
DERIVATIVE OF ln y AND sin�1 y 

There is a remarkable special case of the chain rule. It occurs when f .y/ and g.x/ are 
“inverse functions.” That idea is expressed by a very short and powerful equation: 
f .g.x// D x: Here is what that means. 

Inverse functions: Start with any input, say x D 5: Compute y D g.x/, say y D 3: Then 
compute f .y/, and the answer must be 5. What one function does, the inverse function 
undoes. If g.5/ D 3 then f .3/ D 5: The inverse function f takes the output y back to 
the input x. 

EXAMPLE 1 g.x/ D x� 2 and f .y/ D y C2 are inverse functions. Starting with x D 
5, the function g subtracts 2: That produces y D 3: Then the function f adds 2: That 
brings back x D 5. To say it directly: The inverse of y D x� 2 is x D y C2. 

5 9EXAMPLE 2 y D g.x/ D .x � 32/ and x D f .y/ D y C32 are inverse functions 
9 5 

(for 
temperature). Here x is degrees Fahrenheit and y is degrees Celsius. From x D 32 

(freezing in Fahrenheit) you find y D 0 (freezing in Celsius). The inverse function 
takes y D 0 back to x D 32: 

Notice that 5 .x � 32/ subtracts 32 first. The inverse 9 y C32 adds 32 last. In the 
9 5 

same way g multiplies last by 5 while f multiplies first by 9 :
9 5 

�1�F to �C to �F. Always g�1.g.x// D x and g.g D .y// D y: If f D g�1 then 
g D f �1: 

The inverse function is written f D g�1 and pronounced “g inverse.” It is not 1=g.x/: 

If the demand y is a function of the price x, then the price is a function of the demand. 
Those are inverse functions. Their derivatives obey a fundamental rule: dy=dx times 
dx=dy equals 1. In Example 2, dy=dx is 5=9 and dx=dy is 9=5: 

There is another important point. When f and g are applied in the opposite or­
der, they still come back to the start. First f adds 2, then g subtracts 2: The chain 
g.f .y// D .y C2/� 2 brings back y: If f is the inverse of g then g is the inverse of 
f . The relation is completely symmetric, and so is the definition: 

Inverse function: If y D g.x/ then x D g�1.y/: If x D g�1.y/ then y D g.x/: 

The loop in the figure goes from x to y to x: The composition g �1.g.x// is the “iden­
tity function.” Instead of a new point z it returns to the original x: This will make the 
chain rule particularly easy—leading to .dy=dx/.dx=dy/ D 1: 
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� 
EXAMPLE 3 y D g.x/ D x and x D f .y/ D y2 are inverse functions. � 
Starting from x D 9 we find y D 3: The inverse gives 32 

D 9: The square of x is 
f .g.x// D x: In the opposite direction, the square root of y2 is g.f .y// D y: 

Caution That example does not allow x to be negative. The domain of g—the set of �1

�1� numbers with square roots—is restricted to x � 0: This matches the range of g : The 
outputs y2 are nonnegative. With domain of g D range of g�1, the equation x D . 
is possible and true. The nonnegative x goes into g and comes out of g : 

To summarize: The domain of a function matches the range of its inverse. The �1inputs to g�1 are the outputs from g: The inputs to g are the outputs from g : 

If g.x/ D y then solving that equation for x gives x D g�1.y/: 

1if y D 3x� 6 then x D .y C6/ .this is g �1.y// 
3 �


3 3if y D x C1 then x D y� 1 .this is g �1.y// 

x/2 

In practice that is how g�1 is computed: Solve g.x/ D y: This is the reason inverses �1are important. Every time we solve an equation we are computing a value of g : 

Not all equations have one solution. Not all functions have inverses. For each y, 
the equation g.x/ D y is only allowed to produce one x: That solution is x D g�1.y/: If 
there is a second solution, then g �1 will not be a function—because a function cannot 
produce two x’s from the same y: 

1EXAMPLE 4 There is more than one solution to sin x D 
2 : Many angles have the 

same sine. On the interval 0� x � � , the inverse of y D sin x is not a function. The 
figure shows how two x’s give the same y: 

Prevent x from passing �=2 and the sine has an inverse. Write x D sin�1y: 

The function g has no inverse if two points x1 and x2 give g.x1/ D g.x2/. Its 
inverse would have to bring the same y back to x1 and x2: No function can do that; 
g�1.y/ cannot equal both xl and x2: There must be only one x for each y: 

To be invertible over an interval, g must steadily increase or steadily decrease. 

