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STUDY GUIDE: Calculus of a Single Variable - Block II:

Differentiation

PRETEST

Find the rate of change of \/x2 + 16 with respect to
x/(x - 1) at x = 3.

To compute the height h of a lamppost, the length a of the

shadow of a six-foot pole is measured. The pole is 20 feet

from the lamppost. If a = 15 feet, with a possible error ‘
of less than one inch, find the height of the lamppost and

estimate the error in height. ‘

If x =t - t2, y =t - t3, find the values of dy/dx and
1.

dzy/dx2 at t =

When air expands adiabatically, the pressure p and volume

v satisfy the relationship pvl'4 = constant. At a certain

instant, the pressure is 50 lb/inz, and the volume 32in°>
and is decreasing at the rate of 4in3/sec. How rapidly is

the pressure changing at this instant?

Find the volume of the largest right circular cylinder

that can be inscribed in a sphere of radius r.

Solve the following differential equation, subject to the
prescribed initial conditions.

%% = X X -4, x=2, vy =3

Suppose you know that f'(x) always has a value between -1
and +1. Show that

|f£(x) - f(a)| < |x - a].

vii
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STUDY GUIDE: Calculus of a Single Variable - Block II:
Differentiation

UNIT 1l: Derivatives of Some Simple Functions

1. View: Lecture 2.010
2. Read: Thomas 3.1 and 3.2
3. Exercises :

2.1.1 Fina the equation of the line tangent to each of the

following curves at the point (1,1).

a. = 3x4 - 2x2
X
b. y = >
xT + 1
2.1.2(L)

a. Find the equation of the line which is normal to the

curve y = 2x2 at the point (1,2).

b. Find the equation of the line which passes through

(1,2) and is normal to the curve y = x2/4.

2.1.3(L) A particle projected vertically upward with an
initial speed of Vs feet per second reaches an elevation
s = vot = 16t2 feet at the end of t seconds. For what
value of L will the particle reach a maximum height
of 100 feet?

2.1.4
a. A particle moves along the x-axis according to the
rule x = Eﬁ%—i—lé-, 0 < tg 1l (x in feet, t in seconds),
£t + 1
Where is the particle and how fast is it moving when

t =0?

b. Where and at what time does the particle reverse its

direction?

IL. L.




STUDY GUIDE: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

2.1.5(L) Use the definition h'(x) = &iig [%(x L ai; - n(xi]
to show that if h(x) = f£(x)g(x) and f and g are both

differentiable functions, then so also is h, and, in fact,
h'(x) = £'(x)g(x) + £(x)g'(x)

Z.el6 Use mathematical induction to generalize the result of
2.1.6(L). Namely, if h(x) = fl(x)fz(x)....fn(x) and
fl'f2""" fn are each differentiable functions then
so also is h, and moreover, '

h'(x) = £ ()€, (X)L E () + £ (0, (x0)...E_(x) +
ot £ ()L E (%)

that is, each time we differentiate a different factor
of fl(x)fz(xJ...fn(X)-

2.1.7(L) Suppose u and v denote differentiable functions of
a" (uv) i
X. Develop a formula for —5~ ¢ assuming that the
dx
required derivatives all exist. (The resulting formula

is known as Leibniz's Rule.)

2.1.8(L) Suppose f(x) = xng(x), where g(x) is at least n-times
differentiable and g(0) # 0. Show that
£(0) = £'(0) = ... = £ 1) (0) = 0, but that
£ (0) = nig(0) # 0.

- S S O =S - o s
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STUDY GUIDE: Calculus of a Single Variable - Block II:

Differentiation
UNIT 2: Increments and Infinitesimals
View: Lecture 2,020
Read: Supplementary Notes, Chapter VI, "Infinitesimals and

and Differentials", Sections A, B, and C.
Read: Thomas 3.4, 3.7, and 3.8

Exercises:

22 sk In the expression Ay = (g%) AX + eAx, determine € as

i : 3
a function of Ax, and show that i;fo e =0 1if y = x7.

2022 With the same notation as in 2.2.1, determine ¢ if

f(x) = x4 + 2x3 + 7.

2.2+3(L)
a. Approximate /26 by investigating f£(x) = /X at x = 25
and Ax = 1.
b. In a similar way, approximate %5_.

2.2 .4 Use differentials to find an approximate value for
(1.0006) > + (1.0006)° + /1.0006.

2.2.5(L) To compute the height h of a lamppost, the length
a of the shadow of a six-foot pole is measured. The
pole is 20 feet from the lamppost. If a = 15 feet,
with a possible error of less than one inch, find the

height of the lamppost and estimate the error.

2:2.6 Approximate by differentials the error in finding
the area of a circle whose radius is six feet, if the

error in measuring the radius can be as great as 1/2 inch.

2:.2:.7 Use differentials to approximate the error in finding
the volume of a sphere of radius six feet, if the maximum

error in measuring the radius is 1/2 inch.

TEL2E
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STUDY GUIDE: Calculus of a Single Variable - Block II:

Differentiation

UNIT 3: Composite Functions and the Chain Rule

View: Lecture 2.030

Read: Thomas 3.5 and 3.6

Exercises:

2.3.1(L) Find £'(x) if £(x) = (x2 + 1)3.

2.3.2 Find £'(x) if £(x) = (3x° + 2x + 1)%; if f(x) =
[z + 2x + 1)% + 215,

2233 {%)

a. Given that x = £(t) and y = g(t) and that f', £,

', and g" all exist, find expressions for ay and

El dx
2 2 2

g—% in terms of g%, g%j ! , and é—;.

dx dt dt

b. The curve C is given by the pair of equations o :

a a? o
i oY b4
Find % and —>
dx
x = t2 +
2.3.4 The curve C is defined parametrically by 3
Find g% and g-—%—at the point of C which corresponds
dx

to t = 1. Find the equation of the line tangent
to C at the point corresponding to t = 1.

2635 A curve is defined by the equations x = t5 - t2 % Uy

6 3

y =t + 2t° + 4, What point on the curve corresponds

to the value t = 1? Find the equation of the line

tangent to this curve at this point.

2.3.6(L) Find the instantaneous rate of change of x2 + 16

with respect to x3 - 1.

II.3.1

+




STUDY GUIDE: Calculus of a Single Variable - Block II:
Differentiation - Unit 3: Composite Functions
and the Chain Rule

2.3.7(L) Find S¥ if it is known that y = f(x2) and that
£'(x) = 4x3'+ 1

2..3.8

-

a. Find the derivative of x° + sz + 8 with respect to

x3 - 2X.

fea AN = 3 - df(u) _ __u
b. Find % iE ¥ f(x” + 1) and T u2 .l




STUDY GUIDE: Calculus of a Single Variable - Block II:
Differentiation

UNIT 4: Differentiation of Inverse Functions

1. View: Lecture 2,040

Z2. Read: Supplementary notes, Chapter VI, "Infinitesimals

and Differentials," Sections D and E.

3. View: Lecture 2.045

4. Read: Thomas 3.3

5. Exercises
2.4.1(L)

a. Let f be defined by f£(x) = 2x - 7. Compare the
functions g and h where:

g(x) = £ 1(x)

ana

hiix) =

£(3x)
b. How do the derivatives of g and f compare?
2.4.2(L) Fina L if x> + 3x%y +y! = 4,

2.4.3 Find the equaticn of the line which is tangent to
the curve x’ + 5x3y + y6 = 7 at the point (1,1).

, . ax") _ _.n-1

2.4.4(1-.1) Show that —d—'x-"--— = nx

number, n.

for any rational

2.4.5 Fina the derivative of vx“ + 16 with respect to

—5—-at X = 3.

x=-1 5 d2
2.4.6 Use implicit differentiation to find 3% and &L
if x3 - y3 = 1. Check by solving for y as e

an explicit function of x.

d d2y 3
2.4.7(L) Find =¥ and £¥ if x = y° + y.
dx dx2

IT.4.1
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STUDY GUIDE: Calculus of a Single Variable - Block II:
Differentiation - Unit 4: Inverse Functions

2.4.8 A particle moves along the x-axis according to the
rule t = x5 + x3 (where x is in feet and t is in
seconds). Find the speed and the acceleration of

the particle when x = 1 and t = 2.
2.4.9(L)

a. The general equation of the circle centered at (h,k)
with radius r is (x—h)2 + (y-k)2 - rz. How must h
and k be related if the circle is tangent to the

curve y = x2 + 1 at (1,2)? 2
a7y
dx2
at (1,2) is the same for both the circle and the

b. Find h, k, and r in the special case where

curve.

