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Techniques of Integration 


Chapter 5 introduced the integral as a limit of sums. The calculation of areas was 
started-by hand or computer. Chapter 6 opened a different door. Its new functions 
ex and In x led to differential equations. You might say that all along we have been 
solving the special differential equation dfldx = v(x). The solution is f = 1 v(x)dx. But 
the step to dyldx = cy was a breakthrough. 

The truth is that we are able to do remarkable things. Mathematics has a language, 
and you are learning to speak it. A short time ago the symbols dyldx and J'v(x)dx 
were a mystery. (My own class was not too sure about v(x) itself-the symbol for a 
function.) It is easy to forget how far we have come, in looking ahead to what is next. 

I do want to look ahead. For integrals there are two steps to take-more functions 
and more applications. By using mathematics we make it live. The applications are 
most complete when we know the integral. This short chapter will widen (very much) 
the range of functions we can integrate. A computer with symbolic algebra widens it 
more. 

Up to now, integration depended on recognizing derivatives. If v(x) = sec2x then 
f(x) = tan x. To integrate tan x we use a substitution:, 

I!&dx.=-1"-- - In u = - In cos x. 
U 

What we need now ,are techniques for other integrals, to change them around until 
we can attack them. Two examples are j x cos x dx and 5 ,/- dx, which are not 
immediately recognizable. With integration by parts, and a new substitution, they 
become simple. 

Those examples indicate where this chapter starts and stops. With reasonable effort 
(and the help of tables, which is fair) you can integrate important functions. With 
intense effort you could integrate even more functions. In older books that extra 
exertion was made-it tended to dominate the course. They had integrals like 

which we could work on if we had to. Our time is too 
valuable for that! Like long division, the ideas are for us and their intricate elaboration 
is for the computer. 

Integration by parts comes first. Then we do new substitutions. Partial fractions 
is a useful idea (already applied to the logistic equation y' = cy - by2). In the last 
section x goes to infinity or y(x) goes to infinity-but the area stays finite. These 
improper integrals are quite common. Chapter 8 brings the applications. 

,/-,l)dx/+J(x 
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7.1 Integration by Parts

There are two major ways to manipulate integrals (with the hope of making them
easier). Substitutions are based on the chain rule, and more are ahead. Here we
present the other method, based on the product rule. The reverse of the product rule,
to find integrals not derivatives, is integration by parts.

We have mentioned J cos2x dx and J In x dx. Now is the right time to compute
them (plus more examples). You will see how J In x dx is exchanged for J 1 dx-a
definite improvement. Also J xex dx is exchanged for J ex dx. The difference between
the harder integral and the easier integral is a known term-that is the point.

One note before starting: Integration by parts is not just a trick with no meaning.
On the contrary, it expresses basic physical laws of equilibrium and force balance.
It is a foundation for the theory of differential equations (and even delta functions).
The final paragraphs, which are completely optional, illustrate those points too.

We begin with the product rule for the derivative of u(x) times v(x):

dv du d
u(x) dx + v(x)d dx - dxd (u(x)v(x)). (1)

Integrate both sides. On the right, integration brings back u(x)v(x). On the left are
two integrals, and one of them moves to the other side (with a minus sign):

u(x) dx = u(x)v(x) - v(x) dx. (2)

That is the key to this section-not too impressive at first, but very powerful. It is
integration by parts (u and v are the parts). In practice we write it without x's:

7A The integration by parts formula is j u dv = uv - Jv du. (3)

The problem of integrating u dv/dx is changed into the problem of integrating
v du/dx. There is a minus sign to remember, and there is the "integrated term" u(x)v(x).
In the definite integral, that product u(x)v(x) is evaluated at the endpoints a and b:

Lb dv du

u 
a 

dx dx u(b)v(b) -- u(a)v(a) - v dx. (4)
dx

The key is in choosing u and v. The goal of that choice is to make 5 v du easier than
j u dv. This is best seen by examples.

EXAMPLE 1 For f In x dx choose u = In x and dv = dx (so v= x):

In xdx = uv - v du = x ln x - x dx.

I used the basic formula (3). Instead of working with In x (searching for an antideriva-
tive), we now work with the right hand side. There x times l/x is 1. The integral of
1 is x. Including the minus sign and the integrated term uv = x In x and the constant
C, the answer is

J In x dx = x In x - x + C. (5)

For safety, take the derivative. The product rule gives In x + x(1/x) - 1, which is In x.
The area under y = In x from 2 to 3 is 3 In 3 - 3 - 2 In 2 + 2.
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To repeat: We exchanged the integral of In x for the integral of 1. 

EXAMPLE 2 For 5 x cos x dx choose u = x and dv = cos x dx (so v(x) = sin x): 

Again the right side has a simple integral, which completes the solution: 

J'xcos x d x = x  sin x+cos  x +  C. (7) 

Note The new integral is not always simpler. We could have chosen u = cos x and 
dv = x dx. Then v = fx2. Integration using those parts give the true but useless result 

The last integral is harder instead of easier (x2 is worse than x). In the forward 
direction this is no help. But in the opposite direction it simplifies Sf x2 sin x dx. The 
idea in choosing u and v is this: Try to give u a nice derivative and du a nice integral. 

EXAMPLE 3 For J (cos x ) ~dx choose u = cos x and dv = cos x dx (so v = sin x): 

x ) ~ ~ x  dx.~ ( C O S  = uv - J v du = cos x sin x + 1(sin x ) ~  

The integral of (sin x)' is no better and no worse than the integral of (cos x ) ~ .  But we 
never see (sin x ) ~  without thinking of 1 - (cos x ) ~ .  So substitute for (sin x ) ~ :  

J'(cos x ) ~dx = cos x sin x + J' 1 dx - J (cos x)2 dx. 

The last integral on the right joins its twin on the left, and J' 1 dx = x: 

2 J (cos x ) ~  dx = cos x sin x + x. 

Dividing by 2 gives the answer, which is definitely not gcos x ) ~ .  Add any C: 

{(cos x)' dx = f (cos x sin x + x) + C. (8) 

Question Integrate (cos x)' from 0 to 2n. Why should the area be n? 
Answer The definite integral is gcos x sin x + x)]:". This does give n. That area can 
also be found by common sense, starting from (cos x ) ~  =+ (sin x ) ~  1. The area under 
1 is 2n. The areas under (cos x ) ~  are the same. So each one is n. and (sin x ) ~  

EXAMPLE 4 Evaluate J tan-'x dx by choosing u = tan-'x and v = x: 

Stan-'x dx= uv- Sv d u = x  tan-'x- 

The last integral has w = 1 + x2 below and almost has dw = 2x dx above: 

Substituting back into (9) gives J tan- 'x dx as x tan- 'x - f ln(1 + x2). All the familiar 
inverse functions can be integrated by parts (take v = x, and add "+ C" at the end). 

Our final example shows how two integrations by parts may be needed, when the 
first one only simplifies the problem half way. 

EXAMPLE 5 For j x2exdx choose u = x2 and dv = exdx (so v = ex): 

j x2exdx= uv - v du = x2ex- ex(2x dx). 
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The last integral involves xex. This is better than 2x ex, but it still needs work:

f xexdx = uv - fv du = xex - exdx (now u = x). (11)

Finally ex is alone. After two integrations by parts, we reach I exdx. In equation (11),
the integral of xex is xex - ex. Substituting back into (10),

f x2exdx = x2ex - 2[xex - ex] + C. (12)

These five examples are in the list of prime candidates for integration by parts:

xnex, x"sin x, x"cos x, x"ln x, exsin x, excos x, sin-'x, tan-x, ....

This concludes the presentation of the method-brief and straightforward.
Figure 7.1a shows how the areas f u dv and I v du fill out the difference between the
big area u(b)v(b) and the smaller area u(a)v(a).

Integration by 

v(x) 8(x) " = v(0) 6(x)
red area = large box s
- small box - gray area

= V2 U2 - v1u 1 - fvdu

V(X)

X
0 vi  v2  0

Fig. 7.1 The geometry of integration by parts. Delta function (area 1) multiplies v(x) at x = 0.

In the movie Stand and Deliver, the Los Angeles teacher Jaime Escalante computed
J x2sin x dx with two integrations by parts. His success was through exercises-plus
insight in choosing u and v. (Notice the difference from f x sin x2 dx. That falls the
other way-to a substitution.) The class did extremely well on the Advanced Place-
ment Exam. If you saw the movie, you remember that the examiner didn't believe
it was possible. I spoke to him long after, and he confirms that practice was the key.

THE DELTA FUNCTION

From the most familiar functions we move to the least familiar. The delta function is
the derivative of a step function. The step function U(x) jumps from 0 to 1 at x = 0.
We write 6(x) = dU/dx, recognizing as we do it that there is no genuine derivative at
the jump. The delta function is the limit of higher and higher spikes-from the
"burst of speed" in Section 1.2. They approach an infinite spike concentrated at a
single point (where U jumps). This "non-function" may be unconventional--it is
certainly optional-but it is important enough to come back to.

The slope dU/dx is zero except at x = 0, where the step function jumps. Thus
6(x) = 0 except at that one point, where the delta function has a "spike." We cannot
give a value for 6 at x = 0, but we know its integral across the jump. On every interval
from - A to A, the integral of dU/dx brings back U:

-A U(x)] (13)6(x) dx= - dx d= A = 1. 

