).The location of c is 
unknown (as in the Mean Value Theorem). In practice these formulas are not much 
used-they involve the pth derivative at an unknown location c. The main point 
about the error is the factor AX)^. 

One crucial fact is easy to overlook in our tests. Each value of y(x) can be extremely 
hard to compute. Every time a formula asks for yj, a computer calls a subroutine. The 
goal of numerical integration is to get below the error tolerance, while calling for a 
minimum number of values of y. Second-order rules need about a thousand values for 
a typical tolerance of The next methods are better. 

FOURTH-ORDER RULE: SIMPSON 

The trapezoidal error is nearly twice the midpoint error (116 vs. -1/12). So a 
good combination will have twice as much of M, as T,. That is Simpson's rule: 

Multiply the midpoint values by 213 = 416. The endpoint values are multiplied by 
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2/6, except at the far ends a and b (with heights Yo and y,). This 1-4-2-4-2-4-1
pattern has become famous.

Simpson's rule goes deeper than a combination of T and M. It comes from a
parabolic approximation to y(x) in each interval. When a parabola goes through yo,
Yl/2, yl, the area under it is !Ax(yo + 4 yl/2+ YI). This is S over the first interval. All
our rules are constructed this way: Integrate correctly as many powers 1, x, x 2, ... as
possible. Parabolas are better than straight lines, which are better than flat pieces.
S beats M, which beats R. Check Simpson's rule on powers of x, with Ax = 1/n:

n = 1 n= 10 n= 100

error if y = x2  0 0 0

error if y = x3  0 0 0

error if y = x4  8.33 -10-3 8.33 10-7 8.33.10-11

Exact answers for x2 are no surprise. S, was selected to get parabolas right. But the
zero errors for x3 were not expected. The accuracy has jumped to fourth order, with
errors proportional to (Ax)4. That explains the popularity of Simpson's rule.

To understand why x3 is integrated exactly, look at the interval [-1, 1]. The odd
function x3 has zero integral, and Simpson agrees by symmetry:

Sx3 dx = x = 0 and [(-1)3 +4(0)3+ 13 =0. (8)

4
2 6 1 1

yn 4 6 2

Y( 2

G

.I j+1I j j+1
Ax Ax Ax Ax Ax/f-

Fig. 5.20 Simpson versus Gauss: E = c(Ax)4 (yj'i 1 - yj") with cs = 1/2880 and c, = - 1/4320.

THE GAUSS RULE (OPTIONAL)

We need a competitor for Simpson, and Gauss can compete with anybody. He
calculated integrals in astronomy, and discovered that two points are enough for a
fourth-order method. From -1 to 1 (a single interval) his rule is

I_ y(x) dx ?% y(- 1//3) + y(1/-,3).  (9)

Those "Gauss points" x = - 1/,3 and x = 1/,3 can be found directly. By placing
them symmetrically, all odd powers x, x3, ... are correctly integrated. The key is in
y = x2 , whose integral is 2/3. The Gauss points - x, and + XG get this integral right:

2 1 1

3 - (- xG)2 (X )2, SO x = 3 and x, = +

Figure 5.20c shifts to the interval from 0 to Ax. The Gauss points are
(1 ± 1/ •) Ax/2. They are not as convenient as Simpson's (which hand calculators
prefer). Gauss is good for thousands of integrations over one interval. Simpson is
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good when intervals go back to back-then Simpson also uses two y's per interval. 
For y = x4, you see both errors drop by lop4  in comparing n = I to n = 10: 

I = 1; x4 dx Simpson error 8.33 l o p 3  8.33 l o p 7  

Gauss error - 5.56 - 5.56 l o p 7  

DEFINITE INTEGRALS ON A CALCULATOR 

It is fascinating to know how numerical integration is actually done. The points are 
not equally spaced! For an integral from 0 to 1, Hewlett-Packard machines might 
internally replace x by 3u2 - 2u3 (the limits on u are also 0 and 1). The machine 
remembers to change 

1: 5 
dx. For example, 

becomes 

Algebraically that looks worse-but the infinite value of l/& at x = 0 disappears 
at u = 0. The differential 6(u - u2) du was chosen to vanish at u = 0 and u = 1. We 
don't need y(x) at the endpoints-where infinity is most common. In the u variable 
the integration points are equally spaced-therefore in x they are not. 