IT.4.2
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STUDY GUIDE: Calculus of a Single Variable - Block II:

Differentiation

UNIT 5: Continuity

View: Lecture 2.050

Read: Thomas 3.9

Exercises

2.5.1(L) Let f be defined by f(x) = xzx—-Sg + 6

If £ continuous at x = 2? Explain.

x% + 2x - 15

2.5.2 How must g(3) be defined if g(x) = ey

and g is to be continuous at x = 3?

2.5.3(L) In this problem let dom f
denote any number such that a < x

[a,b] and let x
< b.

1
1
a., If f'(xl) exists, show that f is continuous at

X = Xq.
b. If f is continuous at x = X, can we conclude that
f'(xl) exists? Explain.
2.5.4 Prove that every polynomial function is continuous.
2.5.5(L) Let f be defined by:

2
£(x) = |¥ if x < 0

mx + b if x 3 0, where both m and b are constants.

a. How must m and b be chosen if f is to be continuous
at x = 0?2

b. How must m andib be chosen if f is to be differentiable
at x = 0?2




STUDY GUIDE:

2+5.6

b.

2.5.8(L)

Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

x3 if x > 0

x4 + 1 if x < 0

Show that f'(0) does not exist.

Define f by f(x) =

Show that f + g is continuous at x = ¢ if both

f and g are continuous at x = c.
Generalize part (a).

The function f is known to be continuous on the

interval [0,1]. It is also known that f(0) is negative

and that f(1) is positive. Show that the equation
f(x) = 0 must have at least one real root between
0 and 1.

Let f(X) = T;I{-_-I

Then clearly f(0) is negative and f(1) is positive.

Does the equation f(x) = 0 have a real root between

0 and 1? Explain.

Why doesn't the result of Exercise 2.5.8(L) apply
here?

11.5.2
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STUDY GUIDE:

Calculus of a Single Variable - Block II:
Differentiation

UNIT 6: Applications of the Derivative I

View: Lecture 2.060

Read: Thomas 4.1, 4.3, and 4.4

Exercises

2.6.1 (L)

a. Sketch a smooth curve y = f(x) which has the
properties that f(1) = 0, £'(x) > 0 for x > 1 and
f'(x) < 0 for x < 1.
b. Sketch a smooth curve y = f(x) which has the

properties that f(1) = 0, £"(x) < 0 for x < 1 and
£" (k) >0 fox x » L.

2.6.2 The function f has the following properties: (1)
its domain is the set of all real numbers and
f(x) >0 for all x (2) £(0) = 3 and £'(0) =0
(3) f£'(2) =0 (4) £"(1) =0 (5) for each x,
f(x) = £f(-x) (6) £f'(x) > 0 for x > 2 and
f'(x) <0 for 0 < x <2 (7) f£f"(x) > 0 for
X > 1 and f"(x) < 0 for 0 < x < 1.
Sketch a curve y = f(x) (i.e., the graph of f(x))
which has each of the above properties.

26 3CE) Utilize any information that can be deduced from

the first and second derivatives as well as other

properties of the function to sketch y = x/(x + 1).

IT.6.1




STUDY GUIDE:

2.6.4

2.6.5(L)
a.

b

2.6.6

249 (L)

Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

I
»
I
S
"

Sketch the curve y

Sketch the curve y = x + = .

Use the result of (a) to deduce that the sum of
any positive number and its reciprocal is at

least as great as 2.

A positive number is to be added to four times the
square of its reciprocal. What is the smallest
sum that can be obtained and what number yields

this sum?

Sketch the curve y = 2x3 + 2x2 - 2x - 1. From

your graph answer the following questions:

How many times and approximately where does the
curve cross the x-axis (that is, how many real
roots are possessed by the equation 2x3 + 2x2 - 2x -1,

and what are their approximate values)?

How many times and approximately where would the
the curve cross the x-axis if 3 were added to each

y-value?

Similarly, how many times and approximately where
would the curve cross the x-axis if 3 where sub-

tracted from each y-value?

IT.6.2

E® €3 L3



STUDY GUIDE: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

2.6.8(L)

a. What is the value of c if the slope of the
E—%—I at the point (2, c/3) is equal

How should ¢ be chosen if we want the line

x + y = 3 to be tangent to the curve y = E_E_T-?
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STUDY GUIDE:

1. Read:

Calculus of a Single Variable - Block II:
Differentiation

UNIT 7: Applications of the Derivative II

Thomas 4.2

2. Exercises

A A W )

2.7.4(L)

When air expands adiabatically, the pressure p and
the volume v are related by pvl’4 = constant. At a
certain instant, the pressure is 40 pounds per square
inch and the volume is 16 cubic inches. The volume
is decreasing at the rate of 2 cubic inches per
second. How rapidly is the pressure changing at

this instant?

When an ideal gas expands isothermally, the pressure
p and the volume v are related by pv = constant. At
a certain instant the pressure is 40 pounds per
square inch while the volume is 16 cubic inches and
is decreasing at the rate of 2 cubic inches per
second. How rapidly is the pressure changing at

this instant?

A raindrop is always in the form of a sphere. As it
falls it accumulates moisture at a rate proportional
to its surface area. Show that under these condi-
tions the radius of the raindrop changes at a constant

rate.

A light is at the top of a pole 50 feet high. A
ball is dropped from the same height from a point 30
feet from the light. How fast is the shadow of the
ball moving along the ground 1/2 second later? It
is assumed that the ball falls a distance of lst2

feet in t seconds.

I1.7.1
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2+ 155 L)

Calculus of a Single Variable - Block II
Differentiation - Unit 7: Applications of the
Derivative II

A particle moves along the circle x2 + y2 = 1 with
a velocity whose x-component is always egual to -y
at the point (x,y). Describe the y-component of the
velocity and determine whether the particle traverses
the circle in the clockwise or counter clockwise
direction.

A particle moves along the ellipse 4x2 - 9y2 = 36 in

such a way that g%-= X. Find the x-component of the

speed of the particle when it is at the point
4v2
(er) .

Two ships sail from a point O at right angles to one
another. At a certain instant, ship A is 40 miles
from O and moving at 20 miles per hour while ship B
is 30 miles from O and moving at 25 miles per hour.

How fast are the two ships separating at this point?

EEL T2

L3
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STUDY GUIDE:
Differentiation

Unit 8:

Calculus of Single Variable - Block II:

Applications of the Derivative III

1. View: Lecture 2.070

2. Read: Thomas 4.5 and 4.6
3. Exercises

2.8.1 (L)

its slope is given by %ﬁ =

The curve y = f(x) is characterized by the fact that

(x - 1)%x - 2)3x - 3)%(x - 4)8.

For what value(s) of x does the curve possess arela-

tive low point?

A relative high point?

A rectangle is inscribed in a circle of radius r.

Show that the area of the rectangle is maximum when

2. B2
the rectangle is a square.
2.8.3 (L) Find the right circular
that can be inscribed in a
2.8.4 (L)

a. The numbers Clree-s,C, are

Determine the number x for

(x - cn)2 will be as small

cylinder of maximum volume

sphere of radius r.

recorded in an experiment.

which (x = €)% + ... +

1)
as possible.

b. The four points (w2,-%), (0,1), (1,2), and (3,3) are
observed to lie "fairly close" to a line of the form

y = mx + 1.

minimize the sum (y:L - mxy

2
(yy - mx, - 1)7 + (y4

How should m be chosen if we wish to

- D%+ (v, - mx, - 12+

2
- mx, - 1) where (x;,y;), (X50¥5) 4

(x5,v5), and (k4,¥,) are coordinates of the given points?

