282

CHAPTER 7

Techniques of Integration

Chapter 5 introduced the integral as a limit of sums. The caiculation of areas was
started—by hand or computer. Chapter 6 opened a diflerent door. Its new functions
¢* and In x led to differential equations. You might say that all along we have been
solving the special differential equation dffdx = o(x). The solution is f= | {x)dx. But
the step to dy/dx = ¢y was a breakthrough.

The truth is that we are able to do remarkable things. Mathematics kas a language,
and you are learning to speak it. A short time ago the symbols dy/dx and |s(x)dx
were a mystery. (My own class was not too sure about i{x) itself—the symbol for a
function.) It is easy to forget how far we have come, in looking ahead to what is next.

I do want to look ahead. For integrals there are two steps to take—more functions
and more applications. By using mathematics we make it live. The applications are
most complete when we know the integral. This short chapter will widen (very much)
the range of functions we can integrate. A computer with symbolic algebra widens it
more.

Up to now, integration depended on recognizing derivatives. If »(x)= sec?x then
flx)=tan x. To integrate tan x we use a substitution:

i d
J.SInxdx=—J.—u= —Inu= —1Incos x.

Cos x u

What we need now are technigues for other integrals, to change them around until
we can attack them. Two examples are | x cos x dx and | /1 —x” dx, which are not
immediately recognizable. With integration by parts, and a new substitution, they
become simple.

Those examples indicate where this chapter starts and stops. With reasonable effort
(and the help of tables, which is fair) you can integrate important functions, With
intense effort you could integrate even more functions. In older books that extra
exertion was made—it tended to dominate the course. They had integrals like -
{ (x + Ddx//2x* — 6x + 4, which we could work on if we had to. Our time is too
valuable for that! Like long division, the ideas are for us and their intricate elaboration
is for the computer.

Integration by parts comes first. Then we do new substitutions. Partial fractions
is a useful idea (aiready applied to the logistic equation ¥ =cy— by?). In the last
section x goes to infinity or y(x) goes to infinity—but the area stays finite. These
improper integrals are quite common. Chapter 8 brings the applications.
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There are two major ways to manipulate integrals (with the hope of making them
easier). Substitutions are based on the chain rule, and more are ahead. Here we
present the other method, based on the product rule. The reverse of the product rule,
to find integrals not derivatives, is integration by parts.

We have mentioned [ cos®x dx and | In x dx. Now is the right time to compute
them (plus more examples). You will see how [ In x dx is exchanged for | 1 dx—a
definite improvement. Also | xe* dx is exchanged for | e* dx. The difference between
the harder integral and the easier integral is a known term—that is the point.

One note before starting: Integration by parts is not just a trick with no meaning.
On the contrary, it expresses basic physical laws of equilibrium and force balance.
It is a foundation for the theory of differential equations (and even delta functions).
The final paragraphs, which are completely optional, illustrate those points too.

We begin with the product rule for the derivative of u(x) times v(x):
dv du d
X) — + v(x) — = — (u(: L
u(x) i v(x) % gy (u(x)v(x)) (1)

Integrate both sides. On the right, integration brings back u(x)v(x). On the left are
two integrals, and one of them moves to the other side (with a minus sign):

dv , IS Y d_u
Ju(.\] = dx = u(x)v(x) JI.(.\} 7 dx. (2)

That is the key to this section—not too impressive at first, but very powerful. It is
integration by parts (u and v are the parts). In practice we write it without x’s:

7A  The integration by parts formula is [u dv=uv — [v du. 3)

The problem of integrating u dv/dx is changed into the problem of integrating
v du/dx. There is a minus sign to remember, and there is the “integrated term™ u(x)v(x).
In the definite integral, that product u(x)r(x) is evaluated at the endpoints a and b:

b d y b

u s dx = u(b)e(b) — u(a)vla) — | v Q dx. (4)
i - . dx

The key is in choosing u and v. The goal of that choice is to make [ v du easier than

[ u dv. This is best seen by examples.

EXAMPLE4 For j' In x dx choose u=In x and dv=dx (so v=x):

Jln x dx=uv— -[r du=x1n x— J‘x 1 dx.
X

I used the basic formula (3). Instead of working with In x (searching for an antideriva-
tive), we now work with the right hand side. There x times 1/x is 1. The integral of
1 is x. Including the minus sign and the integrated term uv = x In x and the constant
C, the answer is

flnxdx=xInx—x+C. (5)

For safety. take the derivative. The product rule gives In x + x(1/x) — 1, which is In x.
The area under y=Inx from 2to 3is 3In3—3—-2In2+ 2.
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To repeat: We exchanged the integral of In x for the integral of 1.

EXAMPLE 2 For { x cos x dx choose u = x and dv = cos x dx (so {x) = sin x):
{x cos x dx=uv — fovdu=xsin x— [sin x dx. (6)
Again the right side has a simple integral, which completes the solution:
§x cos x dx=x sin x + cos x + C. (7N

Note The new integral is not always simpler. We could have chosen u = cos x and
dv = x dx. Then v = }x2. Integration using those parts give the true but useless result

fx cos x dx =up—fvdu=§x* cos x + [ §x* sin x dx.
The last integral is harder instead of easier (x* is worse than x). In the forward
direction this is no help. But in the opposite direction it simplifies {4x” sin x dx. The
idea in choosing u and v is this: Try te give u a nice derivative and dv a nice integral.
EXAMPLE 3 For [(cos x)? dx choose u = cos x and dp = cos x dx (so v=sin x):
f{cos x)*dx =uv— [ v du=cos x sin x + | (sin x)* dx.

The integral of (sin x)* is no better and no worse than the integral of (cos x)2. But we
never see (sin x)* without thinking of 1 — {(cos x)°. So substitute for (sin x)*:

f{cos x)* dx =cos x sin x+ {1 dx — {(cos x)* dx.
The last integral on the right joins its twin on the left, and { 1 dx = x:
2 f(cos x)? dx = cos x sin x + x.
Dividing by 2 gives the answer, which is definitely not }{cos x)*. Add any C:
§(cos x)* dx = {cos x sin x + x) + C. (8)

Question Integrate {cos x)? from 0 to 2x, Why should the area be #?

Answer The definite integral is 3{(cos x sin x + x)]f)". This does give n. That area can
also be found by common sense, starting from {cos x)* + (sin x)? = I. The area under
1is 2r. The areas under (cos x)* and (sin x)? are the same. So each one is 7.

EXAMPLE 4 Evaluate [tan™'x dx by choosing u =tan"'x and v=x:
d
J.tan'lxdx=uv—'(.udu=xtan_1x—".x x ©

1+ x?

The last integral has w =1 + x? below and almost has dw = 2x dx above:

xdx 1 [dw 1 1 2
J.l+x2_2 " 2ln 2ln(l+x).

Substituting back into (9) gives f tan ™ *x dx as x tan~'x — §In(1 + x?). All the familiar
inverse functions can be integrated by parts (take v = x, and add “+ C™ at the end).