"The area under the infinitely tall and infinitely thin spike 6(x) equals 1."
So far so good. The integral of 6(x) is U(x). We now integrate by parts for a crucial

purpose-tofind the area under v(x)6(x). This is an ordinary function times the delta
function. In some sense v(x) times 6(x) equals v(O) times 6(x)-because away from
x = 0 the product is always zero. Thus ex6(x) equals 6(x), and sin x 6(x) = 0.

U
2

U
1

0
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The area under v(x)6(x) is v(0)-which integration by parts will prove:

7B The integral of v(x) times 6(x) is fA_ v(x)6(x)dx = v(0).

The area is v(0) because the spike is multiplied by v(O)-the value of the smooth
function v(x) at the spike. But multiplying infinity is dangerous, to say the least. (Two
times infinity is infinity). We cannot deal directly with the delta function. It is only
known by its integrals! As long as the applications produce integrals (as they do), we
can avoid the fact that 6 is not a true function.

The integral of v(x)6(x)= v(x)dU/dx is computed "by parts:"

v(x)6(x) dx = v(x)U(x)] A - U(x) dx. (14)
-A - -A dx

Remember that U = 0 or U = 1. The right side of (14) is our area v(O):

A dv
v(A) . 1 - 1 dx = v(A) - (v(A) - v(O))= v(O). (15)

o dx

When v(x) = 1, this answer matches f 6dx = 1. We give three examples:

S2 cos x 6(x) dx = 1 f6
5 (U(x) + 6(x))dx = 7 1_1 (6(x))2dx = c00.

A nightmare question occurs to me. What is the derivative of the delta function?

INTEGRATION BY PARTS IN ENGINEERING

Physics and engineering and economics frequently involve products. Work is force
times distance. Power is voltage times current. Income is price times quantity. When
there are several forces or currents or sales, we add the products. When there are
infinitely many, we integrate (probably by parts).

I start with differential equations for the displacement u at point x in a bar:

dv du

dx S= f(x) with v(x) = k dx (16)

This describes a hanging bar pulled down by a forcef(x). Each point x moves through
a distance u(x). The top of the bar is fixed, so u(0)= 0. The stretching in the bar is
du/dx. The internal force created by stretching is v = k du/dx. (This is Hooke's law.)
Equation (16) is a balance of forces on the small piece of the bar in Figure 7.2.

0

W
Fig. 7.2 Difference in internal force balances external force

- Av =fAx or -dv/dx =f(x)

v = W at x = 1 balances hanging weight

286
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7.1 Integrationby Paits 

EXAMPLE 6 Supposef(x) = F, a constant force per unit length. We can solve (16): 

V ( X )  = -Fx + C and ku(x)= -f FX' + C x  + D. (17) 

The constants C and D are settled at the endpoints (as usual for integrals). At x = 0 
we are given u = O  so D = O .  At x =  1 we are given v =  W so C =  W +F. Then v(x) 
and u(x)give force and displacement in the bar. 

To see integration by parts, multiply -dvldx = f(x) by u(x)and integrate: 

] f(x)u(x) dx = - ] u(x) dx = - u(x)v(x)]i+ ] v(x) dx.  
0 0 dx o dx 

The left side is force times displacement, or external work. The last term is internal 
force times stretching-or internal work. The integrated term has u(0)= 0-the fixed 
support does no work. It also has -u( l )W,  the work by the hanging weight. The 
balance of forces has been replaced by a balance of work. 

This is a touch of engineering mathematics, and here is the main point. Integration 
by parts makes physical sense! When -dvldx = f is multiplied by other functions- 
called test functions or virtual displacements-then equation (18) becomes the 
principle of virtual work. It is absolutely basic to mechanics. 

7.1 EXERCISES 
Read-through questions 9 l e X s i n x d x  10 jexcos x dx 

Integration by parts is the reverse of the a rule. It [9 and 10 need two integrations. I think ex can be u or v.] 
changes u dv into b minus c . In case u = x and 11 j eax sin bx dx 12 jxe-"dx
dv = eZxdx, it changes 1xe2'dx to d minus e . The 
definite integral ji xeZxdx becomes f minus 9 . 13 J sin(1n x) dx 14 cos(1n x) dx 

In choosing u and dv, the h of u and the i of 15 5 (In ~ ) ~ d x  16 j x21nxdx  
dvldx should be as simple as possible. Normally In x goes into 17 1sin- 'X dx 18 1cos"(2x) dx

and e" goes into k . Prime candidates are u = x or 
x 2 a n d v = s i n x o r  I or m .Whenu=x2weneed  19 j x  tan-'x dx 

n integrations by parts. For 1 sin- 'x dx, the choice dv = 
20 1 x2 sin x dx (from the movie) 

dx leads to o minus P . 
21 jx3cos x dx 22 j x3 sin x dx 

If U is the unit step function, dU/dx = S is the unit q 
function. The integral from -A to A is U(A) -U(- A) = 23 j x3exdx 24 1x sec'lx dx 

r . The integral of v(x)S(x) equals s . The integral 25 1 x sec2x dx 26 1x cosh x dx 
jLl cos x S(x)dx equals t . In engineering, the balance of 
forces -dv/dx = f is multiplied by a displacement u(x) and 
integrated to give a balance of u . Compute the definite integrals 27-34. 

27 ln x dx 1; 28 1; & dx (let u = A) 
Integrate 1-16, usually by parts (sometimes twice). 29 1; x e""dx 30 j; ln(x2) dx 

1 x sin x dx 2 jxe4"dx 31 [E x cos x dx 32 xsin x dx 

33 1: ln(x2+ 1)dx 34 g2x2 sin x dx, 3 jxe-'dx 4 x cos 3x dx 

5 x2 cos x dx (use Problem 1) In 35-40 derive "reduction formulas" from higher to lower 
powers. , 

8 j x2 e4x dx (use Problem 2) 35 xnexdx= xnex-n j xn- -'eXdx 
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37 lxncos  x dx=xnsin x -n  1xn-'sin x dx 

38 1xnsin x dx = 

39 1(ln x)"dx =x(ln x)" -n 1(ln x)"- ldx 

41 How would you compute I x sin x exdx using Problem 9? 
Not necessary to do it. 

42 How would you compute I x ex tan- 'x dx? Don't do it. 

43 (a) Integrate 1x3sin x2dx by substitution and parts. 
(b) The integral xnsin x2dx is possible if n is . 

44-54 are about optional topics at the end of the section. 

44 For the delta function 6(x) find these integrals: 

(a) J! ,e2xS(x)dx (b) j), v(x)6(x)dx (c) cos x 6(x)dx. 

45 Solve dyldx = 36(x) and dyldx = 36(x)+ y(x). 

46 Strange fact: 6(2x) is diflerent from 6(x). Integrate them 
both from -1 to 1. 

47 The integral of 6(x) is the unit step U(x). Graph the next 
integrals R(x) =I U(x)dx and Q(x) =I R(x)dx. The ramp R 
and quadratic spline Q are zero at x = 0. 

48 In 6(x -4),the spike shifts to x =f. It is the derivative of 
the shifted step U(x -3). The integral of v(x)d(x -3) equals 
the value of v at x =3. Compute 

(a) 6(x -f)dx; (b) 1; ex6(x-4)dx; 

( 4  I! I 6(x)6(x-t)dx. , 

49 The derivative of 6(x) is extremely singular. It is a "dipole" 
known by its integrals. Integrate by parts in .(b) and (c): 

50 Why is I!, U(x)6(x)dx equal to f? (By parts.) 

51 Choose limits of integration in v(x)=J f(x)dx so that 
dv/dx= -f(x) and v = O  at x =  1. 

52 Draw the graph of v(x) if v(1) =0 and -dv/dx =.f(x): 

(a)f = x; (b)f = U(x -3); (c)f = S(x -3). 

53 What integral u(x) solves k duldx = v(x) with end con-
dition u(O)=O? Find u(x) for the three v's (not f's) in 
Problem 52, and graph the three u's. 

54 Draw the graph of AUlAx = [U(x + Ax) -U(x)]/Ax. 
What is the area under this graph? 

Problems 55-62 need more than one integration. 

55 Two integrations by parts lead to V = integral of v: 

I uv'dx = uv - Vu' + I Vu"dx. 

Test this rule on 1x2sin x dx. 

56 After n integrations by parts, 1u(dv/dx)dx becomes 

-uv - U'"V(~ ,  + u ' ~ ' v ( ~ ,  +(- 1)" 1u'"'u(,- ,,dx. 

dn)is the nth derivative of u, and v(,, is the nth integral of v. 
Integrate the last term by parts to stretch this formula to 
n + 1 integrations. 

57 Use Problem 56 to find [x3exdx. 

58 From f(x) -f(0) =[tf '(t)dt, integrate by parts (notice dt 
not dx) to reach f(x) =f(0) +f '(0)x + J","(t)(x - t)dt. Con- 
tinuing as in Problem 56 produces Taylor's formula: 

1
f ( x ) = f ( 0 ) + f 1 ( O ) x + - f " ( 0 ) x 2 + . - +  dt.

2! n! 

59 What is the difference between 1; uw"dx and I; u"w dx? 

60 compute the areas A =[; In x dx and B =1; eY dy. Mark 
them on the rectangle with corners (0, 0), (e, 0), (e, I), (0, 1). 

61 Find the mistake. I don't believe ex cosh x = ex sinh x: 

= ex cosh x -exsinh x + ex sinh x dx. 