2.8:5 (L)
point A which is the point

nearest to him. If he can

A motorist is stranded in a desert 5 miles from a

on a long straight road

travel 15 mph on the desert

and 39 mph on the road, find the point at which he

should meet the road to get to a point B on the road in

the shortest time if:

II.8.1




STUDY GUIDE: Calculus of a Single Variable - Block II:

[2.8.5

Differentiation - Unit 8: Applications of
the Derivative III

(L) cont'd]
B is 5 miles from A

B is 9 miles from A

B is 1 mile from A

2.8.6 (L) A wire of length L is cut into two pieces, one

being bent to form a square and the other to form an

equilateral triangle. How should the wire be cut if:
the sum of the two areas is to be a minimum?
the sum of the two areas is to be a maximum?

The motion of a particle which is moving in a straight
line is given by s = At - (1 + A4)t2 where A is a posi-
tive constant. Show that the particle moves forward
initially but eventually reverses its direction. Show
also that if A can be chosen as an arbitrary constant
then in no event can the forward motion of the particle

ever exceed 1/8.

II.8.2
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STUDY GUIDE: Calculus of a Single Variable - Block II:
Differentiation

UNIT 9: Rolle's Theorem and its Consequences

1. View: Lecture 2.080
2. Read: Thomas 4.7 and 4.8
3. Exercises

2.9.1 (L) Let Pl(xl,le and Pz(xz,yz) denote any two points

on the parabola y = ax® + bx + c, and P,(x5,y3) be

the point on the arc P,P, at which the tangent line
is parallel to the straight line which joins Py and

P Use the mean value theorem to show that

2.
Xy = (xl + xz)/z.

2.9,.2 Using the expression f(b) - f(a) = (b - a)f'(c),
find ¢ if we are given that f(x) =/X , a = 2, and
b = 4.

2.9.3 We are told that h(x) has the same derivative as does
f(x) where f(x) = x3 + 7x% + (2x2 + 1)5. We are also
told that h(0) = 3. Determine h(x).

2.9.4 (L) Suppose |[f'(x)| € 1 for all real x. Show that for
all real numbers a and b, |f(b) - f(a)| s |b - a].

2.9.5

a. Use the mean value theorem to prove that if f'(x) > 0

for all x then whenever Xy < Xy, f(xl) < f(xz).
b. Show that the equation
x3 + x - 11 =0

has exactly one real root and that this root lies

between x = 2 and x = 3.

11.9.1
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STUDY GUIDE:

Calculus of a Single Variable - Block II:
Differentiation

UNIT 10: Anti-derivatives or the Indefinite Integral
View: Lecture 2.090
Read: Thomas 5.1 through 5.3
Exercises
2.10.1 (L)
a. Find J‘(Zx + l)3dx
b. Flndj (2x + 1)1%0x
2.10.2
a. Findfxx - 4 dx
b. The curve y = f(x) passes through the point (2,3) and
; . ” ; dy _ 2
i1ts slope at any point (x,y) is given by = = xx® - 4.
Determine f(x).
2.10.3 The curve C passes through the point (1,4) and has the
property that its slope at any point P(x,y) is given
by ax J + 1. What is the equation of the curve C?
2.10.4 (L) We are told that the curve C passes through the
point (2,1) and that its slope at any point P(x,y) is
; 2 ; ;
given by %% = % . Determine the equation of C.
2.10.5 A curve has the property that its slope at any point
P(x,y) is given by:
2
oy . WE- T4
dx Yy
Find the equation of the curve. What is the equation
if we also know that the curve passes through the origin?
2.10.6 A particle moves along the x-axis in such a way that

its speed at time t is given by v = t2. At time t = 0

the particle is at x = 1. Determine x as a function
of t.

8 PN 0 O B




STUDY ‘GUIDE: Calculus of a Single Variable - Block II:
Differentiation - Unit 10: Anti-derivatives
or the Indefinite Integral

2.10.7 A particle moves along the x-axis in such a way that
its acceleration at any time t is given by a = -t2.
Express x as a function of t.

2.10.8 (L) A particle moves along the x-axis in such a way
that its acceleration is given by a = —t2. In addition
we know that at t = 0, the particle is at the origin
(x = 0) and has a speed of 9 feet/second in the direction
of the positive x-axis.

a. What is the relationship between x and t?

b. What is the maximum displacement of the particle in
the direction of the positive x-axis and at what time

does this displacement occur?
c. At what time does the particle return to the origin?
d. Sketch the graph of x versus t.

2.10.9 (L) A particle moves in the direction of the positive
x-axis at a constant speed of 36 feet/second when it
suddenly experiences a deceleration which is propor-
tional at any instant to the square root of the
velocity, We also know that the particle comes to rest
in 8 seconds. How fast was the particle moving four
seconds after it began to decelerate? How far has it
travelled during this time? How far does it travel

before it comes to a stop?

EE 10,2
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STUDY GUIDL:

Calculus of a Single Variable - Block II
Differentiation

UNIT 11: The Definite Indefinite Integral

1. View:

Lecture 2.100

2. Exercises

2edl ok

Compute each of the following definite integrals.

3
a.f ®% - 1yat
0

3
d.f (d & 3x%)dx
g

2.11.2(L) A particle moves along the x-axis according to

the rule v = t - t2, 0 < tg 2 (vis in f+/sec,
t in seconds).

Where is the particle at t=2, relative to its

position at t=0?

What was the total distance travelled by the particle

during the two seconds?

A particle moves along the x-axis according to the rule

v = t2—3t+2, 0gtg<4 (t in seconds, v in f+/sec).
Find the displacement of the particle.

Find the total distance travelled by the particle.

IL.11.4,




STUDY GUIDE: Calculus of a Single Variable - Block II
Differentiation - Unit 11: The Definite
Indefinite Integral

_ 1 1
(2.11.4(L) Comp’utef 2 (x+1)dx a‘ndf (x+1)dx. From this
0 -1

a
f (x)dx need not equal 2[ Fix)dax,

0

a
conclude that f
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STUDY GUIDE: Calculus of a Single Variable - Block II:

Differentiation

QUIZ

The line Ll is tangent to the curve'x3 + 3xy + y3 = 5 at

the point (1,1) and the line L2 is tangent to the curve

= X #+ 1
x - 1

at the point (2,3). Find the point at which

Ll ana L2 intersect.

5 6 5

Suppose we are given that y = t~ + 2t + 1 and t = x  + x~ +

2

Compute the value of '] at x = 1,

dx2

Use the notion of differentials to estimate 5/33. 1Is your

answer greater than or less than the correct answer?

(a)

(b)

(c)

An isosceles triangle is to be inscribed in a circle
of radius r. Describe the triangle if the area of the

triangle is to be as great as possible.

What volume would be obtained if the equilateral tri-
angle inscribed in the circle of radius r were revolved
through 360 degrees?

A right circular cone is to be inscribed in a sphere of
radius r. Find the height and the radius of the base
of the cone if the volume of the cone is to be as great

as possible and what is the maximum volume?

3

Sketch the curve y = x4 + x7. If a particle moves along

this curve in such a way that its horizontal speed (i.e.,

the x-component of its speed) is five feet per second, how

fast is the particle rising (i.e., what is the y-component
of its speed) at the point (1,2)?

IT.0.1
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STUDY GUIDE: Calculus of a Single Variable - Block II:
Differentiation - Quiz

-l uN we

6. Show that the equation x> + 3x2 = 2 has exactly one real
root in the range 0 < x < 1.
T (a) Determine the curve C if it is known that the curve 3

passes through the point (3,4) and that its slope at

any point (x,y) is the cube of its y-coordinate.

(b) The same as (a), only now the slope is given by:

dx
8. A particle moves along the x-axis with a speed v given by
- ax _
V. = £(x).

(a) Show that the acceleration of the particle is given by
a=f(x)f'(x).

(b) If the particle starts from rest at the origin and is
put in motion in the direction of the positive x-axis
in such a way that its acceleration is always equal to

the square of its displacement, find its speed when

X = 6. (Assume that the units of measurement are feet
and seconds.)

-l o.

I1.0.2
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation

Pretest

2
dx dx2 _
=1 t=1

4, +8.75 lbs. per in.z/sec.