Our final example shows how twe integrations by parts may be needed, when the
first one only simplifies the problem half way.

EXAMPLES For j'xze"dx choose u = x? and dv = ¢"dx (so v=€*);
fx?e*dx = uv — [ v du= x*e* — | &(2x dx). (10)
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The last integral involves xe*. This is better than x?e*, but it still needs work:
| xe*dx =uv— [v du= xe*— [e*dx (now u= x). (11)
Finally ¢* is alone. After two integrations by parts, we reach | ¢*dx. In equation (11),
the integral of xe* is xe* — e*. Substituting back into (10),
| x?e"dx = x?e* — 2[xe* — €] + C. (12)
These five examples are in the list of prime candidates for integration by parts:
1 1

x"e*, x"sinx, x"cosx, x"lnx, e'sinx, e‘cosx, sin 'x, tan 'x,....

This concludes the presentation of the method—brief and straightforward.
Figure 7.1a shows how the areas [u dv and {vdu fill out the difference between the
big area u(b)v(b) and the smaller area u(a)v(a).

() 3(x) gy = v(0)3(x)
red area = large box v(x)
— small box — gray area

= Uylty = Uyl — IUdH

]
0

Fig. 7.1 The geometry of integration by parts. Delta function (area 1) multiplies v(x) at x=0.

In the movie Stand and Deliver, the Los Angeles teacher Jaime Escalante computed
J x*sin x dx with two integrations by parts. His success was through exercises—plus
insight in choosing u and v. (Notice the difference from [ x sin x* dx. That falls the
other way—to a substitution.) The class did extremely well on the Advanced Place-
ment Exam. If you saw the movie, you remember that the examiner didn’t believe
it was possible. I spoke to him long after, and he confirms that practice was the key.

THE DELTA FUNCTION

From the most familiar functions we move to the least familiar. The delta function is
the derivative of a step function. The step function U(x) jumps from 0 to 1 at x=0.
We write d(x) = dU/dx, recognizing as we do it that there is no genuine derivative at
the jump. The delta function is the limit of higher and higher spikes—from the
“burst of speed™ in Section 1.2. They approach an infinite spike concentrated at a
single point (where U jumps). This “non-function” may be unconventional—it is
certainly optional—but it is important enough to come back to.

The slope dU/dx is zero except at x =0, where the step function jumps. Thus
d(x) = 0 except at that one point, where the delta function has a “‘spike.” We cannot
give a value for J at x = 0, but we know its integral across the jump. On every interval
from — A to A, the integral of dU /dx brings back U:

A A Hz -
J 8(x) dx = .[ “dx=Ux|', =1 (13)
l i

_4 dx

“The area under the infinitely tall and infinitely thin spike §(x) equals 1.”

So far so good. The integral of d(x) is U(x). We now integrate by parts for a crucial
purpose—to find the area under v(x)d(x). This is an ordinary function times the delta
function. In some sense v(x) times d(x) equals v(0) times d(x)—because away from
x =0 the product is always zero. Thus ¢*d(x) equals d(x), and sin x d(x) = 0.
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The area under v(x)d(x) is v(0)—which integration by parts will prove:

7B The integral of v(x) times 8(x) is [* , v(x)d(x)dx = v(0).

The area is 1(0) because the spike is multiplied by v(0)—the value of the smooth
function v(x) at the spike. But multiplying infinity is dangerous, to say the least. (Two
times infinity is infinity). We cannot deal directly with the delta function. It is only
known by its integrals! As long as the applications produce integrals (as they do), we
can avoid the fact that J is not a true function.

The integral of v(x)d(x) = v(x)dU/dx is computed “by parts:”

j o(x)(x) dx = W) UR) |*, — I U(x) % dx. (14)
Remember that U =0 or U = 1. The right side of (14) is our area v(0):
o(A)-1— J.A Rl o(A) — (o(4) — (0)) = 1(0). (15)
0 dx

When v(x) = 1, this answer matches | ddx = 1. We give three examples:
[?,cos xd(x)dx=1 [, (Ux)+dx)dx=T7 [, (8(x))*dx= 0.

A nightmare question occurs to me. What is the derivative of the delta function?
INTEGRATION BY PARTS IN ENGINEERING

Physics and engineering and economics frequently involve products. Work is force
times distance. Power is voltage times current. Income is price times quantity. When
there are several forces or currents or sales, we add the products. When there are
infinitely many, we integrate (probably by parts).

I start with differential equations for the displacement u at point x in a bar:

dv . _,du
= f(x) with 1v(x) = kdx' (16)

This describes a hanging bar pulled down by a force f(x). Each point x moves through
a distance u(x). The top of the bar is fixed, so u(0) = 0. The stretching in the bar is
du/dx. The internal force created by stretching is v = k du/dx. (This is Hooke’s law.)
Equation (16) is a balance of forces on the small piece of the bar in Figure 7.2.

L
x=0 u(0)y=0
e

fAx "l v+ A

Fig. 7.2 Difference in internal force balances external force

x=1 H=w
—Av=fAx or —dv/dx =f(x) ' @ o

v= W at x = | balances hanging weight
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EXAMPLE & Suppose fix)= F, a constant force per unit length. We can solve (16):
Wx)=—-Fx+C and  ku(x)=—4Fx*+Cx+D. (17)

The constants C and D are settled at the endpoints (as usual for integrals}. At x=10
we are given 4=030 D=0. At x=1 we are given v=W so C= W+ F. Then o(x)
and u(x) give force and displacement in the bar.

To see integration by parts, multiply —dv/dx = f{x} by u(x) and integrate:

du

. 18
dx dx (18)

1 i dv 1 1
J' fox)utx) dx = —J' 7 ulx) dx = — u(xjo(x) |, + f ox)
¢ o dx ¢
The left side is force times digplacement, or external work. The last term is internal
force times stretching—or internal work. The integrated term has () = 0—the fixed
support does no work. It also has —u{1)W, the work by the hanging weight. The
balance of forces has been replaced by a balarce of work.

This is a touch of engineering mathematics, and here is the main point. Integration
by parts makes physical sense! When —dv/dx =f is multiplied by other functions—
called test functions or virtual displacements—then equation (18) becomes the
principle of virtual work. 1t is absolutely basic to mechanics.
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7.4 EXERCISES
Read-through questions 9 {e*sin x dx 10 fe*cos x dx
Inlegration by pans is the reverse of the _o  rule. It [9 and 10 need two integrations. I think e* can be w or 0.]

changes fudv into _ b minus _¢ . In case w=x and
dv = e**dx, it changes [xe*dx to _d _ minus _ e . The
definite integral §2 xe**dx becomes _t minus _ g _.

In choosing w and dv, the _h _ of ¥ and the _1__ of
dv/dx should be as simple as possible. Normally In x goes into
| and e"goes into __k__. Prime candidates are u = x or

x*and v=sinxor _1 _or _m . When u=x? we need
n__integrations by parts. For jsin~*x dx, the choice dv =
dxleadsto _ o  minus _p .