62 Choose C and D to make the derivative of 
C eaXcos bx + D eaxsin bx equal to eaXcos bx. Is this easier 
than integrating eaxcos hx twice by parts? 

7.2 Trigonometric Integrals 

The next section will put old integrals into new forms. For example x2,/-' dx 
will become jsin20 cos20 dB. That looks simpler because the square root is gone. But 
still sin20 cos28 has to be integrated. This brief section integrates any product of shes 
and cosines and secants and tangents. 

There are two methods to choose from. One uses integration by parts, the other 
is based on trigonometric identities. Both methods try to make the integral easy (but 
that may take time). We follow convention by changing the letter 8 back to x. 
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Notice that sin4x cos x dx is easy to integrate. It is u4du. This is the goal in 
Example l-to separate out cos x dx. It becomes du, and sin x is u. 

EXAMPLE I j sin2x cos3x dx (the exponent 3 is odd) 

Solution Keep cos x dx as du. Convert the other cos2x to 1 - sin2x: 

EXAMPLE 2 5 sin5x dx (the exponent 5 is odd) 

Solution Keep sin x dx and convert everything else to cosines. The conversion is 
always based on sin2x+ cos2x= 1: 

j ( l  - c o ~ ~ x ) ~ s i nx dx = !(I- 2 cos2x + cos4x) sin x dx. 

Now cos x is u and -sin x dx is du. We have !(- 1 + 2u2 - u4)du. 

General method for 5 sinmx cosnx dx, when m or n is odd 

If n is odd, separate out a single cos x dx. That leaves an even number of cosines. 
Convert them to sines. Then cos x dx is du and the sines are u's. 

If m is odd, separate out a single sin x dx as du. Convert the rest to cosines. 
If m and n are both odd, use either method. 
If m and n are both even, a new method is needed. Here are two examples. 

EXAMPLE 3 5 cos2x dx (m = 0,n = 2, both even) 

There are two good ways to integrate cos2x, but substitution is not one of them. If 
u equals cos x, then du is not here. The successful methods are integration by parts 
and double-angle formulas. Both answers are in equation (2) below-I don't see 
either one as the obvious winner. 

Integrating cos2x by parts was Example 3 of Section 7.1. The other approach, by 
double angles, is based on these formulas from trigonometry: 

cos2x= f(1 + cos 2x) sin2x= f(1- cos 2x) (1) 

The integral of cos 2x is 5 sin 2x. So these formulas can be integrated directly. They 
give the only integrals you should memorize-either the integration by parts form, 
or the result from these double angles: 

cos2x dx equals )(x + sin x cos x) or )x + 4sin 2x (plus C). (2) 

1sin2x dx equals $(x - sin x cos x) or f x -& sin 2x (plus C). (3) 

EXAMPLE 4 1cos4x dx (m = 0,n = 4, both are even) 

Changing cos2x to 1 - sin2x gets us nowhere. All exponents stay even. Substituting 
u = sin x won't simplify sin4x dx, without du. Integrate by parts or switch to 2x. 

First solution Integrate by parts. Take u = cos3x and dv = cos x dx: 

1(cos3x)(cos x dx) = uv - j v du = cos3x sin x - j (sin x)(- 3 cos2x sin x dx). 

The last integral has even powers sin2x and cos2x. This looks like no progress. 
Replacing sin2x by 1 - cos2x produces cos4x on the right-hand side also: 

J cos4x dx = cos3x sin x + 3 5 cos2x(l - cos2x)dx. 
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Always even powers in the integrals. But now move 3 cos4x dx to the left side: 

Reduction 4 5 cos4x dx = cos3x sin x + 3 cos2x dx. (4) 

Partial success-the problem is reduced from cos4x to cos2x. Still an even power, 
but a lower power. The integral of cos2x is already known. Use it in equation (4): 

I cos4x dx = $ cos3x sin x + 3 f (x + sin x cos x) + C. (5 )  

Second solution Substitute the double-angle formula cos2x = 3 + 3 cos 2x: 

cos4x dx = 5 (f + f cos 2x)'dx = I (1 + 2 cos 2x + cos2 2x)dx. 

Certainly I dx = x. Also 2 I cos 2x dx = sin 2x. That leaves the cosine squared: 

I cos22x = I f (1 + cos 4x)dx = f x  + sin 4x + C. 

The integral of cos4x using double angles is 

$[x + sin 2x + f x  + $sin 4x1 + C. 

That solution looks different from equation (S), but it can't be. There all angles were 
x, here we have 2x and 4x. We went from cos4x to cos22x to cos 4x, which was 
integrated immediately. The powers were cut in half as the angle was doubled. 

Double-angle method for I sinmx cosnx dx, when m and n are even. 

Replace sin2x by f (1 - cos 2x) and cos2x by & I +  cos 2x). The exponents drop to 
m/2 and n/2. If those are even, repeat the idea (2x goes to 4x). If m/2 or n/2 is odd, 
switch to the "general method" using substitution. With an odd power, we have du. 

EXAMPLE 5 (Double angle) I sin2x cos2x dx = I i ( l  - cos 2x)(1 + cos 2x)dx. 

This leaves 1 - cos2 2x in the last integral. That is familiar but not necessarily easy. 
We can look it up (safest) or remember it (quickest) or use double angles again: 

x sin 4x 
(1-cos22x)dx=- 1 - - - - C O S ~ X  dx=---  

4 ' I ( : :  ) 8 3 2  + C. 

Conclusion Every sinmx cosnx can be integrated. This includes negative m and n- 
see tangents and secants below. Symbolic codes like MACSYMA or Mathematica 
give the answer directly. Do they use double angles or integration by parts? 

You may prefer the answer from integration by parts (I usually do). It avoids 2x 
and 4x. But it makes no sense to go through every step every time. Either a computer 
does the algebra, or we use a "reduction formula" from n to n - 2: 

Reduction n J cosnx dx = cosn-'x sin x + (n - 1) COS"-~X dx. (7) 

For n = 2 this is I cos2x dx-the integral to learn. For n = 4 the reduction produces 
cos2x. The integral of cos6x goes to cos4x. There are similar reduction formulas for 
sinmx and also for sinmx cosnx. I don't see a good reason to memorize them. 

INTEGRALS WITH ANGLES px AND qx 

Instead of sin8x times cos6x, suppose you have sin 8x times cos 6x. How do you 
integrate? Separately a sine and cosine are easy. The new question is the integral of 
the product: 
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EXAMPLE 6 Find I:" sin 8x cos 6x dx. More generallyfind I:" sin px cos qx dx. 

This is not for the sake of making up new problems. I believe these are the most 
important definite integrals in this chapter (p and q are 0, 1,2, . . .). They may be the 
most important in all of mathematics, especially because the question has such a 
beautiful answer. The integrals are zero. On that fact rests the success of Fourier 
series, and the whole industry of signal processing. 

One approach (the slow way) is to replace sin 8x and cos 6x by powers of cosines. 
That involves cos14x. The integration is not fun. A better approach, which applies to 
all angles px and qx, is to use the identity 

sin px cos qx =f sin(p + q)x +f sin(p - q)x. (8) 

Thus sin 8x cos 6x =f sin 14x +f sin 2x. Separated like that, sines are easy to 
integrate: 

1 cos 14x 1 cos 2x 2"
s in8xcos6xdx= ------ =0.1
lo2" [ I 4 2 2  0 

Since cos 14x is periodic, it has the same value at 0 and 2n. Subtraction gives zero. 
The same is true for cos 2x. The integral of sine times cosine is always zero over a 
complete period (like 0 to 2n). 

What about sin px sin qx and cos px cos qx? Their integrals are also zero, provided 
p is dinerent from q. When p = q we have a perfect square. There is no negative area 
to cancel the positive area. The integral of cos2px or sin2px is n. 

EXAMPLE 7 I:" sin 8x sin 7x dx = 0 and I:" sin2 8x dx = n. 

With two sines or two cosines (instead of sine times cosine), we go back to the 
addition formulas of Section 1.5. Problem 24 derives these formulas: 

sin px sin qx = -4 cos(p + q)x + cos(p - q)x (9) 

cos px cos qx = + cos(p + q)x +9cos(p - q)x. (10) 

With p = 8 and q = 7, we get cos 15x and cos x. Their definite integrals are zero. With 
p = 8 and q = 8, we get cos 16x and cos Ox (which is 1). Formulas (9) and (10) also 
give a factor f .  The integral of f is n: 

1:" sin 8x sin 7x dx = - f1:" cos 15x dx + $I:" cos x dx = 0 + 0 

1:" sin 8x sin 8x dx = - )I:" coCl6x dx + fI:" cos Ox dx = 0 + n 
The answer zero is memorable. The answer n appears constantly in Fourier series. 
No ordinary numbers are seen in these integrals. The case p = q = 1 brings back 

cos2x dx = f + t sin 2x. 

SECANTS AND TANGENTS 

When we allow negative powers m and n, the main fact remains true. All integrals 
I sinmx cosnx dx can be expressed by known functions. The novelty for negative pow- 
ers is that logarithms appear. That happens right at the start, for sin x/cos x and for 
ljcos x (tangent and secant): 

I tan x dx = - I duju = - lnlcos x J  (here u = cos x) 

I sec x dx = duju = lnlsec x + tan xl (here u = sec x + tan x). 
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For higher powers there is one key identity: 1 + tan2x = sec2x. That is the old 
identity cos2x + sin2x= 1 in disguise (just divide by cos2x). We switch tangents to 
secants just as we switched sines to cosines. Since (tan x)' = sec2x and (sec x)' = 
sec x tan x, nothing else comes in. 