5 4/?#:3
- - g

6. y=32x% - 0)¥2 43

7. |f(x) - f(a)| = |[£'(c)| |x - a| and [£'(c)| €1 ~

[f(x) - £(a)]| <€ |x - a
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation

UNIT 1l: Derivatives of Some Simple Functions

2el.l

All that has happened in this unit is that we have developed
more convenient ways of computing g%. We have not changed the
meaning of g%; Thus in this exercise all we do is compute g§ZJ
to find the slope of the required line and combine this with K=

the fact that (1,1) is on the line. We then use the "old" recipe:

y -1 _ dy
x - 1 dx =
x=1

to find the required equation.

Thus:
4 2 d 3 d
(@) y = 3x -2x° » ¥ = 12¢° - 4x » X _
dx dxx=l 8
. Pl
.- x =1 8
or: y = 8Xx - 7 is the equation of the line.
2 . 2 2 2
(b) = X+l dy _ (x7+1) (1)-(x+1)2x _ x"+1-2x"-2x _ 1l-2x-x
Y= = ax = A = U B N
X" +1 (x7+1) (x“+1) (x7+1)
© 9y e 222l o T2 o Lk
dxx=l (l+l)2 4 2
ie YT 5E a WL esi -
ra— 5 18 the aesired equation

or: 2y - 2 =-x +1

Il
w

or: x + 2y

IIz1.1




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1: Derivatives of Some
Simple Functions

[2.1.1 cont'd]

(Actually our answer in each case should be called an equation
rather than the equation since a line can be represented by several

different equaticns.)

2.1 2n)

we must, of course, first recall what is meant by a normal
to a curve. A normal is roughly equivalent to a perpendicular.
That is, if a curve is smooth at some point P then the normal to
the curve at P is simply the line which is perpendicular to the
line which is tangent to the curve at P. Thus, in terms of calculus,
we proceed as in 2.1.1 to find the slope of the tangent line at P
and this is g% evaluated at P. We then use the fact that the
normal line has its slope equal to the negative reciprocal of the

tangent line and proceed to write the equation.

In part (a) we are given that the curve is y 2x2. ‘Hence

g§-= 4x, and at the point (1,2) this is equal to 4. Thus the line
normal to this curve at (1,2) has its slope equal to - %. Thus

the equation of the aesired line (and notice that once we have a
point and the slope we compute the equation of the line just as
we aid in Block I, the only difference being that calculus allows
us to fina the slope more conveniently than by the use of the
"delta 'method'") is:

y-2 _ _1
x - 1 4
or -
x + 4y = 9.
TI.%.2
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

[2.1.2(L) cont'd]

Now with the exception of having to know the meaning of a |
normal line, part (a) offered us no new wrinkles. Part (b) on
the other hand is a horse of a different color. Among other
things, let us observe that in this case (1,2) isn't a point on

the curve.

Let us also remark at this time that it is always an excellent
idea to check whether a given point belongs to a given curve. It
is, to say the least, quite embarrassing to find the normal to a
curve at a point which is not on the curve. Moreover there are no
built-in "alarm" systems in mathematics that tell us that we
arrived at an answer by an incorrect method. In other words if
we imitated our procedure in part (a) by assuming that (1,2) was
on the curve we would obtain a numerical, glthough, incorrect,

Yy *

i - 2 and this in turn
is % when x = 1. We could still say that the normal line has its

slope equal to =2 and we could still form the equation:

answer. That is, we could still see that

Y -2 - _3 or y = -2x + 4 (see Figure 1)

but the error would lie in the fact that to be on the curve, the

point whose x-coordinate is 1 must have its y-coordinate equal to2

1/4. In other words, the point (1,2) lies ABOVE the curve y = % .
Pictorially: |

LL.1l..3




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit l1l: Derivatives of Some
Simple Functions

[2.1.2(L) cont'd]

(Figure 1)

The line we are seeking must pass through the point (1,2)
and it must intersect the curve at some point, say, (u,v).

Calling the line L, we see that the slope of L is given by

v - 2
M, S g= I Lk
d That is = x2+ dy _ x , (dy =4
Now (f!) =2 r Y 4 dx 2 dax/) _ 2
ax 2 xX=u
(a,v)

Therefore since L is normal to the curve, its slope at (u,v) must
be given by

m = = (2)

EL .1 44
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

[2.1.2(L) cont'd]

Combining (1) and (2) we obtain, since a line can have only one

slope:

v -2 _ =2
Simplifying (3) yields
uv = 2 (4)

Finally, since (u,v) is on the curve x2 = 4y, it follows that
2 u?

u® = 4v; or v = 7~ - Putting this result into (4) we obtain
u2 3
u(zm- = 2 or u- = 8 or u = 2
2
. - 2 s
¢ - Vv = ‘2'1‘— — ]-.
Hence our normal line meets the curve at (2,1). Its slope is
given by %% = %E% = -1, and its equation becomes %}% = -1 (or
Y-1 - _] since both (1,2) and (2,1) are on the line). Thus the
X=-2
required line has as its equation, X + y = 3. (An alternative
way to see this is that since m o= =} and u = 2, m_ = -1, There-
-2 u L
fore ¥:I = -1 or x +y = 3.)

By the way, if we refer again to Figure 1, notice that
given the point P we located the point Q analytically by use of
calculus techniques. An interesting related question is how

could we have located Q by purely geometric means. Notice that

IL.1:5




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

[2.1.2(L) cont'd]

from P there are (infinitely) many lines that can be drawn to the
curve., It is quite natural to define the distance from P to a
curve as the length of the shortest straight line that can be
drawn from the point to the curve.

Thus, from an experimental point of view, we could draw a
line from P to the curve and approximate the position that gives
us the shortest line. Without actually doing this experiment it
might still not be too difficult to visualize the plausibility
of the result that if C is "smooth" (i.e., differentiable) then
the shortest line which joins P to C is normal to the curve at
the point at which it meets the curve. (This is an extension of
the result that the shortest distance from a point to a line is

the length of the perpendicular from the point to the line.)

As an application of this observation, we can solve our

present exercige by using it. Namely, let (u,v) denote a typical

X 2

point on y = T Then VQu - %) + (v = 2)2 denotes the distance

from (1,2) to the curve y = %— at (u,v). To minimize this distance,

it is sufficient to minimize the square of the distance (that is,

for positive numbers a and b, a < b if and only if a2 < bz).

If we also recall that v 5 u2/4, which is the meaning of
(u,v) being on the curve y = %—, we find that the square of the

distance is given by:

2
£(a) = fu = 1)° + (j— = 2y%

*

2
*Clearly we could have worked with g(u) = V{u—l)2+(3— - 2)2,

but "lifting" the square root symbol makes the different%ation
simpler from a computational point of view. For this reason it
is quite a common practice when we want to minimize (or maximize)
a distance, that we work with the square of the distance. The
key factor, of course, is that for.,positive numbers f(x), f(x) is
minimum (maximum) if and only if £°(x) is minimum (wmaximum) .

II.1.6
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

[2.1.2(L) cont'd]

Recalling that f is smallest when f' is 0 (why?), we differentiate

the above relation to obtain:

2
£ = 2-1 +2(3 -2 (2Y
u3
= 2“—2+Z~ —21.1
= (u® = 8)/4
Therefore f'(u) = 0 if and only if u = 2 and we have obtained the

same result as we obtained in our earlier solution.

2.1.3(L)

In many ways this problem affords us a good review but also
presents one or two new computational-type wrinkles. We recall
that the particle reaches its maximum height when its velocity
is 0. We also know that at any time t its velocity is defined
by ds/dt, so that in this case,

%% = A 32t (1)
Thus the velocity is 0 when t = v0/32. This, in turn, means that
the maximum height is obtained when t = vo/32; and this means
that for a given value of V,r We can find the maximum height of
the  particle by replacing t by vo/32 in the expression

s = v, t - 16t2. Denoting the maximum height by Snax' Ve have:

IT.1.7




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

[2.1.3(L) cont'd]

2
vo(v0/32) - 16(v0/32)

1]
Il

max

I

2
v, /64 (2)

Notice that (2) allows us to compute much more than what was
asked for in this problem. Namely (2) allows us to compute the

maximum height very quickly for any given initial velocity.