If U/ is the unit step function, dU//dx = 6§ is the unit __a
function. The integral from —A to A is U(A)— U{—A)=

r . The integral of w(x)}3{x} equals _ s . The integral
_[1_1 cos x 8(x)dx equals __ t . In engineering, the balance of
forces —dvfdx =/ is multiplied by a displacement u(x) and
integrated to give a balance of _ u

Integrate 1-16, usually by parts (sometimes twice).

I §xsinxdx 2 [xe*dx

3 [xe *dx 4 |xcos3xdx
5 [ x?cos x dx (use Problem 1}
6 [ xinxdx 7 §In(2x + 1)dx

8 | x? e*~dx (use Problem 2)

11 [ e™sin bx dx
13 f sin{ln x) dx
15 [ (n x)*dx

17 §sin"'x dx
19 | xtan~'x dx

12 | xe dx

14 § cos(in x) dx
16 j x*ln x dx
18 fcos™'(2x) dx

20 | x?sin x dx (from the movie)

21 §x*cos x dx 22 f x*sin x dx
23 | x%e"dx 24 § xsec”'x dx
25 § x sec?x dx 26 § x cosh x dx

Compute the definite integrals 27-34.

28 [ e/ dx (let u=1/x)
30 S In{x%)dx

32 (% xsinxdx

) .
34 [ x? sin x dx.

27 folnx dx

29 [ xe dx
31 [fxcos x dx
33 {3 In(x? + 1)dx
In 3540 derive “reduction formulas” from higher to lower
powers,

35 [x"edx=x"¢"—n [ X" " efdx
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36 [ x"e*dx =

37 [ x"cos x dx =x"sin x —n { X"~ 'sin x dx
38 [ x"sin x dx =

39 [(In x\'dx =x{In x)" —n [ (In x~'dx

40 | x(in xy'dx =

41 How would you compute | x sin x *dx using Problem 97
Not necessary to do it.

42 How would you compute | x £*tan™'x dx? Don’t do it.

43 (a) Integrate [ x%sin x?dx by substitution and parts.
(b) The integral [ xsin x?dx is possible if n is

44-54 are about optional topics at the end of the section.
44 For the delta function d(x) find these integrals:

@ [, e¥5(x)dx (b} [*, 0bxddx () [5cos x d(x)dx.
45 Solve dy/dx = 35(x) and dyfdx = 346{x) + ¥x).

46 Strange fact: 8(2x) is different from &(x). Integrate them
both from —1 to 1.

47 The intepral of d(x) is the unit step U(x). Graph the next
integrals R(x)= [ U(x)dx and Q(x}=[ R{x)dx. The ramp R
and quadratic spline () are zero at x =0.

48 In 5(x —4), the spike shifts to x = 4. It is the derivative of
the shifted step U{x — ). The integrat of v(x}é(x —}} equals
the value of » at x =4. Compute

(@) fo dx —Pdx;  (b) [ €*3(x — dx;
(© [* | 8(x)d(x — . :

49 The derivative of 6(x} is extremely singular. It is a “dipole”™
known by its integrals. Integrate by parts in {b} and (c):

Y dé LI’ ! dd ,
(a)J‘ —dx {b].l‘ xadx (c}.[_lv(x}adx=—v{(]].

g dx -1
50 Why is |1, U(x)é(x)dx equal to 4? (By parts.)

51 Choose limits of integration in o{x)= | f{x)dx so that
dojdx = —f{x)and v=0at x=1.

The next section will put old integrals into new forms. For example [ x?

1.2 Trigonometric Integrals

52 Draw the graph of u{x) if {1)=0 and —dvjdx = fix):
@r=x; by =Ux—1; (©/=3dx—1}

53 What integral u(x} solves k du/dx =u(x} with end con-
dition #(0} =07 Find u(x) for the three ¢'s (not f’s) in
Problem 52, and graph the three s,

54 Draw the graph of AU/Ax=[U{x + Ax)— U(x)]/Ax.
What is the area under this graph?
Problems 55—62 need more than one integration.
55 Two integrations by parts lead to V = integral of v
[uvdx =up— V' + [ Vu"dx,
Test this rule on | x*sin x dx.
56 After n integrations by parts, j u{dv/dx)dx becomes
ww — u' Vo, + u Do, ~ o+ 1) ™l

u™ is the ath derivative of u, and b, is the nth integral of v.
Integrate the last term by parts to stretch this formula to
n + | integrations.

57 Use Problem 36 to find | x*e*dx.

58 From f(x)—fi0)= [; f{r)di, integrate by parts (notice dr
not dx) to reach fx)=f0)+/(0)x + |3/ ()ix — )dt. Con-
tinuing as in Problem 56 produces Taylor's formula:

Slxy=fl0) + £ (O)x + % £+ + J‘ £ {—{;?txdr‘
- 0 .

n
59 What is the difference between j‘:} uw”dx and _[['} u'w dx?

60 Compute the areas A = [} In x dx and B = [, ¢* dy. Mark
them on the rectangle with corners (0, 0}, (e, 0), (e, 1), {0, 1).

61 Find the mistake. 1 don't believe ¢* cosh x = ¢*sinh x:
j e sinh x dx = ¢* cosh x — | e*cosh x dx
=e¢*cosh x —e“sinh x + _[ e*sinh x dx.

62 Choose € and D to make the derivative of
C ¢*cos bx + D ¢®sin bx equal to &**cos bx. Is this easier
than integrating ¢**cos bx twice by parts?

1—x*dx

will become [sin’@ cos?d d6. That looks simpler because the square root is gone. But
still sin?0 cos?8 has 1o be integrated. This brief section integrates any product of sines

and cosines and secants and tangents.

There are two methods to choose from. One uses integration by parts, the other
is based on trigonometric identities. Both methods try to make the integral easy {(but
that may take time). We follow convention by changing the letter § back to x.
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Notice that sin*x cos x dx is easy to integrate. It is u*du. This is the goal in
Example 1—to separate out cos x dx. It becomes du, and sin x is u.

EXAMPLE1 | sin’x cos’xdx (the exponent 3 is odd)

Solution Keep cos x dx as du. Convert the other cos?x to 1 —sinx:

sin*x  sin®x

+C.
3 5 ¢

J‘sinzx cos’x dx = J‘sinzx(l — sin®x)cos x dx =

EXAMPLE2 {sin®*xdx (the exponent 5 is 0dd)

Solution Keep sin x dx and convert everything else to cosines. The corversion is
always based on sin’x + cos’x = 1:

(1 = cos?x)sin x dx = J(1 ~ 2 cos’x + cos*x) sin x dx.
Now cos x is u and —sin x dx is du. We have {(—1 + 2u* — u*)du.
General method for { sin™x cos"x dx, when m or n is odd

If n is odd, separate out a single cos x dx. That leaves an even numher of cosines.
Convert them to sines. Then cos x dx is du and the sines are u's.

If m is odd, separate out a single sin x dx as du. Convert the rest to cosines.