EXAMPLE 8 [ tan2x dx = [(sec2x - 1)dx= tan x - x + C.  

EXAMPLE 9 [ tan3x dx = [ tan x(sec2x - 1)dx. 

The first integral on the right is [u du = iu2, with u = tan x. The last integral is 
-[ tan x dx. The complete answer is f(tan x ) ~+ lnlcos x I + C. By taking absolute 
values, a negative cosine is also allowed. Avoid cos x = 0. 

- x)m-2dxEXAMPLE 10 Reduction I(tan x)"dx = ('an x)"'-' I(tan
m-1 

Same idea-separate off (tan x ) ~  as sec2x - 1. Then integrate (tan x)"-'sec2x dx, 
which is urn-'du. This leaves the integral on the right, with the exponent lowered by 
2. Every power (tan x)" is eventually reduced to Example 8 or 9. 

EXAMPLE II [sec3x dx = uv -[ v du = sec x tan x -[ tan2x sec x dx 

This was integration by parts, with u = sec x and v = tan x. In the integral on the 
right, replace tan2x by sec2x - 1 (this identity is basic): 

[ sec3x dx = sec x tan x -[ sec3x dx + [ sec x dx. 

Bring I sec3x dx to the left side. That reduces the problem from sec3x to sec x. 

I believe those examples make the point-trigonometric integrals are computable. 
Every product tanmx secnx can be reduced to one of these examples. If n is even we 
substitute u = tan x. If m is odd we set u = sec x. If m is even and n is odd, use a 
reduction formula (and always use tan2x = sec2x- 1). 

I mention very briefly a completely different substitution u = tan ix .  This seems to 
all students and instructors (quite correctly) to come out of the blue: 

2u 1 - u2 2du
sin x = - and cos x =  - and dx = - (1 1) 1 + u2 1+ u2 1 + u2' 

The x-integral can involve sums as well as products-not only sinmx cosnx but also 
1/(5+ sin x - tan x). (No square roots.) The u-integral is a ratio of ordinary polynomi- 
als. It is done by partial fractions. 

Application of j sec x dx to distance on a map (Mercator projection) 

The strange integral ln(sec x + tan x) has an everyday application. It measures the 
distance from the equator to latitude x, on a Mercator map of the world. 

All mapmakers face the impossibility of putting part of a sphere onto a flat page. 
You can't preserve distances, when an orange peel is flattened. But angles can be 
preserved, and Mercator found a way to do it. His map came before Newton and 
Leibniz. Amazingly, and accidentally, somebody matched distances on the map with 
a table of logarithms-and discovered sec x dx before calculus. You would not be 
surprised to meet sin x, but who would recognize ln(sec x + tan x)? 

The map starts with strips at all latitudes x. The heights are dx, the lengths are 
proportional to cos x. We stretch the strips by l/cos x-then Figure 7 . 3 ~  lines up 
evenly on the page. When dx is also divided by cos x, angles are preserved-a small 
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A map width 

Rdx Rdx 
map width 

Fig. 7.3 Strips at latitude x are scaled by sec x, making Greenland too large. 

square becomes a bigger square. The distance north adds up the strip heights 
dxlcos x. This gives I sec x dx. 

The distance to the North Pole is infinite! Close to the Pole, maps are stretched 
totally out of shape. When sailors wanted to go from A to B at a constant angle with 
the North Star, they looked on Mercator's map to find the angle. 

7.2 EXERCISES 

Read-through questions 

To integrate sin4x cos3x, replace cos2x by a . Then 
(sin4x-sin6x) cos x dx is b du. In terms of u = sin x the 
integral is c . This idea works for sinmx cosnx if either m 
or n is d . 

If both m and n are , one method is integration by 
f . For sin4x dx, split off dv = sin x dx. Then -I v du is 
g . Replacing cos2x by h creates a new sin4x dx that 

combines with the original one. The result is a reduction to 
1sin2x dx, which is known to equal I . 

The second method uses the double-angle formula sin2x = 
. Then sin4x involves cos2 k . Another doubling 

comes from cos22x = I . The integral contains the sine of 
m .  


To integrate sin 6x cos 4x, rewrite it as isin lox + n . 
The indefinite integral is 0 . The definite integral from 
0 to 271 is P . The product cos px cos qx is written as 
4 cos (p + q)x + q . Its integral is also zero, except if 

r when the answer is s . 

With u = tan x, the integral of tangx sec2x is t . Simi-
larly J secgx (sec x tan x dx) = u . For the combination 
tanmx secnx we apply the identity tan2x = v . After reduc- 
tion we may need j tan x dx = w and J sec x dx = x . 

Compute 1-8 by the "general method," when m or n is odd. 

3 J sin x cos x dx 4 j cos5x dx 

5 J sin5x cos2x dx 6 j sin3x cos3x dx 

1 sin x cos x dx 7 8 1 rsin x cos3x dx 

9 Repeat Problem 6 starting with sin x cos x = $sin 2x. 

10 Find sin2ax cos ax dx and sin ax cos ax dx. 

In 11-16 use the double-angle formulas (m, n even). 

11 S",in2x dx 12 J",in4x dx 

13 J cos23x dx 14 1sin2x cos2x dx 

15 sin2x dx + J cos2x dx 16 J sin2x cos22x dx 

17 Use the reduction formula (7) to integrate cos6x. 

18 For n > 1 use formula (7) to prove 

19 For n = 2,4, 6, . . . deduce from Problem 18 that 

20 For n = 3, 5, 7, . . . deduce from Problem 18 that 

21 (a) Separate dv = sin x dx from u = sinn- 'x and integrate 
1sinnx dx by parts. 
(b) Substitute 1- sin2x for cosZx to find a reduction 
formula like equation (7). 

22 For which n does symmetry give J",osnx dx = O? 

23 Are the integrals (a)-(f) positive, negative, or zero? 
(a) J>os 3x sin 3x dx (b) j b o s  x sin 2x dx 
(c) J! 2n cos x sin x dx (d)J: (cos2x-sin2x) dx 
(e) 5:" cos px sin qx dx (f) cos4x dx 5; 




294 7 Techniques of Integration 

cos 99x cos lOlx dx 1: 29 

24 Write down equation (9) for p =q = 1, and (10) for p = 2, 
q = 1. Derive (9) from the addition formulas for cos(s + t) and 
cos(s- t) in Section 1.5. 

In 25-32 compute the indefinite integrals first, then the definite 
integrals. 

25 jc cos x sin 2x dx 26 j",in 3x sin 5x dx 

30 52 sin x sin 2x sin 3x dx 

31 cos x/2 sin x/2 dx 32 ĵ ,x cos x dx (by parts) 

33 Suppose a Fourier sine series A sin x + B sin 2x + 
C sin 3x + adds up to x on the interval from 0 to n. Find - 0 -

A by multiplying all those functions (including x) by sin x 
and integrating from 0 to z. (B and C will disappear.) 

34 Suppose a Fourier sine series A sin x + B sin 2x + 
C sin 3x + adds up to 1 on the interval from 0 to n. Find 
C by multiplying all functions (including 1) by sin 3x 
and integrating from 0 to a. (A and B will disappear.) 

35 In 33, the series also equals x from -n to 0, because all 
functions are odd. Sketch the "sawtooth function," which 
equals x from -n to z and then has period 2n. What is the 
sum of the sine series at x = n? 

36 In 34, the series equals -1 from -n to 0, because sines 
are odd functions. Sketch the "square wave," which is 
alternately -1 and +1, and find A and B. 

37 The area under y = sin x from 0 to n is positive. Which 
frequencies p have 1; sin px dx =O? 

38 Which frequencies q have J; cos qx dx = O? 

39 For which p, q is S", sin px cos qx dx = O? 

40 Show that I",in px sin qx dx is always zero. 

Compute the indefinite integrals 41-52. 

41 sec x tan x dx 42 J tan 5x dx 

43 1tan2x sec2x dx 44 1tan2x sec x dx 

45 j tan x sec3x dx 46 sec4x dx 

49 1cot x dx 50 1csc x dx 

53 Choose A so that cos x -sin x = A cos(x + ~14). Then 
integrate l/(cos x -sin x). 

54 Choose A so that cos x -f i sin x = A cos(x + n/3). Then 
integrate l/(cos x -asin x)l. 

55 Evaluate lcos x -sin xl dx. 

56 Show that a cos x + b sin x = cos (x -a) and 
find the correct phase angle a. 

57 If a square Mercator map shows 1000 miles at latitude 
30", how many miles does it show at latitude 60°? 

58 When lengths are scaled by sec x, area is scaled by 
. Why is the area from the equator to latitude x 

proportional to tan x? 

59 Use substitution (1 1) to find I dx/(l + cos x). 

60 Explain from areas why J^,sin2x dx =J: cos2x dx. These 
integrals add to I",dx, so they both equal . 

61 What product sin px sin qx is graphed below? Check 
that (p cos px sin qx -q sin px cos qx)/(q2 -p2) has this 
derivative. 

62 Finish sec3x dx in Example 11. This is needed for the 
length of a parabola and a spiral (Problem 7.3.8 and 
Sections 8.2 and 9.3). 