Inverse exists (one x for each y). No inverse function (two x’s for one y). 
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�1THE DERIVATIVE OF g

It is time for calculus. Forgive me for this very humble example. 

1EXAMPLE 5 (ordinary multiplication) The inverse of y D g.x/ D 3x is x D f .y/ D 
3 y: 

This shows with special clarity the rule for derivatives: The slopes dy=dx D 3 and 
1dx=dy D 
3 multiply to give 1: This rule holds for all inverse functions, even if their 

slopes are not constant. It is a crucial application of the chain rule to the derivative of 
f .g.x// D x: 

(Derivative of inverse function) From f .g.x// D x the chain rule gives 
f �.g.x//g�.x/ D 1: Writing y D g.x/ and x D f .y/, this rule looks better:
 

dx dy dx 1
 
D 1 or D : (1) 

dy dx dy dy=dx
 

The slope of x D g�1.y/ times the slope of y D g.x/ equals one.
 

This is the chain rule with a special feature. Since f .g.x// D x, the derivative of � �both sides is 1: If we know g we now know f : That rule will be tested on a familiar 
example. In the next section it leads to totally new derivatives. 

1=3EXAMPLE 6 The inverse of y D x3 is x D y : We can find dx=dy two ways: 

dx 1 dx 1 1 1 �2=3 directly W D y indirectly W D D D : 
dy 3 dy dy=dx 3x2 3y2=3 

The equation .dx=dy/.dy=dx/ D 1 is not ordinary algebra, but it is true. Those 
derivatives are limits of fractions. The fractions are .�x=�y/.�y=�x/ D 1 and we 
let �x� 0: 

1Graphs of inverse functions: x D y is the mirror image of y D 3x: 
3 � 

Before going to new functions, I want to draw graphs. The figure shows y D 
and y D 3x: What is special is that the same graphs also show the inverse functions. � 

2The inverse of y D x is x D y : The pair x D 4;y D 2 is the same for both. That 
is the whole point of inverse functions—if 2 D g.4/ then 4 D g�1(2). Notice that the 
graphs go steadily up. 
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The only problem is, the graph of x D g�1.y/ is on its side. To change the slope 
from 3 to 1 , you would have to turn the figure. After that turn there is another problem— 

3 
the axes don’t point to the right and up. You also have to look in a mirror! (The type­
setter refused to print the letters backward. He thinks it’s crazy but it’s not.) To keep 
the book in position, and the typesetter in position, we need a better idea. 

1The graph of x D y comes from turning the picture across the 45� line. The y
3 

axis becomes horizontal and x goes upward. The point .2;6/ on the line y D 3x goes 
1into the point .6;2/ on the line x D y: The eyes see a reflection across the 45� line. 
3 �1The mathematics sees the same pairs x and y: The special properties of g and g

allow us to know two functions—and draw two graphs—at the same time.1 The graph 
of x D g�1.y/ is the mirror image of the graph of y D g.x/. 

EXPONENTIALS AND LOGARITHMS 

The all-important example is y D ex . Its inverse is the natural logarithm x D lny : 

� � � � �1 x �1 ln yf f .x/ D ln.e / D x f f .y/ D e D y 

x xWe know that the derivative of e is e . So equation (1) will tell us the derivative of 
x D lny. This comes from the chain rule .dx=dy/.dy=dx/ D 1. 

dx 

dy 
D 

1 

dy=dx 
D 

1 

ex 
D 

1 

y 

The slope of lny is therefore 1=y. If you want to use different letters, there is nothing 
to stop you : 

1The function f .x/ D lnx has slope df 
D .

dx x 
n �1We already knew the functions x =n with slope xn�1, but n D 0 and slope x

was not allowed. Now we know that the natural logarithm fills this hole perfectly. 