If m and n are both odd, use either method.

If m and n are both even, a new method is needed. Here are two examples.

EXAMPLE3 [cos’x dx (m=0, n=2, both even)

There are two good ways to integrate cos®x, but substitution is not one of them. If
u equals cos x, then du is not here. The successful methods are integration by parts
and double-angle formulas. Both answers are in equation (2) below—I don’t see
either one as the obvious winner.

Integrating cos®x by parts was Example 3 of Section 7.1. The other approach, by
double angies, is based on these formulas from trigonometry:

cos’x=4(1+cos 2x)  sin’x =4(1 — cos 2x) (1

The integral of cos 2x is 4 sin 2x. So these formuias can be integrated directly. They
give the only integrals you should memorize—either the integration by parts form,
or the resuit from these double angles:

fcos’x dx equals ¥(x +sin xcosx} or Ix+gsin2x (plusC). (2)

{ sin?x dx equals (x — sin x cos x) or ix—%sin2x (plusC). (3)

EXAMPLE4 [cos®xdx (m=0, n=4, both are even)

Changing cos®x to ! — sin’x gets us nowhere. All exponents stay even. Substituting
u = sin x won't simplify sin*x dx, without du. Integrate by parts or switch to 2x. -

First solution Integrate by parts. Take u = cos®x and dv = cos x dx:
f (cos?x}{cos x dx) = up - | v du = cos*x sin x — [ (sin x)(— 3 cos’x sin x dx).

The last integral has even powers sin’x and cos’x. This looks like no progress.
Replacing sin®x by ! — cos?x produces cos*x on the right-hand side also:

[ cos*x dx = cos?x sin x + 3 | cos®x(1 — cos*x)dx.
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Always even powers in the integrals. But now move 3 [ cos®x dx to the left side:
Reduction 4 [ cos*x dx = cos®x sin x + 3 [ cos®x dx. 4

Partial success—the problem is reduced from cos*x to cos®x. Still an even power,
but a lower power. The integral of cosx is already known. Use it in equation (4):

| cos*x dx = cosx sin x + 2-%(x + sin x cos x} + C. (5)
Second solution  Substitute the double-angle formula cos®x = %+ 4 cos 2x:
jeos'x dx=[ (3 + % cos 2x)?dx =1} | (1 + 2 cos 2x + cos® 2x)dx.
Certainly | dx = x. Also 2 | cos 2x dx = sin 2x. That leaves the cosine squared:
fcos®2x = 4(1 + cos dx)dx =4x + § sin 4x+ C.
The integral of cos*x using double angles is
1[x+ sin 2x + x + §sin 4x] + C. {6)

That solution looks different from equation (5), but it can’t be. There all angles were
x, here we have 2x and 4x. We went from cos*x to cos?2x to cos 4x, which was
integrated immediately. The powers were cut in half as the angle was doubled.

Double-angle method for | sin™x cos"x dx, when m and n are even.

Replace sinx by ({1 ~ cos 2x) and cos?x by 3(1 + cos 2x}. The exponents drop to
mj2 and nj2. If those are even, repeat the idea (2x goes to 4x). If m/2 or n/2 is odd,
switch to the “general method™ using substitution. With an odd power, we have du.

EXAMPLE5 (Double angle) | sin®x cosx dx = { {1 —cos 2x)(1 + cos 2x)dx.

This leaves 1 — cos? 2x in the last integral. That is familiar but not necessarily easy.
We can look it up (safest) or remember it (quickest) or use double angles again:

1 2 1 1 1 x sindx
- — = — —_— - dx |dx= - — + .
4J‘(l cos* 2x)dx 2 J‘(l 2 cos x) x=3 C

2 32

Conclusion Every sin™x cos"x can be integrated. This includes negative m and n—
see tangents and secants below. Symbolic codes like MACSYMA or Mathematica
give the answer directly. Do they use double angles or integration by parts?

You may prefer the answer from integration by parts (I usually do). It avoids 2x
and 4x. But it makes no sense to go through every step every time. Either a computer
does the algebra, or we use a “reduction formula™ from nton—2:

Reduction n [ cos®x dx = cos" 'x sin x +(n— 1) [ cos"™ *x dx. N

For n= 2 this is { cos’x dx—the integral to learn. For n =4 the reduction produces
cos?x. The integral of cos®x goes to cos*x. There are similar reduction formulas for
sin™x and also for sin™x cos"x. I don’t see a good reason to memorize them.

INTEGRALS WITH ANGLES px AND gx
Instead of sin®x times cos®x, suppose you have sin 8x times cos 6x. How do you

integrate? Separately a sine and cosine are easy. The new question is the integral of
the product:
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EXAMPLE 6  Find (2" sin 8x cos 6x dx.  More generally find [2" sin px cos gx dx.

This is not for the sake of making up new problems. I believe these are the most
important definite integrals in this chapter (p and ¢ are 0, 1, 2, ...). They may be the
most important in all of mathematics, especially because the question has such a
beautiful answer. The imtegrals are zero. On that fact rests the success of Fourier
series, and the whole industry of signal processing.

One approach (the slow way) is to replace sin 8x and cos 6x by powers of cosines.
That involves cos'#x. The integration is not fun. A better approach, which applies to
all angles px and gx, is to use the identity

sin px cos gx =% sin{p + g)x + ¥ sin{p — g)x. (8)
Thus sin 8x cos 6x =4 sin 14x + 4 sin 2x. Separated like that, sines are easy to

integrate:
2 lcos 14x 1cos 2x |**
L sm8xcos6xdx—[ 1 1a 772 :L =Q,

Since cos 14x is periodic, it has the same value at 0 and 2z. Subtraction gives zero.
The same is true for cos 2x. The integral of sine times cosine is always zero over a
complete period {like O to 2x).

What about sin px sin gx and cos px cos gx7? Their integrals are also zero, provided
p is different from g. When p = g we have a perfect square. There is no negative area
to cancel the positive area. The integral of cos?px or sin’px is =.
EXAMPLE 7 o sin 8x sin Tx dx=0 and [3*sin? 8x dx=m.

With two sines or two cosines (instead of sine times cosine), we go back to the
addition formulas of Section 1.5. Problem 24 derives these formulas:

sin px sin gx = — 4 cos(p+ g)x + 3 cos(p — g)x 9

cos px cos gx= ¥ cos(p + g)x + 4 cos{p — g)x. (10)

With p=18and g =7, we get cos 15x and cos x. Their definite integrais are zero. With
p=238 and g =8, we get cos 16x and cos Ox (which is 1). Formulas (9} and (10) also
give a factor 5. The integral of § is 7

{2 sin 8x sin 7x dx = —4{3" cos 15x dx + §[2" cos xdx=0+0
[2" sin 8x sin 8x dx= —4[}" cos 16x dx + 43" cos Ox dx=0+x

The answer zero is memorable. The answer n appears constantly in Fourier series.
No ordinary numbers are seen in these integrals. The case p=g¢g=1 brings back
feos®xdx=3+7sin2x.