Trigonometric Substitutions 

The most powerful tool we have, for integrating with pencil and paper and brain, is 
the method of substitution. To make it work, we have to think of good substitutions- 
which make the integral simpler. This section concentrates on the single most valu- 
able collection of substitutions. They are the only ones you should memorize, and 
two examples are given immediately. 
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To integrate J K i ,  substitute x = sin 9. Do not set u = 1 - x2 (::is missing )-

cos 0 d0 1 J- dx -j(cos 0)(cos 0 40) 

The expression J1 - x2 is awkward as a function of x. It becomes graceful as a 
function of 8. We are practically invited to use the equation 1 - (sin 0)2 = (COS 
Then the square root is simply cos 9-provided this cosine is positive. 

Notice the change in dx. When x is sin 8, dx is cos 0 dO. Figure 7.4a shows the 
original area with new letters. Figure 7.4b shows an equal area, after rewriting 
j (COS B)(COS O dO) as 5 (cos2e) do. Changing from x to 8 gives a new height and a new 
base. There is no change in area-that is the point of substitution. 

To put it bluntly: If we go from ,,/- to cos 0, and forget the difference between 
dx and dB, and just compute j cos 0 dB, the answer is totally wrong. 

Fig. 7.4 Same area for Jl -x2 dx and cos28 dB. Third area is wrong: dx #dB 

We still need the integral of cos20. This was Example 3 of integration by parts, and 
also equation 7.2.6. It is worth memorizing. The example shows this 0 integral, and 
returns to x: 

EXAMPLE 1 5 cos20 dO = & sin O cos 8 + &O is after substitution 

,,/- dx = i x , , / m  + 4 sin- 'x is the original problem. 

We changed sin 0 back to x and cos O to ,,/-. Notice that 0 is sin-'x. The answer 
is trickier than you might expect for the area under a circular arc. Figure 7.5 shows 
how the two pieces of the integral are the areas of a pie-shaped wedge and a triangle. 

cos 0 d8 
EXAMPLE 2 - 0 + C = s i n - l x + C .  

Remember: We already know sin-'x. Its derivative l/Jm was computed in 
Section 4.4. That solves the example. But instead of matching this special problem 

1 1 A 

1 e area -8 = -sin-' x
2 2 

y = d T Z ?  
10 

area I x4 - 7  area = ~ 1 2  I 
I 

2 J I 

Fig. 7.5 Jmdx is a sum of simpler areas. Infinite graph but finite area. 
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with a memory from Chapter 4, the substitution x = sin 8 makes the solution auto- 
matic. From 5 d8 = 8 we go back to sin-'x. 

The rest of this section is about other substitutions. They are more complicated 
than x = sin 8 (but closely related). A table will display the three main choices-sin 8, 
tan 8, sec 8-and their uses. 

TRIGONOMETRIC SUBSTITUTIONS 

After working with ,/-, the next step is ,/-.
 The change x = sin 8 simplified 
the first, but it does nothing for the second: 4 - sin28 is not familiar. Nevertheless a 
factor of 2 makes everything work. Instead of x = sin 8, the idea is to substitute x = 
2 sin 8: 

JF?= JGGG = 2 cos 8 and dx = 2 cos 8 do. 

Notice both 2's. The integral is 4 1 cos28 dB = 2 sin 8 cos 8 + 28. But watch closely. 
This is not 4 times the previous 1 cos28 do! Since x is 2 sin 8, 8 is now sin- '(~12). 

EXAMPLE 3 1 ,/- dx = 4 1 cos28 d8 = x , / m  + 2 sin- '(~12). 

Based on ,/- and ,/-, here is the general rule for ,/-.
 Substitute 
x = a sin 8. Then the a's separate out: 

J ~ = , / ~ = a c o s ~  d x = a c o s 8 d 8 .and 

That is the automatic substitution to try, whenever the square root appears. 

Here a2 = 16. Then a = 4 and x = 4 sin 8. The integral has 4 cos 8 above and below, 
so it is 1 dB. The antiderivative is just 8. For the definite integral notice that x = 4 
means sin 8 = 1, and this means 8 = 7112. 

A table of integrals would hide that substitution. The table only gives sin-'(~14). 
There is no mention of 1 d8 = 8. But what if 16 - x2 changes to x2 - 16? 

8 dx = ?EXAMPLE 5 1x=4, / F X  
Notice the two changes-the sign in the square root and the limits on x. Example 4 
stayed inside the interval 1x1 < 4, where 16 -x2 has a square root. Example 5 stays 
outside, where x2 - 16 has a square root. The new problem cannot use x = 4 sin 8, 
because we don't want the square root of -cos28. 

The new substitution is x = 4 sec 8. This turns the square root into 4 tan 8: 

x = 4  sec 8 gives d x = 4  sec 8 tan 8 d8 and x2 - 16= 16sec28- 16= 16 tan2@. 

This substitution solves the example, when the limits are changed to 8: 

!:I3 4 sec 8 tan do -- Jy3s e c 8 d 8 = l n ( ~ e c 8 + t a n 8 ) ] ~ ~ = l n ( 2 + f i ) .  
4 tan 8 

I want to emphasize the three steps. First came the substitution x = 4 sec 8. An 
unrecognizable integral became sec 6dB. Second came the new limits (8 = 0 when 
x = 4, 8 = 7113 when x = 8). Then I integrated sec 8. 
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Example 6 has the same x 2 - 16. So the substitution is again x = 4 sec 8:

r 16 dx fi,/2 64 sec 0 tan 0 EXAMPLE dO i/2 cos 6 dO
6 = 2 

8 (x -- 16)3/2 0=,/3 (4 tan )3  /3 sin20

Step one substitutes x = 4 sec 0. Step two changes the limits to 0. The upper limit
x = oo becomes 0 = in/2, where the secant is infinite. The limit x = 8 again means 0 =
7r/3. To get a grip on the integral, I also changed to sines and cosines.

The integral of cos 6/sin20 needs another substitution! (Or else recognize
cot 0 csc 0.) With u = sin 0 we have f du/u 2 = - 1/u = - 1/sin 8:

rK/2 cos 6 dO -1 1n/ 2 2
Solution sin sin +

Jn/3 sin28 sin 8n/3 /

Warning With lower limit 0 = 0 (or x = 4) this integral would be a disaster. It divides
by sin 0, which is zero. This area is infinite.

(Warning)2  Example 5 also blew up at x = 4, but the area was not infinite. To make
the point directly, compare x-- 1/2 to x- 3/ 2. Both blow up at x = 0, but the first one
has finite area:

dx=2 o 2 2 dx =  = co.

Section 7.5 separates finite areas (slow growth of 1/ x) from infinite areas (fast
growth of x-3/2).

Last substitution Together with 16 - x 2 and x 2 - 16 comes the possibility 16 + x 2.
(You might ask about -16 - x2, but for obvious reasons we don't take its square
root.) This third form 16 + x2 requires a third substitution x = 4 tan 0. Then
16 + x2 = 16 + 16 tan20 = 16 sec 20. Here is an example:

f dx f,/2 4 sec20 dO 1 /2 r
EXAMPLE 7 

x=o 16 + 2
x 0=o 16 sec2 0 4 0 =8'81 t

Table of substitutions for a - x', a2 + 2 X2, x - 2

x = a sin 0 replaces a2 X2 by a2cos 0 and dx by a cos 0 dO

Note There is a subtle difference between changing x to sin 0 and changing sin 0 to u:

in Example 1, dx was replaced by cos 0 dO (new method)

in Example 6, cos 0 dO was already there and became du (old method).

The combination cos 0 dO was put into the first and pulled out of the second.
My point is that Chapter 5 needed du/dx inside the integral. Then (du/dx)dx

became du. Now it is not necessary to see so far ahead. We can try any substitution.
If it works, we win. In this section, x = sin 0 or sec 0 or tan 0 is bound to succeed.

dx_ xdx d rdu
NEW = dO by trying x = tan OLD +x 2 - u by seeing du1+ X2I+X2 2u

x = a tan 0 replaces a2 2 + X by a2 2seC O and dx by a sec20 dO

x = a sec 0 replaces x 2 -a 2 by a2tan22 and dx by a sec 0 tan 0 dO
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We mention the hyperbolic substitutions tanh 8, sinh 8, and cosh 8. The table below 
shows their use. They give new forms for the same integrals. If you are familiar with 
hyperbolic functions the new form might look simpler-as it does in Example 8. 

x = a tanh8 replaces a2 - x2 by a2 sech28 and dx by a sech28 dB 

x = a sinh8 replaces a2 + x2 by a2 cosh28 and dx by a cosh 8 d8 

x = a cosh 8 replaces x2 - a2  by a2 sinh28 and dx by a sinh 8 d8 

sinh 8 d8 
EXAMPLE 8 I,/&=sinh 0 = 8 + C = cosh-'x + C. 

dB is simple. The bad part is cosh- 'x at the end. Compare with x = sec 8: 

sec 8 tan 8 d8 
= ln(sec 8 + tan 8) + C = ln(x + d m )+ C.SJ&=j' t a n 0  

This way looks harder, but most tables prefer that final logarithm. It is clearer than 
cosh-'x, even if it takes more space. All answers agree if Problem 35 is correct. 