THE INVERSE OF A CHAIN h.g.x// 

The functions g.x/ D x� 2 and h.y/ D 3y were easy to invert. For g�1 we added 2, 
and for h�1 we divided by 3: Now the question is: If we create the composite function 
z D h.g.x//, or z D 3.x� 2/, what is its inverse? 

Virtually all known functions are created in this way, from chains of simpler 
functions. The problem is to invert a chain using the inverse of each piece. The answer 
is one of the fundamental rules of mathematics: 

1I have seen graphs with y D g.x/ and also y D g�1.x/: For me that is wrong: it has to be x D 
g�1.y/: If y D sin x then x D sin�1y: 
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The inverse of z D h.g.x// is a chain of inverses in the opposite order: �1x D g .h�1.z//: (2) 

h�1 is applied first because h was applied last: g�1.h�1.h.g.x//// D x: 

That last equation looks like a mess, but it holds the key. In the middle you see 
h�1 and h: That part of the chain does nothing! The inverse functions cancel, to leave 
g�1.g.x//: But that is x. The whole chain collapses, when g�1 and h�1 are in the 
correct order—which is opposite to the order of h.g.x//: 

1EXAMPLE 7 z D h.g.x// D 3.x� 2/ and x D g�1.h�1.z// D 
3 z C2: �1 � h�1First h�1 divides by 3: Then g�1 adds 2: The inverse of h� g is g : It can be 

found directly by solving z D 3.x� 2/. A chain of inverses is like writing in prose—we 
do it without knowing it. � 

2 2EXAMPLE 8 Invert z D x� 2 by writing z D x� 2 and then x D z C2:
 

The inverse adds 2 and takes the square—but not in that order. That would give
 
2.z C2/2, which is wrong. The correct order is z C2: 

EXAMPLE 9 Inverse matrices .AB/�1 
D B�1A�1 (this linear algebra is optional). 

Suppose a vector x is multiplied by a square matrix B: y D g.x/ D Bx: The inverse 
function multiplies by the inverse matrix: x D g�1.y/ D B�1y: It is like multiplica­
tion by B D 3 and B�1 

D 1=3, except that x and y are vectors. 
Now suppose a second function multiplies by another matrix A: z D h.g.x// D ABx: 

The problem is to recover x from z: The first step is to invert A, because that came last: 
Bx D A�1z: Then the second step multiplies by B�1 and brings back x D B�1A�1z: 

The product B�1A�1 inverts the product AB . The rule for matrix inverses is like the 
rule for function inverses—in fact it is a special case. 

Mathematics is built on basic functions like the sine, and on basic ideas like the 
inverse. Therefore it is totally natural to invert the sine function. The graph of x D 
sin�1 y is a mirror image of y D sin x: This is a case where we pay close attention to 
the domains, since the sine goes up and down infinitely often. We only want one piece 
of that curve. 

For the bold line the domain is restricted. The angle x lies between ��=2 and 
C�=2. On that interval the sine is increasing, so each y comes from exactly one angle 
x. If the whole sine curve is allowed, infinitely many angles would have sin x D 0: 

The sine function could not have an inverse. By restricting to an interval where sin x 

is increasing, we make the function invertible. 
The inverse function brings y back to x: It is x D sin�1 y (the inverse sine): 

x D sin�1 y when y D sin x and �x� � �=2: (3) 

The inverse starts with a number y between �1 and 1: It produces an angle x D 
sin�1 y—the angle whose sine is y. The angle x is between ��=2 and �=2, with the 
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� 
Graphs of sin x and sin�1y: Their slopes are cos x and 1= 1� y2: 

requiblack sine. Historically x was called the “arc sine” of y, and arcsin is used in 
computing. The mathematical notation is sin�1: This has nothing to do with 1=sin x. 