SECANTS AND TANGENTS

When we allow negative powers m and n, the main fact remains true. All integrals
§ sin™x cos"x dx can be expressed by known functions. The novelty for negative pow-
ers is that logarithms appear. That happens right at the start, for sin x/cos x and for
1/cos x {tangent and secant):

§ tan x dx = — | du/u= —In[cos x| (here u = cos x)

fsecxdx= [duju= |In|sec x+tan x| (here u=sec x +tan x).
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For higher powers there is one key identity: 1+ tan®x = sec®x. That is the old
identity cos?x + sin®x =1 in disguise (just divide by cos®x). We switch tangents to
secants just as we switched sines to cosines. Since (tan x)’ =sec’x and (sec x) =
sec x tan x, nothing else comes in.

EXAMPLE 8 | tan’x dx = [(sec’x — I)dx =tan x — x + C.

EXAMPLE ? | tan®x dx = [ tan x(sec?x — 1)dx.

The first integral on the right is [ du=}u?, with u=tanx. The last integral is
— { tan x dx. The complete answer is 3(tan x)* + In|cos x| + C. By taking absolute
values, a negative cosine is aiso allowed. Avoid cos x = (.

(tan x)™ 1

EXAMPLE 10 Reduction j(tan x)'dx = T~
m—

J}tan X" 2dx

Same idea—separate off (tan x)*> as sec?x — 1. Then integrate (tan x)™  Zsec’x dx,
which is ™~ 2du. This leaves the integral on the right, with the exponent lowered by
2. Every power (tan x)™ is eventually reduced to Example 8 or 9.

EXAMPLE 14 [ sec®x dx = uv ~ | v du = sec x tan x — | tan®x sec x dx

This was integration by parts, with 4 =sec x and v=tan x. In the integral on the
right, replace tan®x by sec?x — 1 (this identity is basic):

[ sec®x dx = sec x tan x — [ sec®x dx + [ sec x dx.

Bring | sec’x dx to the left side. That reduces the problem from sec’x to sec x.

I believe those examples make the point— trigonometric integrals are computable.
Every product tan™x sec”x can be reduced to one of these examples. If nt is even we
substitute u=tan x. If m is odd we set u=sec x. If m is even and » is odd, use a
reduction formula (and always use tan’x = sec?x — 1).

I mention very briefly a completely different substitution » = tan x. This seems to
all students and instructors (quite correctly) to come out of the blue:

2u 1—y? 2du

T and cosx=m and dx= T iy

sin x=

The x-integral can involve sums as well as products—not only sin™x cos"x but also
1/(5 + sin x — tan x). {(No square roots.) The u-integral is a ratio of ordinary polynomi-
als. It is done by partial fractions.

Application of | sec x dx to distance on a map (Mercator projection)

The strange integral In(sec x + tan x) has an everyday application. It measures the
distance from the equator to latitude x, on a Mercator map of the world.

All mapmakers face the impossibility of putting part of a sphere onto a flat page.
You can’t preserve distances, when an orange peel is flattened. But angles can be
preserved, and Mercator found a way to do it. His map came before Newton and
Leibniz. Amazingly, and accidentally, somebody matched distances on the map with
a table of logarithms—and discovered [ sec x dx before caiculus. You would not be
surprised to meet sin x, but who would recognize in(sec x + tan x)?

The map starts with strips at all latitudes x. The heights are dx, the lengths are
proportional to cos x. We stretch the strips by 1/cos x—then Figure 7.3c lines up
evenly on the page. When dx is also divided by cos x, angles are preserved—a small
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Rg. 7.3 Strips at latitude x are scaled by sec x, making Greenland too large.

square becomes a bigger square. The distance north adds up the strip heights

dxfcos x. This gives [ sec x dx.

The distance to the North Pole is infinite! Close to the Pole, maps are stretched
totally out of shape. When sailors wanted to go from A to B at a constant angle with
the North Star, they looked on Mercator’s map to find the angle.

7.2 EXERCISES

Read-through questions

To integrate sin“x cos®x, replace cosx by __a . Then
(sin*x —sin®x)cos xdx is __ b du. In terms of u =sin x the
integral is __¢ . This idea works for sin™x cos"x if either m
ornis _ 4

If both m and n are __® , one method is integration by

t . For | sin®x dx, split off v =sin x dx. Then — [ v du is

@ . Replacing cos’x by creates a new sin*x dx that
combines with the original one. The result is a reduction to
| sin?x dx, which is known to equat __1

The second method uses the double-angle formula sin?x =
i__. Then sin*x involves cos®’ __k__. Another doubling

comes from cos?2x = | . The integral contains the sine of
m

To integrate sin 6x cos 4x, rewrite it as 3sin 10x + __n

The indefinite integral is __© . The definite integral from

Oto 2mis __P . The product cos px cos gx is written as

Ycos(p+gix+ . Tts integral is also zero, except if
f __ when the answer is __$

With u = tan x, the integral of tan®x sec®x is __t . Simi-

larly §sec®x (sec xtanxdx)=_ u_ . For the combination
tan™x sec"x we apply the identity tan®x = __ v . After reduc-
tion we may need {tanxdx=__ % _and [secxdx=__ x

Compute 1-8 by the “peneral method,” when m or » is odd.
2 § cos®x dx
4 § cos®x dx

1§ sin?x dx

3 | sin x cos x dx
5 | sin®x cos’x dx 6 | sin’x cos®x dx

7 [ /sin x cos x dx 8 { ./sin x cos*x dx

9 Repeat Problem 6 starting with sin x cos x = $sin 2x.

10 Find { sin®ax cos ax dx and [ sin ax cos ax dx.

In 11-16 use the double-angle formulas (m, n even).
11 [f sin®x dx 12 [} sin®x dx

13 [ cos?3x dx 14 | sin’x cos®x dx
15 § sin’x dx + f cos’x dx 16 j sin*x cos*2x dx
17 Use the reduction formula (7) to integrate cos®x.

18 For n > 1 use formula (7) to prove

®i2 n—1 xi2
cos"x dx = —— cos” " 2x dx.
0 n 0

19 Forn=24,6, ...

W )1y
J’D X X = T D@

deduce from Problem 18 that

20 Forn=3,5,7, ... deduce from Problem 18 that

@@)n=1)
J’ e T

21 (a) Separate dv = sin x dx from u =sin®~ 'x and integrate
[ sin”x dx by parts.
(b) Substitute 1 —sin?x for cos?x to find a reduction
formula like equation (7).

22 For which n does symmetry give [f cos"x dx = 0?

23 Are the integrals (a)-(f) positive, negative, or zero?
a) [ cos 3x sin 3x dx  (b) f; cos x sin 2x dx
¢) [%,, cos x sin x dx  (d) {j (cos®x —sin®x) dx
() [2% cos px sin gx dx {f) [ cos*x dx
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24 Write down equation (9) for p=g =1, and (10) for p=12,
g = 1. Derive (9) from the addition formulas for cos(s + ¢) and
cos{s — £} in Section 1.5.