COMPLETING THE SQUARE 

We have not said what to do for Jm,/-.or Those square roots 
contain a linear term-a multiple of x. The device for removing linear terms is worth 
knowing. It is called completing the square, and two examples will begin to explain it: 

x 2 - 2 x + 2 = ( x - 1 = u 2 +  1 

The idea has three steps. First, get the x2 and x terms into one square. Here that 
square was (x - 1)2= x2 - 2x + 1. Second, fix up the constant term. Here we recover 
the original functions by adding 1. Third, set u = x - 1 to leave no linear term. Then 
the integral goes forward based on the substitutions of this section: 

The same idea applies to any quadratic that contains a linear term 2bx: 

rewrite x2 + 2bx + c as (x + b)2+ C ,  with C = c - b2 

rewrite - x2 + 2bx + c as - (x - b)2+ C ,  with C = c + b2 

To match the quadratic with the square, we fix up the constant: 

x2 + lox + 16= (x + 5)2+ C leads to C =  16 - 25 = -9  

- x 2 +  l o x +  16= - ( x -  5)*+ C leads to C =  16+25=41 .  

EXAMPLE 9 

Here u = x + 5 and du = dx. Now comes a choice-struggle on with u = 3 sec 0 or 
look for du/(u2- a') inside the front cover. Then set a = 3: 



Note If the quadratic starts with 5x2 or -5x2, factor out the 5 first: 

5x2- lox + 25 = 5(x2-2x + 5) = (complete the square) = 5[(x - + 41. 

Now u = x - 1 produces 5[u2 + 41. This is ready for table lookup or u = 2 tan 8: 

dx - du - 1 2  sec28d"EXAMPLE 10 I I 1 Id8,
5x2- lox + 25 - 5[u2 + 41 - 5[4 sec28] 10 

This answer is 8/10 + C. Now go backwards: 8/10 = (tan- ' f u)/lO = (tan- ' f(x - -))/lo. 
Nobody could see that from the start. A double substitution takes practice, from x 
to u to 8. Then go backwards from 8 to u to x. 

Final remark For u2 + aZ we substitute u = a tan 8. For u2 - a2 we substitute u = 
a sec 8. This big dividing line depends on whether the constant C (after completing 
the square) is positive or negative. We either have C = a* or C = -a2. The same 
dividing line in the original x2 + 2bx + c is between c > b2 and c < b2. In between, 
c = b2 yields the perfect square (x + b)'- and no trigonometric substitution at all. 

7.3 EXERCISES 
Read-through questions 

The function ,/- suggests the substitution x = a . 
The square root becomes b and dx changes to c . 
The integral j(1 -x2)3i2dx becomes J d dB. The interval 
3 < x < 1  changes to 8 f . 

For ,/a2 -x2 the substitution is x = P with dx = 
h . or x2-a2 we use x = I with dx = 1 . Then 

dx/(l + x2) becomes j dB, because 1 + tan28= k . The 
answer is 8 = tan-'x. We already knew that I is the 
derivative of tan- 'x. 

The quadratic x2 + 2bx + c contains a m term 2bx. To 
remove it we n the square. This gives (x + b)2+ C with 
C = 0 . The example x2 + 4x + 9 becomes P . Then 

(Important) This section started with x = sin 8 and u = x + 2. In case x2 enters with a minus sign, -x2+ 4x + 9 
becomes ( q )2+ r . When the quadratic contains j d x / , / m  = j dB = 8 = sin- 'JC.
4x2, start by factoring out s . 

(a)Use x = cos 8 to get a different answer. 
Integrate 1-20 by substitution. Change 8 back to x. (b) How can the same integral give two answers? 

Compute I dx/x,/= with x = sec 0. Recompute with 
x = csc 8. HOW can both answers be correct? 

23 Integrate x/(x2 + 1) with x = tan 8, and also directly as a 
logarithm. Show that the results agree. 

24 Show that jd x / x , / a  = f sec- '(x2). 

Calculate the definite integrals 25-32. 

25 dx = area of I& 8 j,/- dx (see 7.2.62) Fa ,/-
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Rewrite 43-48 as ( x+ b)2+ C or -( x- b)2+ C by completing 
the square. 

x d x  43 x 2 - 4 x + 8  44 - x 2 + 2 x + 8  
30 1 -

- 1  x 2 +  1 45 x2 -6x 46 - x 2  + 10 

47 x 2  + 2x + 1 48 x 2  + 4x - 12 
32 jl:2Jm~dx  = area of . 

49 For the three functions f ( x )  in Problems 43, 45, 47 

33 Combine the integrals to prove the reduction formula integrate l / f ( x ) .  

( n# 0): 50 For the three functions g(x)  in Problems 44, 46, 48 

d - j c d - x .  integrate l / m .  
n .x2+1 51 For j dx/(x2+ 2bx + c) why does the answer have different 

Integrate l/cos x and 1 / ( 1  + cos x )  and J I+ cos x. forms for b2> c and b2< c? What is the answer if b2= c? 

(a)x = gives i d x / J x 2  - 1 = ln(sec 0 + tan 0). 52 What substitution u=x + b or u= x -b will remove the 
linear term? (b)From the triangle, this answer is f = In(x + Jn). 

Check that df/dx = l / J m - .  

(c) Verify that coshf =i (ef + e - I )  = x. Thenf = cosh-'x, 
the answer in Example 8. 

(a) .u = gives i d x / , / x 2+ 1 = ln(sec B + tan 0). 

(b)The second triangle converts this answer to g = ln(x + 53 Find the mistake. With x = sin 0 and J-x"= cos 8,Jm).Check that dg/dx = l / J m .  substituting dx =cos B dB changes 
(c) Verify that sinh g = +(eg- e-g)= .u so g = sinh- ' x .  
(d)Substitute x = sinh g directly into i dx/,/+ and 
integrate. 

54 (a) If x = tan 0 then 1J m d x  =1 dB. 

(b) Convert i[sec 0 tan 0 + ln(sec 0 + tan 0)] back to x. 

dB.(c) If x = sinh 0 then Jwdx =1 
(d)Convert i[sinh 0 cosh 0 + 01 back to x. 

1 1 These answers agree. In Section 8.2 they will give the length 
of a parabola. Compare with Problem 7.2.62. 

37-42 substitute .u = sinh 0. cosh 0. or tanh 0. After intee- -
ration change back to x.  55 Rescale x and y in Figure 7.5b to produce the equal area 

37 1-
y dx in Figure 7 .5~ .  What happens to y and what happens 

dx dx to dx? 
J'X- 1 56 Draw y = l / J c 2  and y = l/J= to the same 

scale (1" across and up; 4" across and a" up). 

57 What is wrong, if anything, with 

7.4 

This section is about rational functions P(x)/Q(x).Sometimes their integrals are also 
rational functions (ratios of polynomials). More often they are not. It is very common 
for the integral of PIQ to involve logarithms. We meet logarithms immediately in the 

1-Partial Fractions 
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simple case l/(x - 2), whose integral is lnlx - 21 + C. We meet them again in a sum 
of simple cases: 

Our plan is to split PIQ into a sum like this-and integrate each piece. 
Which rational function produced that particular sum? It was 

This is PIQ. It is a ratio of polynomials, degree 1 over degree 3. The pieces of P are 
collected into -4x + 16. The common denominator (x - 2)(x + 2)(x)= x3 - 4x is Q. 
But I kept these factors separate, for the following reason. When we start with PIQ, 
and break it into a sum of pieces, thefirst things we need are the factors of Q. 

In the standard problem PIQ is given. To integrate it, we break it up. The goal of 
partial fractions is to find the pieces-to prepare for integration. That is the technique 
to learn in this section, and we start right away with examples. 

EXAMPLE 1 Suppose PIQ has the same Q but a different numerator P: 

Notice the form of those pieces! They are the "partial fractions" that add to PIQ. 
Each one is a constant divided by a factor of Q. We know the factors x - 2 and x + 2 
and x. We don't know the constants A, B, C. In the previous case they were 1,3, -4. 
In this and other examples, there are two ways to find them. 

Method 1(slow) Put the right side of (1) over the common denominator Q: 

Why is A multiplied by (x + 2)(x)? Because canceling those factors will leave A/(x - 2) 
as in equation (1). Similarly we have B/(x + 2) and Clx. Choose the numbers A, B, C 
so that the numerators match. As soon as they agree, the splitting is correct. 

Method 2 (quicker) Multiply equation (1) by x - 2. That leaves a space: 

Now set x = 2 and immediately you have A. The last two terms of (3) are zero, because 
x - 2 is zero when x = 2. On the left side, x = 2 gives 

Notice how multiplying by x - 2 produced a hole on the left side. Method 2 is the 
"cover-up method." Cover up x - 2 and then substitute x = 2. The result is 3 = 

A + 0 + 0, just what we wanted. 
In Method 1, the numerators of equation (2) must agree. The factors that multiply 

B and C are again zero at x = 2. That leads to the same A-but the cover-up method 
avoids the unnecessary step of writing down equation (2). 
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Calculation ofB Multiply equation (1) by x + 2, which covers up the (x + 2): 

Now set x = - 2, so A and C are multiplied by zero: 

This is almost full speed, but (4) was not needed. Just cover up in Q and give x the 
right value (which makes the covered factor zero). 

Calculation of C (quickest) In equation (I), cover up the factor (x) and set x = 0: 

To repeat: The same result A = 3, B = - 1, C = 1 comes from Method 1. 

EXAMPLE 2 

First cover up (x - 1) on the left and set x = 1. Next cover up (x + 3) and set x = - 3: 

The integral is tlnlx - 11+ ilnlx + 31 + C. 

EXAMPLE 3 This was needed for the logistic equation in Section 6.5: 

A1 
- +- B 

~ ( ~ - b y ) - ;  c - by' 

First multiply by y. That covers up y in the first two terms and changes B to By. 
Then set y = 0. The equation becomes l/c = A. 