1The figure shows the 30� angle x D �=6: Its sine is y D 
2 : The inverse sine of 1 

2 
is �=6. Again: The symbol sin�1.1/ stands for the angle whose sine is 1 (this angle is 
x D �=2). We are seeing g �1.g.x// D x: 

sin�1 .sin x/ D x for � � � x � � 
sin.sin�1y/ D y for � 1� y� 1: 

2 2 

EXAMPLE 10 (important) If sin x D y find a formula for cos x: 

Solution We are given the sine, we want the cosine. The key to this problem must 
be cos2x D 1� sin2x: When the sine is y, the cosine is the square root of 1� y2: � 

cos x D cos.sin�1y/ D 1� y2: (4) 

This formula is crucial for computing derivatives. We use it immediately. 

Problems 

Read-through questions 

Solve equations 1–6 for x; to find the inverse function x D g�1.y/: When more 
than one x gives the same y; write “no inverse.” 

1. y D 3x� 6 

2. y D Ax CB 

23. y D x � 1 

4. y D x=.x� 1/ [solve xy � y D x] �15. y D 1Cx 

6. y D �x� 
7. Suppose f is increasing and f .2/ D 3 and f .3/ D 5: What can you say about f �1.4/? 
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�1?8. Suppose f .2/ D 3 and f .3/ D 5 and f .5/ D 5: What can you say about f

9. Suppose f .2/ D 3 and f .3/ D 5 and f .5/ D 0: How do you know that there is no �1?function f

10.	 Vertical line test: If no vertical line touches its graph twice then f .x/ is a function 
(one y for each x). Horizontal line test: If no horizontal line touches its graph twice 
then f .x/ is invertible because . 

11.	 If f .x/ and g.x/ are increasing, which two of these might not be increasing? 

f .x/Cg.x/ f .x/g.x/ f .g.x// f �1.x/ 1=f .x/ 

12.	 If y D 1=x then x D 1=y: If y D 1� x then x D 1� y: The graphs are their own 
mirror images in the 45� line. Construct two more functions with this property 
f D f �1 or f .f .x// D x: 

13.	 If dy=dx D 1=y then dx=dy D and x D : 

x14.	 If dx=dy D 1=y then dy=dx D (these functions are y D e and x D ln y, 
soon to be honoblack properly). 

15.	 The slopes of f .x/ D 1 x3 and g.x/ D �1=x are x2 and 1=x2: Why isn’t f D g�1?
3 � �1/�What is g�1? Show that g .g D 1: 

Find dx=dy at the given point. 

16.	 y D sin x at x D �=6 

17.	 y D sin 2x at x D �=4 

18.	 y D sin x 2 at x D 3 

19.	 y D x� sin x at x D 0 

20.	 If y is a decreasing function of x, then x is a function of y: Prove by graphs 
and by the chain rule. 

21.	 If f .x/� x for all x, show that f �1.y/ � y: 

22.	 (a) Show by example that d 2x=dy2 is not 1=.d 2y=dx2/: 

(b) If y is in meters and x is in seconds, then d 2y=dx2 is in and d 2x=dy2 

is in . � 
23.	 Suppose the richest x percent of people in the world have 10 x percent of the 

wealth. Then y percent of the wealth is held by percent of the people. 

24.	 We know that sin � D 0: Why isn’t � D sin�10? 
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25. True or false, with reason: 

(a) .sin�1y/2 
C.cos�1y/2 

D 1 

(b) sin�1 y D cos�1y has no solution 

(c) sin�1 y is an increasing function 

(d) sin�1 y is an odd function 

(e) sin�1 y and �cos�1y have the same slope—so they are the same. 

(f) sin.cos x/ D cos.sin x/ 
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