In 25-32 compute the indefinite integrals first, then the definite
integrals.

25 fa~ cos x sin 2x dx
27 [}, cos 99x sin 101x dx
29 [}, cos 99x cos 10tx dx
31 (3" cos x/2 sin x/2 dx

33 Suppose a Fourier sine series Asinx+ Bsin2x+
C sin 3x + -+ adds up 10 x on the interval from 0 to . Find
A by multiplying all those functions (including x) by sin x
and integrating from 0 to . (B and C will disappear.)

26 [} sin 3x sin 5x dx
28 [* cos?Ix dx
30 J2¥ sin x sin 2x sin 3x dx

32 [} x cos x dx (by parts)

34 Suppose a Fourier sine series A sinx+ Bsin2x+
C sin 3x + -+ adds up to 1 on the interval from 0 to n. Find
C by multiplying all functions (including 1) by sin3x
and integrating from O to n. (4 and B will disappear.)

35 In 33, the series also equals x from —n to 0, because all
functions are odd. Sketch the “sawtooth function,” which
equals x from —n to = and then has period 2n. What is the
sum of the sine series at x = n?

36 In 34, the series equals —1 from —= to 0, because sines
are odd functions. Sketch the *‘square wave,” which is
alternately —1 and +1, and find 4 and B.

37 The area under y=sin x from 0 to = is positive. Which
frequencies p have [g sin px dx = 07

38 Which frequencies g have [} cos gx dx =07
39 For which p, g is [}, sin px cos gx dx = 07

40 Show that [J sin px sin gx dx is always zero.

Compute the indefinite integrals 41-52.
41 { sec x tan x dx 42 | tan 5x dx

43 { tan%x sec?x dx 44 | tan’x sec x dx

7.3 Trigonometric Substitutions

45 | tan x sec’x dx 46 | sec*x dx
47 § tan*x dx 48 [ tan’x dx
49 f cot x dx 50 [cscxdx
+ int
1 js’"f dx 52 js'“f dx
cos’x cos3x

53 Choose 4 so that cos x —sin x= A cos(x + nf4). Then
integrate 1/(cos x —sin x).

54 Choose A 50 that cos x — \/5 sin x = 4 cos(x + n/3). Then
integrate 1/{cos x — \/3 sin x)2.
58 Evaluate 3" |cos x — sin x| dx.

56 Show that gcosx+bsinx=./a®+bicos(x —a) and
find the correct phase angie .

57 If a square Mercator map shows 1000 miles at latitude
30°, how many miles does it show at latitude 60°?

58 When lengths are scaled by secx, area is scaled by
. Why is the arca from the equator to latitude x
proportional to tan x?

59 Use substitution (11) to find [ dx/(1 + cos x).

60 Explain from areas why [j sin®x dx = [}, cos’x dx. These
integrals add to [} 1 dx, so they both equat

61 What product sin pxsingx is graphed below? Check
that {pcos px sin gx — g sin px cos gx)f{g> —p?) has this
derivative.

62 Finish j sec>x dx in Example 11. This is needed for the
length of a parabola and a spiral {Problem 7.3.8 and
Sections 8.2 and 9.3).

The most powerful tool we have, for integrating with pencil and paper and brain, is
the method of substitution. To make it work, we have to think of good substitutions—
which make the integral simpler. This section concentrates on the single most vaiu-
able collection of substitutions. They are the only ones you should memorize, and

two examples are given immediately.
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ra—t ; ) du, .
To integrate ./ 1 — x7, substitute x =sin 0, Do not set u=1— x* (a is missing

| a dx zos 0 di)
J\;"'l —x?dx —»J (cos t)(cos B df) j - R JLOS

V1-x cos

The expression /1 — x? is awkward as a function of x. It becomes graceful as a
function of 8. We are practically invited to use the equation 1 — (sin #)? = (cos 6)%.
Then the square root is simply cos 8—provided this cosine is positive.

Notice the change in dx. When x is sin 6, dx is cos 6 d8. Figure 7.4a shows the
original area with new letters. Figure 7.4b shows an equal area, after rewriting
[ (cos B)(cos 8 d6) as | (cos*8) d6. Changing from x to 0 gives a new height and a new
base. There is no change in area—that is the point of substitution.

To put it bluntly: If we go from /1 — x? to cos 8, and forget the difference between
dx and df, and just compute | cos § d6, the answer is totally wrong.

1 ! cos B
cos’h

da 0

m|.-_ﬂ
b3l d

Fig. 7.4 Same area for /1 — x? dx and cos*# df. Third area is wrong: dx # df

We still need the integral of cos?d. This was Example 3 of integration by parts, and
also equation 7.2.6, It is worth memorizing. The example shows this 8 integral, and
returns to x:

EXAMPLE 1 [ cos8 df = ¥ sin 8 cos 8 + 36 is after substitution

1

I e a9 P . .
J/1=x?dx=13x/1— x*+}%sin~'x is the original problem.

We changed sin 8 back to x and cos 8 to ./ 1 — x?. Notice that 8 is sin~ ' x, The answer
is trickier than you might expect for the area under a circular arc. Figure 7.5 shows
how the two pieces of the integral are the areas of a pie-shaped wedge and a triangle.

& 6 do
EXAMPLE 2 j = =j°°5 =0+C=sin 'x+C.
\,rl—xz cos #

Remember: We already know sin™!x. Its derivative 1/,/1 — x> was computed in
Section 4.4, That solves the example. But instead of matching this special problem

)
la=Lgnty : :

wedpe area > & 3 sin™' x ! |

! |

: |

! ]

¥ =Vl-£2 I ( 1

- | T i
B"triangle area %.\-\ll —a2 : area = mf2 J]
x 0 1 0 4

Fg.7.5 |./1—x*dxisasum of simpler areas. Infinite graph but finite area.
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with a memory from Chapter 4, the substitution x = sin & makes the solution auto-
matic. From [ d6 = 8 we go back to sin ™ ‘x.

The rest of this section is about other substitutions. They are more complicated
than x = sin 8 (but closely related). A table will display the three main choices—sin 6,
tan 8, sec §—and their uses.

TRIGONOMETRIC SUBSTIUTIONS

After working with . /1 — x?, the next step is . /4 — x*. The change x = sin 0 simplified
the first, but it does nothing for the second: 4 — sin?8 is not familiar. Nevertheless a
factor of 2 makes everything work. Instead of x = sin 8, the idea is to substitute x =

2sin &
Jd—x2=/4—4sin*0=2cos 0 and dx=2 cos & df.

Notice both 2’s. The integral is 4 { cos?8 df = 2 sin # cos § + 26. But watch closely.
This is not 4 times the previous [ cos®8 df! Since x is 2sin 8, & is now sin ~'(x/2).