To find B, multiply by c - by. That covers up c - by in the outside terms. In the 
middle, A times c - by will be zero at y = clb. That leaves B on the right equal to 
l/y = blc on the left. Then A = llc and B = blc give the integral announced in 
Equation 6.5.9: 

It is time to admit that the general method of partial fractions can be very awkward. 
First of all, it requires the factors of the denominator Q. When Q is a quadratic 
ax2+ bx + c, we can find its roots and its factors. In theory a cubic or a quartic can 
also be factored, but in practice only a few are possible-for example x4 - 1 is 
(x2- 1)(x2+ 1). Even for this good example, two of the roots are imaginary. We can 
split x2 - 1 into (x + l)(x - 1). We cannot split x2 + 1 without introducing i. 

The method of partial fractions can work directly with x2 + 1, as we now see. 

EXAMPLE 4 dx (a quadratic over a quadratic). 

This has another difficulty. The degree of P equals the degree of Q (= 2). Partial 
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jiactions cannot start until P has lower degree. Therefore I divide the leading term x2 
into the leading term 3x2. That gives 3, which is separated off by itself: 

Note how 3 really used 3x2 + 3 from the original numerator. That left 2x + 4. Partial 
fractions will accept a linear factor 2x + 4 (or Ax + B, not just A) above a quadratic. 

This example contains 2x/(x2 + I), which integrates to ln(x2 + 1). The final 
4/(x2 + 1) integrates to 4 tan-'x. When the denominator is x2 + x + 1 we complete 
the square before integrating. The point of Sections 7.2 and 7.3 was to make that 
integration possible. This section gets the fraction ready-in parts. 

The essential point is that we never have to go higher than quadratics. Every 
denominator Q can be split into linear factors and quadratic factors. There is no magic 
way to find those factors, and most examples begin by giving them. They go into 
their own fractions, and they have their own numerators-which are the A and B 
and 2x + 4 we have been computing. 

The one remaining question is what to do if a factor is repeated. This happens in 
Example 5. 

EXAMPLE 5 

The key is the new term B/(x - That is the right form to expect. With (x - l)(x - 2) 
this term would have been B/(x - 2). But when (x - 1) is repeated, something new is 
needed. To find B, multiply through by (x - and set x = 1: 

2 x + 3 =  A(x- 1)+ B becomes 5 =  B when x =  1. 

This cover-up method gives B. Then A =  2 is easy, and the integral is 
2 lnlx - 11 - 5/(x - 1). The fraction 5/(x - 1)2 has an integral without logarithms. 

EXAMPLE 6 

This final example has almost everything! It is more of a game than a calculus 
problem. In fact calculus doesn't enter until we integrate (and nothing is new there). 
Before computing A, B, C, D, E, we write down the overall rules for partial fractions: 

The degree of P must be less than the degree of Q. Otherwise divide their leading 
terms as in equation (8) to lower the degree of P. Here 3 < 5. 
Expect the fractions illustrated by Example 6. The linear factors x and x + 1 
(and the repeated x2) are underneath constants. The quadratic x2 + 4 is under a 
linear term. A repeated (x2 + 4)2 would be under a new Fx + G. 
Find the numbers A, B, C, .. . by any means, including cover-up. 
Integrate each term separately and add. 

We could prove that this method always works. It makes better sense to show that 
it works once, in Example 6. 

To find E, cover up (x - 1) on the left and substitute x = 1. Then E = 3. 
To find B, cover up x2 on the left and set x = 0. Then B = 4/(0 + 4)(0 - 1)= -1. 
The cover-up method has done its job, and there are several ways to find A, C, D. 
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Compare the numerators, after multiplying through by the common denominator Q: 

The known terms on the right, from B = - 1 and E = 3, can move to the left: 

We can divide through by x and x - 1, which checks that B and E were correct: 

-3x2 - 4 = A(x2+ 4) + (Cx + D)x. 

Finally x = 0 yields A = - 1. This leaves -2x2 = (Cx + D)x. Then C = - 2 and 
D=O. 

You should never have to do such a problem! I never intend to do another one. 
It completely depends on expecting the right form and matching the numerators. 
They could also be matched by comparing coefficients of x4, x3, x2, x, 1-to give five 
equations for A, B, C, D, E. That is an invitation to human error. Cover-up is the 
way to start, and usually the way to finish. With repeated factors and quadratic 
factors, match numerators at the end. 

7.4 EXERCISES 

Read-through questions Multiply by x - 1 and set x = 1. Multiply by x + 1 and set 

The idea of a fractions is to express P(x)/Q(x) as a b 
x = - 1. Integrate. Then find A and B again by method 1 -
with numerator A(x + 1)+ B(x - 1) equal to 1. of simpler terms, each one easy to integrate. To begin, the 

degree of P should be c the degree of Q. Then Q is split 
into d factors like x -5 (possibly repeated) and quadratic 

Express the rational functions 3-16 as partial fractions: 

factors like x2 + x + 1 (possibly repeated). The quadratic 
factors have two e roots, and do not allow real linear 
factors. 

A factor like x -  5 contributes a fraction A/ f . Its 
integral is g . To compute A, cover up h in the 
denominator of P/Q. Then set x = i , and the rest of 
P/Q becomes A. An equivalent method puts all fractions over 
a common denominator (which is I ). Then match the 

3x2 1 
k . At the same point x = I this matching gives A. 9-x2+1 (divide first) 

lo (x - 1)(x2+ 1) 
A repeated linear factor (x -5)2 contributes not only 

A/(x -5) but also B/ m . A quadratic factor like x2 + x + 1 
contributes a fraction n /(x2+ x + 1) involving C and D. 
A repeated quadratic factor or a triple linear factor would 1 x2 + 1 
bring in (Ex + F)/(x2+ x + or G/(x -5)3. The conclusion l 3  X(X - 1)(x-2)(x -3) 

14 -(divide first) 
x + l

is that any PIQ can be split into partial o , which can 
always be integrated. 

1 Find the numbers A and B to split l/(.u2 -x): 
1

16 7x (x- 1) (remember the 

Cover up x and set x =0 to find A. Cover up x - 1 and set 17 Apply Method 1 (matching numerators) to Example 3: 
x = 1 to find B. Then integrate. 1 B - A(c-by)+By

--- - A +--
2 Find the numbers A and B to split l/(x2 - 1): cy -by2 y c -by y(c -by) ' 

Match the numerators on the far left and far right. Why does 
Ac = l? Why does -bA + B = O? What are A and B? 
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18 What goes wrong if we look for A and B so that By slibstitution change 21-28 to integrals of rational functions. 
Problem 23 integrates l/sin 8 with no special trick. 

Over a common denominator, try to match the numerators. sin 0 do
What to do first? 

23 I G a  
3x2 3x2 A Bx+C

19 Split -- into -+-
x ~ - 1- (x-1)(x2+x+1) X-1 x2+x+l '  

(a) Cover up x - 1 and set x = 1 to find A. 
(b) Subtract A/(x - 1) from the left side. Find Bx +C. 
(c) Integrate all terms. Why do we already know 

29 Multiply this partial fraction by x -a. Then let x -+ a: 

1 A--- + .*-.  

20 Solve dyldt = 1-y2 by separating idyll -y2 = dt. Then Q(x) - x -a 

Show that A = l/Q'(a). When x =a is a double root this fails 
because Q'(a) = 

1 A
30 Find A in ----+.-..Use Problem 29.

x8-1 x -1Integration gives 31n = t + C. With yo =0 the con- 
stant is C = . Taking exponentials gives . 31 (for instructors only) Which rational functions P/Qare the 
The solution is y = . This is the S-curve. derivatives of other rational functions (no logarithms)? 

1 . L 7.5 Improper Integrals 1-1 


"Zmp~oper"means that some part of Jt y(x)dx becomes infinite. It might be b or a or 
the function y. The region under the graph reaches infinitely far-to the right or left 
or up or down. (Those come from b = oo and a = - oo and y + oo and y -,-oo.) 
Nevertheless the integral may "converge." Just because the region is infinite, it is not 
automatic that the area is infinite. That is the point of this section-to decide when 
improper integrals have proper answers. 

The first examples show finite area when b = oo, then a = - m ,  then y = I/& at 
x = 0.The areas in Figure 7.6 are 1, 1,2: 

Fig. 7.6 The shaded areas are finite but the regions go to infinity. 
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In practice we substitute the dangerous limits and watch what happens. When the
integral is -1/x, substituting b = oo gives "- 1/oo = 0." When the integral is ex,
substituting a = - oo gives "e-" = 0." I think that is fair, and I know it is successful.
But it is not completely precise.

The strict rules involve a limit. Calculus sneaks up on 1/oo and e-" just as it
sneaks up on 0/0. Instead of swallowing an infinite region all at once, the formal
definitions push out to the limit:

00b b b

DEFINITION y(x)dx = lim y(x)dx y(x)dx = lim y(x)dx.
a b f f - 0 a -

The conclusion is the same. The first examples converged to 1, 1, 2. Now come two
more examples going out to b = oo:

The area under 1/x is infinite: d= In x = co (1)
SX

The area under 1/xP is finite if p > 1: 
" dx 

-
x, _-' 1

f XP 
x- -P 1 - P 0 -p-1 (2)

The area under 1/x is like 1 + I + - + + -, which is also infinite. In fact the sum
approximates the integral-the curved area is close to the rectangular area. They go
together (slowly to infinity).