When a difficult point is inside [a, b], break the interval in two pieces. And chop 
off integrals that go out to infinity. The integral of epx2 should be stopped by 
x = 10, since the tail is so thin. (It is bad to go too far.) Rapid oscillations are among 
the toughest- the answer depends on cancellation of highs and lows, and the calcula- 
tor requires many integration points. 

The change from x to u affects periodic functions. I thought equal spacing was 
good, since 1/(10 + cos 2nx) was integrated above to enormous accuracy. But there 
is a danger called aliasing. If sin 8nx is sampled with Ax = 118, it is always zero. A 
high frequency 8 is confused with a low frequency 0 (its "alias" which agrees at the 
sample points). With unequal spacing the problem disappears. Notice how any integ- 
ration method can be deceived: 

Ask for the integral of y = 0 and specify the accuracy. The calculator 
samples y at x,,  . . . , x,. (With a PAUSE key, the x's may be displayed.) 
Then integrate Y(x) = (x - x , ) ~  (x - x , )~ .  That also returns the 
answer zero (now wrong), because the calculator follows the same steps. 

On the HP-28s you enter the function, the endpoints, and the accuracy. The 
variable x can be named or not (see the margin). The outputs 4.67077 and 4.7E-5 are 
the requested integral ex dx and the estimated error bound. Your input accuracy 
.00001 guarantees 

3 :  ' E X P ( X 1 '  true y - computed y 3 :  ( ( E X P I )  
2 :  € X  1 2)  relative error in y = < .00001. 2 :  € 1  2 3  computed y 
1 : .00001 1 : .00001 

The machine estimates accuracy based on its experience in sampling y(x). If you 
guarantee ex within .00000000001, it thinks you want high accuracy and takes longer. 

In consulting for HP, William Kahan chose formulas using 1, 3, 7, 15, . . . sample 
points. Each new formula uses the samples in the previous formula. The calculator 
stops when answers are close. The last paragraphs are based on Kahan's work. 
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TI-81 Program to Test the Integration Methods L, R, T, M ,  S 

Prgm1:NUM I N T  
: D i s p  " A = "  
: I n p u t  A 
:D iS P  IIB=~I 
: I n p u t  B 
: L b l  N 
: D i s p  "N="  
: I n p u t  N 
:(B-A)  /N+D 

:D/2+H 
:A+X 
: Y p L  
: l + J  
:@+R 
:8 + M  
:LbL  I 
:X+H+X 
:M+Yl  -+M 

:A+JD-,X 
: R + Y l + R  
: IS>(J ,N)  
: G o t o  1 
: ( L + R - Y l ) D + L  
:R D + R  
:MD+M 
:(L+R)  /2+T 
:( 2 M t T )  /3+S 

: D i s p  "L, R, M, 
T, S "  

: D i s p  L 
: D i s p  R 
: D i s p  M 
: D i s p  T 
: D i s p  S 
:Pause  
: G o t o  N 

Place the integrand y(x)  in the Y 1 position on the Y = function edit screen. Execute 
this program, indicating the interval [A, B ]  and the number of subintervals N. Rules 
L and R and M use N evaluations of y(x). The trapezoidal rule uses N + 1 and 
Simpson's rule uses 2N + 1. The program pauses to display the results. Press ENTER 
to continue by choosing a different N. The program never terminates (only pauses). 
You break out by pressing ON. Don't forget that IS, G o t o,  ... are on menus. 

5.8 EXERCISES 
Read-through questions 

To integrate y(x), divide [a, b] into n pieces of length 
Ax = a . R, and L, place a b over each piece, 
using the height at the right or c endpoint: 
R, =Ax(yl + +y,) and L, = d . These are e 
order methods, because they are incorrect for y = f .The 
total error on [0,1] is approximately Q . For y =cos ax 
this leading term is h . For y =cos 2nx the error is very 
small because [0, 1) is a complete i . 

A much better method is T,=$Rn+ i = 
Ax[iyo + k y1 + +L y , ] .  This m rule is 

n -order because the error for y =x is o . The error 
for y =x2 from a to b is P . The CI rule is twice as 
accurate, using M, =Ax[ r 1. 

Simpson's method is S, =$Mn+ s . It is t -order, 
because the powers u are integrated correctly. The 
coefficients of yo, yIl2, yl are v times Ax. Over three 
intervals the weights are Ax16 times 1-4- w . Gauss uses 

points in each interval, separated by ~ x / f i  For a 
method of order p the error is nearly proportional to Y . 
1 What is the difference L, - T,?Compare with the leading 

error term in (2). 

2 If you cut Ax in half, by what factor is the trapezoidal 
error reduced (approximately)? By what factor is the error in 
Simpson's rule reduced? 