EXAMPLEY (./4— x?dx=4[cos?0d8=x/1—(x/2)*+2sin" !(x/2).
Based on ./1— x* and /4 — x?, here is the general rule for ./a*— x*. Substitute

x =asin 8. Then tke a’s separate out:

Jat—xt=/a*>— a*in?8 =g cos 0 and dx=a cos 9 d8.

That is the automatic substitution to try, whenever the square root appears.

EXAMPLE 4 = do=

J'“ dx _J"‘” 4 cos 8 df _J'“” T
x=0/16—x% Jo=0. /42—~ 4*sin8)? Js=o 2
Here a? = 16. Then a= 4 and x = 4 sin 8. The integral has 4 cos & above and below,
s0 it is | df. The antiderivative is just 8. For the definite integral notice that x = 4
means sin & = 1, and this means & = r/2,

A table of integrals would hide that substitution. The tabie only gives sin~*(x/4).
There is no mention of [ d8 = 6. But what if 16 — x? changes to x* — 167

8
EXAMPLE 5 J' _dx
x=4 X2*16

Notice the two changes—the sign in the square root and the limits on x. Exampie 4
stayed inside the interval [x| <4, where 16 — x? has a square root. Example § stays
outside, where x? — 16 has a square root. The new problem cannot use x = 4 sin 6,
because we don’t want the square root of —cos?8,

The new substitation is x = 4 sec 8. This turns the square root into 4 tan 6:
x=4secf gives dx=4secftan #df and x?—16=16sec?d— 16 = 16 tan?4.

This substitution solves the example, when the limits are changed to &:

** 4 sec f tan 4§  [*/3 g
L " 4tan0 J.O sec 8 df = In(sec § + tan 9]]0 =In(2 + \/5)_

I want to emphasize the three steps. First came the substitution x=4secd. An
unrecognizable integral became [ sec 6 46. Second came the new limits (6 = 0 when
x =4, #=nr/3 when x = 8). Then | integrated sec .
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Example 6 has the same x? — 16. So the substitution is again x = 4 sec 0:

i 16dx (™ 64secOtan0df (™ cos 6 df
e Jx=s(x2—16}3’2_fs=,;3 (4 tan ) “L_@ sin%0

Step one substitutes x =4 sec 6. Step two changes the limits to 6. The upper limit
x = oo becomes 0 = /2, where the secant is infinite. The limit x = 8 again means 0 =
n/3. To get a grip on the integral, I also changed to sines and cosines.

The integral of cos f/sin’f needs another substitution! (Or else recognize
cot 0 csc 6.) With u = sin 0 we have [ du/u®> = — 1/u= — 1/sin 6:

/2 == n/2
Solution . T X BT
g3 Sin?0  sin 0 |, J3

Warning With lower limit 6 = 0 (or x = 4) this integral would be a disaster. It divides
by sin 0, which is zero. This area is infinite.

(Warning)> Example 5 also blew up at x = 4, but the area was not infinite. To make
the point directly, compare x '/? to x */?. Both blow up at x =0, but the first one
has finite area:

bl 1 LA -2
J.Dﬁdx=2\/;]o=2 J‘o'x'sﬁdx=$:|o=m.

Section 7.5 separates finite areas (slow growth of U\/;) from infinite areas (fast
growth of x */2),

Last substitution Together with 16 — x? and x? — 16 comes the possibility 16 + x?.
(You might ask about —16 — x2, but for obvious reasons we don’t take its square
root.) This third form 16+ x* requires a third substitution x=4tanf. Then
16 + x> = 16 + 16 tan’6 = 16 sec?6. Here is an example:

@ dx n/2 4SCC26 do 1 n/2 n
EXAM = | 2RSS 4TS
FLE? .[:=0 16 + x? J;zo 16 sec?0 4 1] 8

Table of substitutions for a* — x*, a® + x*, x* — a®
x=asin 0 replaces a®*—x* by a’cos’@ and dx by acos 0 df
x=atan 0 replaces a®>+ x> by a’sec’0 and dx by a sec’0 do

x=asec® replaces x*—a® by a*tan?@ and dx by asec 6 tan @ df

Note There is a subtle difference between changing x to sin # and changing sin 6 to u:
in Example 1, dx was replaced by cos 6 df (new method)
in Example 6, cos 0 df} was already there and became du (old method).

The combination cos 6 df was put into the first and pulled out of the second.

My point is that Chapter 5 needed du/dx inside the integral. Then (du/dx)dx
became du. Now it is not necessary to see so far ahead. We can try any substitution.
If it works, we win. In this section, x = sin  or sec f or tan 6 is bound to succeed.

dx , x dx du .
NEW J‘l o= G Jdﬂ by trying x = tan 6 OLD .[l - Jﬂ by seeing du

297
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We mention the hyperbolic substitutions tanh 8, sinh #, and cosh . The table below
shows their use. They give new forms for the same integrals. If you are familiar with
hyperbolic functions the new form might look simpler—as it does in Example 8.

x=atanh@ replaces o — x? by u?sech?8 and dx by asech?d 48

x=asinhf replaces a’+x* by a’cosh’¢ and dx by acosh ¢ df

x=acosh8 replaces x?—a? by 4?sinh2f and dx by asinh @ 40

=g#~C=cosh 'x+C.

x? = sinh 8

EXAMPLE 8 .[ dx - j'smh 8 a8
1

[ d8 is simple. The bad part is cosh™'x at the end. Compare with x = sec 6

.[ dx jsec&lan&d@

_ _ _ e
an 0 In(sec & + tan 8)_+ C=Inix+/x*—-1H+C

JE-1
This way looks harder, but most tables prefer that final logarithm. It is clearer than
cosh " x, even if it takes more space. All answers agree if Problem 33 is correct.

COMPLETING THE SQUARE

We have not said what to do for \/xz —2x +2 or ./ —x*+ 2x. Those square roots
contain a linear term—a multiple of x. The device for removing linear terms is worth
knowing. It is called completing the square, and two examples will begin to cxplain it:

xP=2x+2=(x— 1} +1=u*+1
-xI+2x=—(x-1)PF+1=1-1%

The idea has three steps. First, get the x* and x terms into one square. Here that
square was (x — 1)* = x> — 2x + 1. Second, fix up the constant term. Here we recover
the original functions by adding 1. Third, set ¥ = x — | to leave no linear term. Then
the integral goes forward based on the substitutions of this section:

.[ dx =j' du j' dx =j' du
V-2 ) SR J2x—x? ] J1-w

The same idea applies to any quadratic that contains a linear term 2bx:

rewrite x?+2hx+ ¢ as (x+b)*+ C, with C=c—~ h?

rewrite x4 2hx+ ¢ as —{x—h7+C with C=c+ b’

To match the quadratic with the square, we fix up the constant:
x2+10x+16= (x+5°+Cleadsto C=16—25= -9
—x2+10x+16=—(x— 5%+ Cleads to C= 16+ 25=41.

