Practice Questions

1. What is the derivative of $\frac{x^{10}}{10!}$?

2. How to see that $\frac{x^n}{n!}$ gets small as $n \to \infty$?

Start with $\frac{x}{1}$ and $\frac{x^2}{2}$, possibly big. But we multiply by $\frac{x}{3}, \frac{x}{4}, \cdots$ which gets small.

3. Why is $\frac{1}{e^x}$ the same as e^{-x} ?

4. Why is $e^{-1} = 1 - 1 + \frac{1}{2} - \frac{1}{6} + \cdots$ between $\frac{1}{3}$ and $\frac{1}{2}$? Then 2 < e < 3.

5. Can you solve $\frac{dy}{dx} = y$ starting from y = 3 at x = 0?

Why is $y = 3e^x$ the right answer?

6. Can you solve $\frac{dy}{dx} = 5y$ starting from y = 1 at x = 0?

Why is $y = e^{5x}$ the right answer?

7. Why does $\frac{e^{\Delta x}-1}{\Delta x}$ approach 1 as Δx gets smaller?

MIT OpenCourseWare http://ocw.mit.edu

Resource: Highlights of Calculus Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.