Notice, of course, that we can "invert" (2) and write:

v, = 8Vsmax (3)

and (3) shows us how to choose v0 once srrlax is specified. 1In

particular, we obtain the answer to our present problem quite

trivially now simply by replacing Sh by 100 in (3).

ax

Thus

v_ = 8(v100) =8(10)

o]

80 feet Q.E.D.

Also notice how (2) [and for this matter (3)] tells us
a great deal in terms of experimental value. For example
we see from (2) that the maximum height is proportional to the
SQUARE of the initial velocity. Hence we are forewarned that
especially for fairly large initial speeds, a small change in
speed can produce a large change in maximum height. In terms

of a graph:

IT.1.8
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

[2.1.3(L) cont'd]

maximum height = s

max

2.1.4
At any time t the speed of the particle is given by g%.
Since X = E_ti.jﬁ i
t + 1
ax _ (2 + 1)16 - (16t + 12)2t _ 16 - 24t - 16t°
aE (£% + 1)2 (£2 + 1)2
Thus i ]%-_.1_2_ (la)
tT + 1
dx _ 16 - 24t - 16t2
VEEE * 2 2 (35)
(™ + 1)
IT.1.9
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

[2.1.4 cont'd]

0+12
0+1

= 12 feet

Therefore when t = 0,
v = &E:E:% = 16 feet/sec.
(1+0)

at t=0
\

o-

l—‘dl

(¥}
)
%

(b) The particle changes direction when its speed is zero (why?).
From equation (1lb)

v=0 * 16-24t-16t2

Il
o

Yy 8(2—3t—2t2)

1l
o

> 8(l-2t) (2+t) =0

1
S —— = -
LA 5 or t 2

But t = =2 is not in the given domain 0 € t & 1.

.. Particle reverses direction when t = % and from equation (la)

this occurs when

1
16(50 + 12

X = > = 16 feet

1
(i) + A

IT1.1.10
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functicns

[2.1.4 cont'd]

Thus:
+ i —+ —~ X
0 /yl2 16
Particle and gets to here before ‘
starts here it reverses direction
2ol 5 1a)

Here we wish to derive a result given in the text but in

terms of our original definition of a derivative.

Letting h(x) = £(x)g(x), we have
. _ lim[h(x+Ax) -h (%) _  lim|f (x+Ax) g (x+Ax) -f (%) g (%)
areE) AX>0 [ Ax Ax~>0 I: Ax (1)

Now since f' and g' exist, we know that

lim [£(x+Ax)-f(x)] _ .,
Ax+0 [: Ax - £ )
while
lim [g(x+ax)-g(x)] _
AX~+0 Ax ] = 9'x

Somehow or other we would like to make use of these results in
(1). To do this we employ our trick of adding 0 in a clever way.

This time we write it as -f(x)g(x+Ax) + £(x)g(x+Ax) to obtain:

IT.1.11




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

[2.1,5(L) cont'd]

f(x+Ax)g(x+Ax)-£(x)g(x)
Ax

_ E(x+0x) g (x+48x) -f (x) g (x+4x) +£f (x) g (x+8%) -f (x) g (x)

Ax

[f(x+mﬁc3{-f(x) g(x+Ax) + £(x) [ﬂﬁgi) —g(x):}

Our last expression gives us a strong hint that we are home free;

since as AX -+ 0,

f (x+AX) -f (%) [g(x+ax) ~g(x) ,
[ T > £'(x), T + g'(x)
and g (x+Ax) - g(x).
Cleaning things up a bit, we have:
Bt i) = limjh (x+AX)-h(x) | _ 1im[%(x+&x)g(x+Ax)—f(x)g(x)
Ax—+0 Ax Ax=+0 Ax

_lim £ (x+AX) -f (x) g (x+Ax) -g (x)
= WD ‘g TR } g (x+ax) + £(x) { T }

We now apply our limit theorems from Block I (and in this
sense, differential calculus is a corollary of the limit theorems
since we prove all of the formulas for differentiation by writing

derivatives as limits and applying the limit theorems) to obtain:

i 1 L P [

il Il .
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

[2.1.5 (L) cont'd]

lim[£ (x+A%) £ (x)] lim lin limEg(x-!—Ax)-g(x):]
he () = ax+o[ AX ) Ax~0 g:i‘i‘)/;amof(x)apo Ax
= f'(x)g(x)** £(x)g"'(x)
Finally observe that the feeling that we might expect
[f£(x)g(x)]' = £'(x)g'(x) is incorrect. Logically speaking, the

hope that the aerivative of a product is the product of the

derivatives is inconsistent with out definition of a derivative.

In fact even if we didn't know the correct answer we could

still show that f'(x)g'(x) # [f(x)g(x)]"' by means of an example.

For instance, let f(x) = x2 and g(x) = x3.

*Tt is not trivial to conclude that lig g(x+Ax) = g(x). 1In
fact if g is not differentiable the resul¥”%acesn't even have

to be true. For example define g by

g(x) = {2 21

0 % % L
. lim :
Then g(l) = 2, but AX0 g(l+Ax) = 0 (since, then, 1l+Ax < 1)
. lim : ; ; ;
SR g(1+Ax) # g(l). However, if g is differentiable then

lim E;(xﬂ_\,x) -g(x)] = g' (%)

AxX-+0 AX
Then the identity g(x+Ax) =E(x+‘ﬁf§;‘g(x):} Ax + g(x) yields
lim _ lim [g(x+A%)-g(x)] lim ax lim
pax»0 JEHX) = L0 [ AX | ax+0 * pxs0 90X

= [g'(x)] (0) + g(x)

we know g'(x) exists in order for
our proof to work.

TTwlied3

g(x) In other words it is important that




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1: Derivatives of Some
Simple Functions

[2.1.5(L) cont'd]

Then £'(x) = 2x, g'(x) = 3x2

. £V (x)gt(x) = 6x (2)
On the other hand,
£(x)g(x) = x°x> = x
VoE(x)g(x)]!' = 5x (3)

A comparison of (2) and (3) shows that f£'(x)g'(x) and

[f(x)g(x)]"' are not synonyms.

Thus what we have really done in this exercise is to show how

[f(x)g(x)]"' must be defined if we are to be consistent with our

definition. Unless we agree to change the definition we cannot

avoid the conclusion obtained in this exercise. It is like saying

that once we agree on the number of inches in a foot and on the

number of feet in a yard, we are no longer free to decide arbitrarily

on how many inches there are in a yard.

From Exercise 2.1.5(L) we know the result is true for n =

So we assume the result to be true for n = k, and we need only

prove that this assumption implies the result is true for n = k + 1.

I11.1.14
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

[2.1.6 cont'd]

Thus we need only show that

(£, (x). k+l(x)]' = fi(x)...fk+l(x)+. HE (%) a1 ()
once it is assumed that:
[fl(x)...fk(X)]' = fi(x)...fk(x)+...+fl(x)...fﬁ(x)

Well:

L5 s o 5 08 1 °

[(£,(x)...f, (x))f (x)]"

k+1

[fl(x)...fk(x)]'fk+l(x) + [fl(x) f (x)1£ (x) (by Exercise

k+1 2.1.6)

[fi(x)...fk(x)+...+fl(x)...fi(x)lfk+l(x) + [fl(x) o (x)]fk+l X)

(by the inductive
assumption)

fi(x)...fk(x)f '+fl(x)"‘fﬁ(x)fk+l(X) s fl(x) f (x) £

k+1 (K)+..

which is exactly what we had to show!

53 S IR .5
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

Sowdee 1 L18)

Here we get one of our first chances to derive an inductive
result in which the desired proposition is not nearly as obvious
as in our previous examples. At the same time it gives us more

drill with taking derivatives.

To begin with, we already know that:

d'(uv) _ du dav
= —&V"‘ua"; (1)

From (1) it follows that:

2 ;
d”(uv) _d (d _d [du dav
—~2 & [&“’"ﬂ = & [a““’x * udQ
dx
=2 2. \*
(au +d_ud_V) 2 (d_zd_v+ud_V)
a 2 dx dx dx dx dx2
2 i \x\ )/:/
_d'u du dv d v
= 2t it 2 )
ax (G F:d

(We draw the arrows to emphasize that terms from the different

sets of parentheses can be combined.)