EXAMPLE 9 & dx | B
x>+ 10x+ 16 {(x+5%-9 w-9

Here u=x+ 5 and du=dx. Now comes a choice—struggle on with 4= 3sec 8 or
look for [ du/(u® — a?) inside the front cover. Then set a = 3:

du —lln
ut—9 6

x+2
x+38

u—3 =lln
u+3 6
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Note If the quadratic starts with 5x? or —5x?, factor out the 5 first:
5x% — 10x + 25 = 5(x* — 2x + 5) = {complete the square) = S[(x — 1) + 4].
Now u = x ~ | produces 5[u? + 4]. This is ready for table lookup or u=2tan .

dx _ du 2 sec?0 do 1 6
Sx2—10x+25 | S[W2+4] | Sidsecid] 10 )
This answer is /10 + C. Now go backwards: 8/10 = (tan™ ! $1)/10 = {tan = 4{x — 1))/10.

Nobody could see that from the start. A double substitution takes practice, from x
to u to . Then go backwards from @ to u to x,

EXAMPLE 10

Final remark For u® +a® we substitute u = a tan 6. For u* — a® we substitute u=
a sec 8. This big dividing line depends on whether the constant C (after completing
the square) is positive or negative. We either have C=a? or C = —a? The same
dividing line in the original x% + 2bx + ¢ is between c > b and ¢ < b?. In between,
¢ = b? yields the perfect square (x + b)>— and no trigonometric substitution at all.
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Read-through questions

The function /1 -- x* sugpests the substitution x=__9
The square root becomes _ b and dx changes to _ ¢

The integral [(1 — x?)*?dx becomes | __d__ 4. The interval

4<x< 1changesto _o <O _ ¢
For ./a® ~x? the substitution is x=__ @ with dx=

h_ Forx*—a*weusex=_1 withdx=_i _, Then
f dx/(1+ x*) becomes |46, because | +tan?f#=_k . The
answer is #=tan 'x. We already knew that _ | is the

derivative of tan ™ !x.

The quadratic x2 + 2bx + ¢ contains a _ m__ term 2bx, To
remove it we __n_ the square. This gives (x + b)? + C with

——

C=_o__. The example x? +4x + 9 becomes __p__. Then

u = x + 2. In case x? enters with a minus sign, —x*+ 4x +9
becomes {_ 9 )*+__r . When the quadratic contains

4x?, start by factoring out __3 .

Integrate 1-20 by substitution. Change ¢ back to x,

] ( dx 2 f  dx
JJ4—x? ,:;xz—a’
o o
3 | /a-xtdx 4 13;;3
5 f x® dx 6 f  dx
JJ/1—x% Jxr/1—x?
7 ——d-"z—, 8 §/x*+a® dx (see 7.2.62)
1+
x?—125 x3 dx
10
J N

[ dx o
11 _G_TI 12 x® —x" dx

Ja/x"—x
£ dx dx
13 | ———5 —_—
J (l +x2)3f2 14 j.(l __IZ}S;‘).
;s (% g | V1T xdx
J [x2—9)3"2 J x
] )
dx
"0 x 2dx 8 xz
J X —l J x +4
" * x? dx

19 2 | —=
,x’:;x’+1 JJ1+x2
21 (Important) This section started with x =sin 8 and

Jaxi/1—x*=[df=8=sin""x.

(@) Use x =cos & to get a different answer.
(b) How can the same integral give two answers?

22 Compute [ dx/x./x* — 1 with x = sec . Recompute with
x =csc 6. How can both answers be correct?

23 Imegrate x/(x? + 1) with x = tan &, and also directly as a
logarithm. Show that the results agree.

24 Show that { dx/x/x* — 1 =4 sec™ (x2).
Calculate the definite integrals 25-32.

a
15 j. a® — x? dx = area of

1 1
2% J‘ (1 — x2P? dx 27 J
_l .
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T 29 J dx
g V_.-'xz_] , (k2132

30 [k 3 J” dx
Jox+ L xE+ g
"1 _

32 1 —x% dx =area of
J1.2

31 Combine the integrals to prove the reduction formula

{n#0):
xn*l 1 _in -_\.n—l d
xz-l—l”*n_ 2

34 Integrate Licos x and 1/(1 +cos x) and /1 +cos x.

IS fa)x=
{b) From the triangle, this answer is f'=In(x + \ﬁ}
Check that dfidx=1//x>— 1.

(c) Verify thatcoshf=4%{ef +¢ f)=x Thenf=cosh 'x,
the answer in Example &

36 (a) x=
tb) The second triangle converts this answer to ¢ = ln{x +
o X7+ 1), Check that dgide=1:/x> + 1.

() Verify that stnh g = }(efF — ¢ " ®)=x s0 g =sinh 'x.

gives [ dx//x? — 1 = In(sec § + tan 0).

gives [ dx’ ‘x2 4+ 1 =In(sec (! 4 tan .

1

vt =1

In 37-42 substitute x = sinh {1, cosh . or tanh ). After integ-
ratien change back to .

"odx dx
7| 38 e
gy =1 Xy l=x
r PP i
39 J W V- ldy 40 I\L*\';z--“ dx
" P+ X2
a J = a2 J SRR
| —x~ X

7.4 Partial Fractions

Rewrite 43—-d8 as (x + b)> + C or —(x — b)* + C by completing
the square.

43 x?—4x+8 44 —x*+2x+8
45 x?—6x 46 x>+ 10
47 21+ 2x+1 48 P +4x—12

49 For the three functions fix} in Problems 43, 45, 47
mtegrate 1/f(x).

50 For the EEC functions g{x) in Problems 44. 46, 48
integrate 17,/ g{x).

51 1“'0rj dxi(x® + 2bx + ¢) why does the answer have diflerent
forms for b2 = ¢ and b? < ¢? What is the answer if b2 =¢7

52 What substitution u = x + b or 4 = x — b will remove the

linear term?
dx dx
(@) J‘.\'Z—4x+(' [ }J‘3x2+6x

dx dx
(©) J‘—xz—i- 10x + ¢ [d)J2x2— x

53 Find the mistake. With x=sin 0 and /1 — x? =cos 0,
substituting dx = cos & i) changes

In o
‘. cos?t dft into [ J0U=x?dx.
[

Jo Ja
54 (a)If x =tan f then | ;1 + x%dx = 0.
{b) Converl $fsec 0 tan # + Injsec 0 + tan )] back to x.
{e) If x =sinh & then | 1+ x> dx=] an.

{d) Convert {[sinh ! cosh §§ 4 i] back to x.
These answers agree. In Section 8.2 they will gtve the length
of u parabela. Compare with Problem 7.2.62.

85 Rescale x and v in Figure 7.5b to produce the equal area
| vdx in Figure 7.5c. What happens to y and what happens
to dx?

8 Draw y—1 1—x% and vy~ ['16 —x? to the same
scale (17 across and up; 47 across and §7 up).

§7 What ts wrong. if anything. with

This section is about rational functions P{x):Q(x). Sometimes their integrals are also
rational functions (ratios of polynomials). More often they are not. Tt 1s very common
for the integral of P/Q to involve logarithms. We meet logarithms immediately in the
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