3 Compute Rn and Ln for x3 dx and n = l,2,10. Either 
verify (with computer) or use (without computer) the formula 
l 3  +23 + +n3 = tn2(n+ 

4 One way to compute T,, is by averaging i(L, +R,). 
Another way is to add iyo +yl + +iy,. Which is more 
efficient? Compare the number of operations. 

5 Test three different rules on I = x4 dx for n =2 4 ,  8. 

6 Compute n to six places as 4 1; dx/(l +x2), using any 
rule. 

7 Change Simpson's rule to Ax($ yo +4yllz+4y ) in each 
interval and find the order of accuracy p. 

8 Demonstrate superdecay of the error when 1/(3 + sin x) is 
integrated from 0 to 2a. 

9 Check that (A~)~ (y j+ ,  -yj)/12 is the correct error for 
y = 1 and y =x and y =x2 from the first trapezoid (j=0). 
Then it is correct for every parabola over every interval. 

10 Repeat Problem 9 for the midpoint error 
- (A~)~(y j+-yj)/24. Draw a figure to show why the rectan- 
gle M has the same area as any trapezoid through the mid- 
point (including the trapezoid tangent to y(x)). 

11 In principle sin2 x dx/x2 =n. With a symbolic alge- 
bra code or an HP-28S, how many decimal places do you 
get? Cut off the integral to I!,, and test large and small A. 

12 These four integrals all equal n: 
m - 112 dx 

=dxLJ& I-rn 1'-
x l + x  

(a) Apply the midpoint rule to two of them until 
n x 3.1416. 
(b) Optional: Pick the other two and find a x 3. 

x 
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13 To compute in 2 = dx/x = .69315 with error less than 22 Calculate 1 e-x2 dx with ten intervals from 0 to 5 and 0 
.001, how many intervals should T, need? Its leading error is to 20 and 0 to 400. The integral from 0 to m is f &. What 
 AX)^ [yt(b) - yt(a)]/12. Test the actual error with y = llx. is the best point to chop off the infinite integral? 

14 Compare T. with Mn for I; & dx and n = 1,10,100. The 23 The graph of y(x) = 1/(x2 + 10- l o )  has a sharp spike and 
error prediction breaks down because yt(0) = oo. a long tail. Estimate 1; y dx from Tlo and Tloo (don't expect 

much). Then substitute x = 10- tan 8, dx = sec2 8 d0 
15 Take f (x) = 1; y(x) dx in error formula 3R to prove that and integrate lo5 from 0 to 44. 

y(x) dx - y(0) Ax is exactly f (AX)~Y'(C) for some point c. 
24 Compute Jx - nl dx from T, and compare with the 

16 For the periodic function y(x) = 1/(2 + cos 6zx) from -1 divide and conquer method of separating 1; lx - n( dx from 
to 1, compare T and S and G for n = 2. Ix - nl dx. 

1; 25 Find a, b, c so that y = ax2 + bx trapezoi- + c equals 1,3,7 at 17 For I = dx, the leading error in the 
. x = = 0, 3, 1 (three equations). Check that 4 1 defy the prediction. + 7 dal rule is Try n 2,4,8 to 8 3 + 4 

equals 1; y dx. 
18 Change to x = sin 8, ,/- = cos 8, dx = cos 8 dB, and 

26 Find c in S - I =  AX)^ [yftt(l) - yt"(0)] by taking y = x4 repeat T, on j;l2 cos2 8 dB. What is the predicted error after 
and Ax = 1. the change to O? 
27 Find c in G - I = ~(Ax)~[y"'(l) - y"'(- 1)] by taking 

19 Write down the three equations Ay(0) + By($) + Cy(1) = I 
1; I: 1; y = x4, Ax = 2, and G = (- l ~ f l ) ~  + (l/fi14. 

for the three integrals I = 1 dx, x dx, x2 dx. Solve for 
A, B, C and name the rule. 28 What condition on y(x) makes L, = R, = T, for the 

+ 
integral y(x) dx? 

20 Can 
+ 

you invent a rule using Ay, Byll4 + CyIl2 + 
Dy3/, Ey, to reach higher accuracy than Simpson's? 29 Suppose y(x) is concave up. Show from a picture that the 

trapezoidal answer is too high and the midpoint answer is 
21 Show that T, is the only combination of L, and R, that too low. How does y" > 0 make equation (5) positive and (6) 
has second-order accuracy. negative? 
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