*Remember that du/dx and dv/dx are also functions of x, hence
the product rule also applies to du/dx v and u dv/dx. Also realize
that the derivative of a difrerentiable function need not be
differentiable. That ii' the fact that dv/dx exists does nog %n
itself guarantee tE?E d"v/dx” exists. For example2 I y = x /
then_&yédx = 3/2 % which exists at x = 0, but d<4v/dx“ =
3/4 X = 3/4/X which doesn't exist at x = 0. This is why the
problem must include the statement that the required derivatives
exist.

IT.1.16
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

[2.1.7 (L) cont'd]

At any rate, using (2) we may obtain:

d3(uv) _ gﬁ‘dz(uv) _d_ dzu + 2du av. + d2v
dx3 dx dxz dx dx2 dx dx dxz
_la3u. a?u av),[.4%u av , .du a%v du a’v adv
-—*3*‘”—2(1— & T 2t 2t 3
dx dx }/// d dx dx
3 )/// 2
d u d u dv du d"v v
= =W # g BV 4 8L e W & u——— (3)
A% % L. 2 dx dx dic 2 3

If we compare (1), (2), and (3) we notice the so-called

binomial coefficients:

If we let C(n,k) (often written as (E)) denote the number of
ways of choosing k objects from a collection of n objects without

regard to order, it can be shown that:

C(n,k) = ETTEéETTLX'(see the appendix on "combinations")

In fact with this new notation, (3) becomes

5 1 i L




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

[2.1.7(L) cont'd]

3 3 2 2 3
T) - 3,08 % +c3,0TL 4 03,208 TL + (3,300 T
dx dx dx dax dx

3
3-k k
= E C(3,k)d3; 4y
d d
k=0
d%u. . ’ . d®e . .
(where ax° s definea to be u and 3x° 1S defined to be v.)
Based on these results, our conjecture is that
n
a(uv) aky
- C(n,k) o T (4)
dx dx dx
k=0
We know that this result is true when n = 2 or when n = 3.

To complete our inductive proof we need only show that (4) is

true when n is replaced by n + 1. More symbolically, we must show

that:
I
if a” (uv) _ LK) s, %
' —
dxn dxn |3 dxk then
k=0
n+1
dn+1(uv) el x) (n+l)—ku dkv
n+l ! (n+1) -k k
dx dx dx
k=0
IT:1:18
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

[2.1.7(L) cont'd]

Let us concentrate on a typical pair of bracketed terms in

obtaining dn+l(uv) from dn(uv) .

am &a e .

dxn+l dxn
We have:

n n n-k+1 k-1 n-k k n
d ) _ iy sen, k-1 B ST+ cn, S Tl T
dx dx dx dx dx dx dx

dn—k+lu dk—lv
Now one term when we differentiate C(n,k-1) is:
n-k+1 k-1
dx dx
n-k+1 k
d udyvwv
dxn k+1 dxk
dn—k dk
while one term when we differentiate C(n,k) BEN e
n-=k k
dx dx
eitss. i dn-k-l-lu dkv
' —
ax™ k+1 dxk
Adding these two terms yields:
n-k+1 k
E:(n,k—l) + C(n,kﬂ a — T d -
dx dx

11.1.19




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1: Derivatives of Some
Simple Functions

[2.1.7(L) cont'd]

d(n+l)-ku dkv

dx(n-l-l)—k k

C(n+1,k)

dx

which is precisely what our typical term in the recipe for

dn+l(uv) must look like for our inductive proof to hold g.e.d.

dxn+1

(For those who would like to see the details done completely in terms

of sigma-notation, we need invoke the additional property that

n n n
(a, +b, ) = a + ; b
Zkk Zk -
k=1 k=1 k=1
n

For: p (ak+bk) = (a1+bl) + (a2+b2) S (an+bn)

£

k=1 _

= (al+a2 +i o ok an) + (bl+b2 +...4 bn)
n n
*The result that C(n+l,k) = C(n,k-1) + C(n,k) can be obtained

directly from the factorial definition of C(n,k). More intuitively,
if we wish to choose k objects from n+l we may focus our attention

on one of the objects. If this object is chosen we must still choose
k-1 from the remaining n and this can be done in C(n,k-1) ways. If
this object is not chosen then we must still pick k objects from the
remaining n ana this can be done in C(n,k) ways. Since exactly one
of these two conditions must previal there are in all C(n,k-1) +
C(n,k) ways of choosing k objects from (n+l) objects.

17.1.20
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

[2+:L:7(L) cont'd]

n
n n-k k
Then starting with Q_i%Kl.= C(n,k) Q—H:%-é—%-we obtain
dx dx dx
k=0
n
MM . oa [N\ i iy B
= Jar .'. L -_
=0

Recalling that the derivative of a sum is the sum of the derivatives,

we then obtain:

n
a"*! (uv) _ § d_|cn k)dn_ku a*v
i ! —_ E
dxn+ L 3 dx dxn k dx
k=0
n
n-k+1 k n-k k+1
d udyv d u d v
= Cln; k) —~ + C(n,k) —
dxn k+1 dxk dxn k dxk+l
k=0
n n
_ St k)dn--k-l-lu dkv . i b k)dn—ku dk+lv
a kL gk agt Tk gettl
k=0 k=0
IT.1.21




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

[2.1.7(L) cont'dl]

n n+1l
n-k k+1 n-k+1 k
d u d v d udwv
But E C(n,k)—— = E Cln,k=1) =—-
dxn k dxk+1 dxn k+1 dxk
k=0 k=1

where we merely reduced k by 1 inside the sigma-sign and adjusted

for this in the index of summation. That is:

n n+1l

E a = % a,_, = a; *...+a
k=1 k=2

Also since
n n
E ay = ay + E- ak étec.;
3

k=1 k=2

ET e la22
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1: Derivatives of Socme
Simple Functions

[2.1.7(L) cont'd]

while

n+1 n

n-k+1 k n-k+1 k

d udv d udv

C(n,k-1) = = C(n,k-1) = +
Zg: ax? k+1 dxk E ax® k+1 dxk
k=1 k=1
s n+1 (observe C(n,n) =1
C(n:n)g—%'g'_—%' and g n means u)
dx de'l"l" ax?°

Putting all these results together yields the desired result.
For example:

ds(uv) _ dsu' 5d4u
el 7 ax
dx dx dx dx~ dx dx” dx dx

5

dv v
d 5

d
u

dx
While this result may be interesting in its own right, we

will give an application of it in the next exercise to obtain

another interesting result.

2.1.8(L)

This exercise affords us an excellent application of Leibniz's

Rule (Exercise 2.1.7(L)). By Leibniz's Rule we saw that:
m
a"(uv) _ C(m k)dm_ku acy (1)
m ¥ m-K k
dx dx dx
k=0
TT =123




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit l: Derivatives of Some
Simple Functions

[2.1.8(L) cont'd]

To apply (1) to our present exercise we need only let u = x
and v = g(x). Equation (1) then becomes:
m
m. n m-k, n
d [x X d X k
Lx gtx)] _ % cm,x) L) o (k) () (2)
dx dx
k=0
ar (x™
Let us next investigate the appearance of e We have:
dx
n Ziz M 3;. 4N
) oo™, ) _pnenx®?, L0 L) 2 on(ne1) (n-2)x™ 73
dx dx
and in general
r, n
L&) - n@-1-2) " -1 (g n) 3)
dx
In particular, then, if r < n, n-r is positive; hence, el
is 0 when x = 0. (The point is that if n-r were negative x  ©
would have the form % when x = 0.) This, in turn, from (3), means
that dr(xn) is 0 if r < n.
r
dx

Referring now to (2), we have that if m < n so also are

m-0, m-1, m-2, ..., m-m (that is m-k where k = 0,1,...,m). From
our previous observations about (3), then, since m-k < n
dm—k(xn) = 0 when x = 0. In still other words, if m < n every
m-k
dx
IT.1.24
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: Derivatives of Some
Simple Functions

[2.1.8(L) cont'd]

term in the right hand side of (2) has 0 as a factor when x = 0.
Thus the right hand side of (2) is equal to zero when x = 0.