A larger p brings the graph more quickly to zero. Figure 7.7a shows a finite area
1/(p - 1) = 100. The region is still infinite, but we can cover it with strips cut out of
a square! The borderline for finite area is p = 1. I call it the borderline, but p = 1 is
strictly on the side of divergence.

The borderline is also p = 1 when the function climbs the y axis. At x = 0, the graph
of y = 1/xP goes to infinity. For p = 1, the area under 1/x is again infinite. But at x =
0 it is a small p (meaning p < 1) that produces finite area:

ox -=lnx In 0o=0 ox- - 1-p0 -o= 1 p ifp<l. (3)

Loosely speaking "-In 0 = oo." Strictly speaking we integrate from the point x = a
near zero, to get f, dx/x =- In a. As a approaches zero, the area shows itself as
infinite. For y = 1/x2, which blows up faster, the area - 1/x]o is again infinite.

For y = 1/ x, the area from 0 to 1 is 2. In that case p = ½. For p = 99/100 the area
is 1/(1 - p) = 100. Approaching p = 1 the borderline in Figure 7.7 seems clear. But
that cutoff is not as sharp as it looks.

1 1 1

Fig. 7.7 Graphs of 1/xP on both sides of p = 1. I drew the same curves!

306
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Narrower borderline Under the graph of llx, the area is infinite. When we divide 
by in x or (ln x ) ~ ,  the borderline is somewhere in between. One has infinite area (going 
out to x = a ) ,  the other area is finite: 

The first is dulu with u = In x. The logarithm of in x does eventually make it to 
infinity. At x = 10l0, the logarithm is near 23 and ln(1n x) is near 3. That is slow! 
Even slower is ln(ln(1n x)) in Problem 11. No function is exactly on the borderline. 

The second integral in equation (4) is convergent (to 1). It is 1du/u2 with u = In x. 
At first I wrote it with x going from zero to infinity. That gave an answer I couldn't 
believe: 

There must be a mistake, because we are integrating a positive function. The area 
can't be zero. It is true that l/ln b goes to zero as b + oo. It is also true that l/ln a 
goes to zero as a -,0. But there is another infinity in this integral. The trouble is at 
x = 1, where In x is zero and the area is infinite. 

EXAMPLE 1 The factor e-" overrides any power xP (but only as x -,a ) .  

Jr~ 'Oe-~dx  == 50! but Jr~ - ' e - ~ d x  oo. 

The first integral is (50)(49)(48)--.(I). It comes from fifty integrations by parts (not 
recommended). Changing 50 to 3, the integral defines "ifactorial." The product 
*(- i)(-$).-- has no way to stop, but somehow i!is *&.See Problem 28. 
The integral ic xOe-"dx= 1 is the reason behind "zero factorial" = 1. That seems the 
most surprising of all. 

The area under e-"/x is (-I)! = oo. The factor e-" is absolutely no help at x = 0. 
That is an example (the first of many) in which we do not know an antiderivative- 
but still we get a decision. To integrate e -"/x we need a computer. But to decide that 
an improper integral is infinite (in this case) or finite (in other cases), we rely on the 
following comparison test: 

7 6  (Corn-on test) Suppose that 0<Nx)< v(x).. 'Then the area under u(x) 
is smaller than the area under Hx): 

j'u(x)dx<ooif~u(x)dx<m iflu(x)dx=mthenjofx)dx=co. 

Comparison can decide if the area is finite. We don't get the exact area, but we learn 
about one function from the other. The trick is to construct a simple function (like 
l/xP) which is on one side of the given function-and stays close to it: 

EXAMPLE 2 converges by comparison with [ y  $ = I .  

EXAMPLE 3 diverges by comparison with 
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ri dx dxEXAMPLE 4 dx diverges by comparison with - = o.
Eo x 2 + 4x fo 5x

EXAMPLE 5 dx converges by comparison with dx = 1

In Examples 2 and 5, the integral on the right is larger than the integral
Removing 4x and x/ increased the area. Therefore the integrals on 
somewhere between 0 and 1.

In Examples 3 and 4, we increased the denominators. The integrals 
are smaller, but still they diverge. So the integrals on the left diverge. 
comparing functions is seen in the next examples and Figure 7.8.

EXAMPLE 6 e-xdx is below f 1 dx + e-xdx = 1 + 1.

e dxL ev dx
EXAMPLE 7 is above x In x J, .

Inx 1 x In x

.

 on the left.
e left are

the right
e idea of

th

on 
Th

EXAMPLE 8 x is below 'dx+ J' lo - 2 + 2.

1 1

2

1

4-

3-

2-

1-

V= + ----

;X -_ 7

area = o0 -

red

- area = -oo

- area
=4

1 2 e .2 .4 .6 .8

Fig. 7.8 Comparing u(x) to v(x): Se dx/ln x = oo and fo dx/lx- < 4. But oo - oo : 0.

- I -. -11 -.

I I ~-

There are two situations not yet mentioned, and both are quite common. The first is
an integral all the way from a = - oo to b = + oo. That is split into two parts, and
each part must converge. By definition, the limits at - 00 and + 00 are kept separate:

(o 0 ('c 0 fb

f 0 y(x) dx = y(x) dx + y(x) dx = lim y(x) dx + lim y(x) dx.

The bell-shaped curve y = e- 2 covers a finite area (exactly i/). The region extends
to infinity in both directions, and the separate areas are •-. But notice:

0, x dx is not defined even though fb b x dx = 0 for every b.

The area under y = x is + oo00 on one side of zero. The area is - oo00 on the other side.
We cannot accept oo - oo = 0. The two areas must be separately finite, and in this
case they are not.
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EXAMPLE 9 l l x  has balancing regions left and right of x = 0. Compute j?, d x / x .  

This integral does not exist. There is no answer, even for the region in Figure 7 . 8 ~ .  
(They are mirror images because l l x  is an odd function.) You may feel that the 
combined integral from -1 to 1 should be zero. Cauchy agreed with that-his 
"principal value integral" is zero. But the rules say no: co - co is not zero. 

7.5 EXERCISES 

Read-through questions 

An improper integral j: y(x) dx has lower limit a = a or 
upper limit b = b or y becomes c in the interval 
a < x < b. The example jy dx/x3 is improper because d . 
We should study the limit of j; dx/x3 as e . In practice 
we work directly with -$x -2]y = f . For p > 1 the 
improper integral g is finite. For p < 1 the improper 
integral h is finite. For y = e-" the integral from 0 to co 
is i . 

Suppose 0 < u(x) < v(x) for all x. The convergence of i 
implies the convergence of k . The divergence of 
1u(x) dx I the divergence of v(x) dx. From -co to co, 
the integral of l/(ex + e-") converges by comparison with 
m . Strictly speaking we split (- co, co) into ( n ,0) and 

(0, 0 ). Changing to l/(ex -e-") gives divergence, because 
P . Also j'Cndxlsin x diverges by comparison with q . 

The regions left and right of zero don't cancel because co - co 
is r . 

Decide convergence or divergence in 1-16. Compute the integ- 
rals that converge. 

In 17-26, find a larger integral that converges or a smaller 
integral that diverges. 

27 If p > 0, integrate by parts to show that 

The first integral is the definition of p! So the equation is p! = 

. In particular O! = . Another notation for 
p! is T(p + 1)-using the gamma function emphasizes that p 
need not be an integer. 

28 Compute (- $)! by substituting x = u2: 

1;
 x-1'2e-x  dx = = & (known). 

Then apply Problem 27 to find ($)! 

x2e-"dx 1; Integrate29 by parts. 

8 jYrn 
30 The beta function B(m. n) = 1; x m  1 -x )  'dx is finite 

sin x dx when m and n are greater than . 

31 A perpetual annuity pays s dollars a year forever. With 
se-"dt. 1; 

xe-.dx 1: 10 
continuous interest rate c, its present value is yo = 

n x x (by parts) (by parts) To receive $1000/year at c = lo%, you deposit yo = . 

32 In a perpetual annuity that pays once 2 year, the present 
value is yo = sla + s/a2+ ... = . To receive 
$1000/year at 10% (now a = 1.1) you again deposit yo = 

. Infinite sums are like improper integrals. 

33 The work to move a satellite (mass m) infinitely far from 
the Earth (radius R, mass M )  is W= 1," GMm dx/x2. Evaluate 
W What escape uelocity at liftoff gives an energy $mvi that 
equals W? 

9 
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34 The escape velocity for a black hole exceeds the speed of *38 Compute any of these integrals found by geniuses: 
light: v, > 3 lo8 m/sec. The Earth has GM = 4 *1014m3/sec2. 
1 f  it were compressed to radius R = , the Earth 
would be a black hole. 

35 Show how the area under y = 112" can be covered (draw 
a graph) by rectangles of area 1 + 3 + $ + - - -  = 2. What is the 

xe-. cos x dx = 0 cos x2dx = exact area from x = 0 to x = a? 1: 1: m. 
36 Explain this paradox: 

dx 
* x d x  39 For which p is [ S""- 1. - - - co? 

- 0 for every b but - I 
- h  1 + x2 

+ x2 diverges. x p  + x - ~  

37 Compute the area between y = sec x and y = tan x for 40 Explain from Figure 7 . 6 ~  why the red area is 2, when 
0 < x < 7112. What is improper? Figure 7.6a has red area 1. 
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