That is:

m. n
If m < n then a4 _[x g(x)] J = 0 (4)

dx %=0

If we now introduce the notation of this exercise - namely,

f(x) = xng(x), equation (4) says:

£(0) = £'(0) = --- = £ gy = o

Finally if we let m = n, equation (2) becomes

n
n_ n
d [x g(x)] = (x d "(x7) (k)
dx $=0 dx x=0
k=0
n, n
= C(n,O)g—iﬁ—l-g(o)(x)-J + 0 (since every
dx =p remaining term
contains dr(xn) J
r
dx 20
with r < n)
Now, g(o)(x) means g(x); hence g(o)(x}‘J is g(0).
x=0
IT:1.25




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1: Derivatives of Some
Simple Functions

[2.1.8(L) cont'd]

n n
Moreover Q_iﬁ_l_ = n! (This can be obtained directly from (3)
with n=r.)dx Also C(n,0) = 1. Hence
n_n
£{n) (o) = L Ix g("”J = n1g(0) (5)
dx =0 :

and since we are told that g(0) # 0, equation (5) tells us that
£ (o) # 0.

This result has some interesting interpretations. Let us
study the graph of y = f(x) where we know only that £ is any
differentiable function of x and £(0) = 0. Then we know that

the graph passes through the origin, That is:

y
A
y = f(x)
£(0) = 0
P 3

(a)

On the other hand suppose we now know that £(0) and £'(0)
are both 0. Then the curve must not only pass through (0,0)
but its slope there must also be 0. This means that the graph
looks like:

1Ll .26
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1: Derivatives of Some
Simple Functions

[2.1.8(L) cont'd]

= £ (x)

/f/, Y

Y
b

(b)

If we compare (a) and (b) we should sense that in a suitable
neighborhood of x = 0 the x-axis serves as a better approximation

to the curve in (b) than it does in (a).

Without belaboring the point (we will belabor it much later
in our course) the concept of "more" tangent seems to exist.
For example in (c) each curve is tangent to the x-axis at (0,0),
yet each curve seems to "fit" the x-axis better than the previous

ones in a neighborhood of x = 0.

(c)

I1.1.27
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Differentiation - Unit 1l: Derivatives of Some
Simple Functions

[2.1.8(L) cont'd]

That is, each curve seems to have a different degree of

contact with the x-axis at x = 0.

As a more specific illustration, y = x2 and y = XZO are
both tangent to the x-axis %5 X = 0. Yet at, say, x = %1 y = %
on the curve y = x2 but (%} on the curve y = x20. Since
220 > 1,000,000, yv < 0.000001 when x = % in the latter case. 1In
other words, assuming a reasonable drawn line we could not
distinguish (%, 2-20) from the x-axis but we could distinguish
(%, %J from the x-axis. That is:

_ .20
Yy = X y = x2
_ .2 _ .20
(1,1) Yy = X and y = X

both pass through

_ (1,1) but y = x 0

S "hugs" the x-axis
- for quite some time

In summary the number of derivatives of £(x) which vanish
at x = 0 determines the degree of contact that the curve has with
its tangent line at that point.

If we refer to the function rather than to the graph our

above remarks are related to multiple roots of an equation. For
example, both x = 0 and x20 = 0 have x = 0 as the lone distinct
root. Yet one, somehow or other, is told to count 0 twenty times

as a root in x20 =i B

LL wda: 28
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation = Unit l1l: Derivatives of Some
Simple Functions

[2.1.8(L) cont'd]

Again without belaboring the details, what we are saying
is that if r is a root of £(x) = 0, the greater the multiplicity
of r the better f(r) serves as an approximation for f£(x) in a
neighborhood of x = r. By way of a specific example, let
£(x) = (x - Dx, £,(x) = (x - 1)%x, and £5(x) = (x - 1) 3x.

Then in each case we have

fl(l) = fz(l) f3(l) = 0
(It is also true that in our example fl(O) = f2(0) = f3(0J = 0
but this is not in line with the point we are trying to make.)

Now:

£,(1.01) = (1.01 - 1) (1.01) = (0.01)(1.01) = 0.0101
£,(1.01) = (1.01 - 1)2(1.01) = 0.0001(1.01) = 0.000101
£,(1.01) = (1.01 - 1)3(1.01) = (0.01)3(1.01) = 0.0000000101

and we see how much better f (1) approximates £(1.01) as the

multiplicity of the root r = 1 increases.

While these points are interesting in their own right, they
play a very important role later in our course when we shall
talk about approximating certain curves by polynomials and the
technigque we shall use is directly related to our discussion of

this exercise.

EL: .29







SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation

UNIT 2: Increments and Infinitesimals

2.2.1

Given that f£(x) = x3, we have that

3

b)) 2o = 2 43%2

3 .3

£ (x+hx)~F (%) fx + 3%xf%% & fidex

]

3x20x + (3xbx + 4%%)Ax

]

Recalling that Ay = f (x+4x)-f(x), we have:

Ay = TR (3xAx + Eﬁz)ax

On the other hand y = x3 implies that g% = 3x2. Hence

s 9 a = gt
ﬂytan = 3% Ax 3xAX

Comparing (1) and (2), and observing that ay—ﬁytan

we have:

(3xAx + Ax%) = (3x+Ax)Ax

m
1l

. lim _1lim . lim
*c Axs0 & = K310 (3x+Ax) K0 Ax
|
[ = (3x) (0)
" B
i
ﬂ LT 201

(1)

(2)

= glAx,




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 2: Increments and

Infinitesimals
22 o2
Ay = f(x+4x) -f (x)
= [xea) + 2(x40)3 + 7] - xtr 2P e
= 4x3Ax + 6x%ARZ + 4xi%O +iRY 4 6x2Ax + 6xXAXZ + 2Ax
= (4x3 + 6x2)&x + 6x25k2 + 4xﬂk3 +E§4 4 6x5§2 - 23%3 i
= (g%) AxX + (6x2Ax G 4xﬁ_x2 +L\dx3 + 6xAx + 2:3_}(2)&}{ |
. e = 6x20x + 4xAx® + Ax° + 6xAx + 20x°
2.2.3(L)

(a) We may view V26 as meaning the value of y if y = vVx
and Xx = 26. When x = 25, y = 5. So pictorially:

(Distorted
scale)

I

The equation of the tangent line, 1, is given by

x - 25 dx
x=25

y = 5 _d/fJ

IT. 242
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 2: Increments and
Infinitesimals

[2.2.3(L) cont'd]

.. when x = 26, y = %% # %% = %% = 5.1

But this names the point (26,5.1l) which is on the tangent line

not the curve. That is QT = 5.1 and we want RT

' /26 = RT 4§ QT = 5.1

(Check 5.1 x 5.1 = 26.01.)

We also see that (and the check verifies this) 5.1 should

be more than the correct answer in this case since the tangent

line lies above the curve y = /Xx.

Notice that we have used a slightly different approach than

that in our notes.

The differential approach whereby we compute

dy 1
(dx)x=25 & (10) (1) = 0.1
yields the length QV. Thus,

RT 4 QT = QV + VT = 0.1 + 5 = 5.1

I1.2.3




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 2: Increments and
Infinitesimals

[2.2.3(L) cont'd]

(b) To approximate /26 we utilize the fact that Y27 = 3.

Thus we talk about the line tangent to the curve y = }E at x = 27.
That is:
/"".l
%‘
S
,,.,-—/(27,3)
T
Q P
26 27
Y76 = gt A QS
3 2
1 dx 3 27
x=27 x=27
.'. Equation of (1) is:
y-3 _ 1 ‘ - 81l =x - 27
x - 27 27 .o 21Y
or
x + 54
- 27
IT.2+4
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 2: Increments and
Infinitesimals

[2.2.3(L) cont'd]

3

_ _ 80 _ ,26 _ o 80

when x = 26, y = 57 2 7 = QSs. (As a check (27) % 26.01.)
‘ . dzJ T |
In terms of differentials, o Ax = 57( 1) 57

X=27

c. oSk VIT=3-1

2.,2.4

We look at y = x> + x° + /X with x = 1 and Ax = 0.0006.

We obtain:

dy 2 1 111
= + 2 + — = F—= = ——
s J 3x 3% 2/§_J 52 >
x=1 x=1
ay. = %L (0.0006) = 11(0.0003) = 0.0033

tan -~ 2 ‘0 ; y
Now when x = 1, y = 3

Ly =3 4+ Ay a4 3+ ﬁytan = 3.0033

.*. (1.0006)> + (1.0006)2 + yT.0006 3 3.0033

2.2.5(L)

This gives us a more practical application of the use of
differentials. First of all, let us observe that until the maximum
error in the height of the shadow was mentioned, we had a simple
pre-calculus problem. In fact, all we had was an exercise in

Similar Triangles. Namely:

IT.2.5




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 2: Increments and
Infinitesimals

[2.2.5(L) cont'd]

Dotted lines indicate how we
could find the exact maximum
error.

h
- ~\h__*L]_uI*_

20 a +|1ﬂ|ﬁ+

h_20+a

6 a

_ 20 + a, _ 20

h = 6(———5——) = 6(1 + ?;) (1)
_ _ 20, _ Ty -

Thus a = 15 - h = 6(1 + Ig) = 6(§) = 14 feet

In other words, if we assumed that the shadow was EXACTLY 15 feet,

then the post would have been exactly 14 feet.

Now, to utilize the known error in the length of the shadow
(and certainly a maximum of one inch is reasonable in such a
case since all we are doing is measuring the length of a shadow

along the ground) we compute dh/da from (1) to obtain:

dh _ 20
a5 6[“* az]

-120

22

.. dh = da

IT.2.6



SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 2: Increments and
Infinitesimals

[2.2.5(L) cont'd]

_ _ 120 _ 420
lan| =|ah | = ==lda| = =55 Aa
a a
So with a = 15, da = |I%1 (since all other measurements are in
feet not inches.)
120 1 _ 10 _
lah| = 552 13 = 335 = 0.044 feet
.. h =14 + 0.044
In terms of a graph (1) yields:
h=6(1+ 2%
a
A\
4N\
N
\
N
N
N (15,14)
‘%\"“HH
\.\\*
h=
e P T W W LTS L L e |t A Ll R s Y e L... ‘P a
(15-=) ft JL5¥\(15 + 1) £t
12 ’ 12 :

I1.2.7




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 2: Increments and
Infinitesimals

A = wrz

dA = 2mr dr

We are interested in the case r = 6 feet, dr =-%inch =

3 _ 1 _
,.dA—21T(6)ﬁ—§'
Now recalling that dr = Ar, dA = ﬁAtan’
mate error in A (AA) is given by > (square feet).
As a check, the exact error is m(6 + 53)2 - n(6)2

or
% s
576 error in the
approximation
2.2.7
_ 43
vV = 3nr
av = 4ﬁr2dr
- 2 1
= 41 (6) (ﬁ)

= 6T A4 19 cubic feet

That is, an error of 1 inch in the radius led to an error of

2
19 cubic feet.

I1.2.8
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 2: Increments and
Infinitesimals

[2.2.7 cont'd]

Again as a check

3
4 1 4 3 _
gW(Giﬁ) —g‘ﬁ(ﬁ)
2 3
4[ 2 1 1 1]_
3T + 3(6) 57 + 3(6) (EZ) + 3(51) =
—_ 4
F6T £ s F o
24 (24)3

The fact that small errors can lead to large ones is the
basis of a rather well-known mathematical riddle. The story is
told that Hercules wanted to tie a piece of string around the
equator of the earth (25,000 miles). In cutting the string, he
made it just one yard too long so he decided to slip it over the
earth and center it so that the excess of a yard would be uniformly
distributed over the entire equator. The riddle asks how far above
the ground the string stands. The answer lies in the fact that

since C = 2mr,

AC = 2mAr.
Hence (in inches)
_ 36
Ar = 2—“'
or approximately 6 inches. In other words an error in the circum-

ference of one yard in 25,000 miles causes the string to lie six

inches above the earth all the way around the equator.

This riddle can be omitted from our present discussion with
no great loss of enrichment but the result seemed worthwhile to

pass on.

I11.2.9
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation

UNIT 3: Composite Functions and the Chain Rule

2. 3.1 (L)

The most common error in this type of problem is to mechan-
ically invoke the "rule" of "bringing down the exponent and

replacing it by one less."

That is, we might be tempted to write

2

s 13 _ L2

dx

d(x

3(x2 + 1)2

What we must remember is that the rule

requires that the variable which is being raised to the nth power

be precisely the same as the variable with respect to which we

are differentiating. More symbolically,

=n[ ] (1)
With regard to (1), what is true is that

a(x® + 1)3
d(x% + 1)

= 3(x° + 1)2 (2)

but this was not what was asked for in this problem,

L. 3.1




SOLUTIONS: Calculus of a Single Variable - Block II:

Differentiation - Unit 3: Composite Functions
and the Chain Rule

[2.3.1(L) cont'd]

(If the use of brackets seems confusing in (1), we may
equivalently think in terms of a substitution or change of vari-
able. For example, we may let u, say, equal x2 + 1, whereupon

(2) says

where now u takes the place of the brackets.)

At any rate, we bring the chain rule into play by observing
that

ax> + 13 _ax?+ 13 ax? + 1)

(3)
dax a(x? + 1) dx
From (2) we have that
2 3
d(x2 + 17 L s w12
d(x® + 1)
ax® + 1)

while from our previous knowledge we have that = 2X.

dx

Putting this into (3), we obtain

G & 1

dx

= 3(%2 % 1)%2% = exix® % 1)°

n

: ; : du _ n-1
Quite in general, then, since =5 = au

, if u is a

differentiable function of x,

L3 2
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 3: Composite Functions
and the Chain Rule

[2.3.1(L) cont'd]

d(un) _ d(un) du :
o5 = = (by the chain rule)
_ n=1 du
= dx b

In other words, to "adjust" for the fact that what is being raised
to the nth power (u) is not the same as the variable with respect
du

to which we are differentiating, we must multiply by Ix* This

is just a restatement of the chain rule,

If we insist on doing this type of problem mechanically, (4)
tells us that we can differentiate "one layer at a time" so to
speak. (Some texts refer to this as "peeling the onion!")

That is, given (x2 + 1)3 we differentiate as if the paren-

theses were the only variable to obtain 3(x2

+ 1)2 and then we go
"inside" the parentheses to obtain 2x as the derivative, whereupon

3(x2 + 1)22x is our answer,

If we had wished to differentiate [(x2 + 1)3 + 114 we would
first obtain 4[(x2 - 1)3 + l]3. Then we would go inside the

2

brackets to obtain 3 (x” + 1)2, and then inside the parentheses

to obtain 2x.

Thus,

ap(x? + 13 + 13

+
=
I

24x(x2 + 1)2 [ (x

(In terms of the chain rule this is a minor extension that can

be proved inductively if we wish. Namely, if

1353




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 3: Composite Functions
and the Chain Rule

[2.3.1(L) cont'd]

¥ o= Y(Ul)r ul =

dul du

2

then ay - G¥

dx du, du

1

2

du2

du
N

dx .

In this problem, we can let u = x2

becomes y = [u3

Y

I

down as

dy _ dw dw dv

+ 1]4.
[(x2 + 1)3 +: l]4 becomes y = v4.
Putting this all together we get that y

dx ~ dx ~ dv du dx

and this checks

As a final
That is,

u, (u,

Y ¢ ey 0, = un(x),

+ 1; then y = [(x2 + 1)3 + 1]4

We can then let v = u3 + 1 whereupon

Finally we may let w = v4.

[(X2 + 1)3 + l]4 breaks

Il

Yy =w g¥-= 4v3
w = v4 p o 2T 3u?
3 du
v=u +1
u = x2 + 1 §3-= 2%
b ax
A
(4v3) (3u?) (2x) = 4(u> + 1)3 (3(x2 + 1)2) (2x)
ar(x? + 1)3 + 113 3(x% + 1)%2x =

24x(x% + 1) [ + 13 + 17°

with our previous result.

note,

(x

2

* l)3 lends itself to a simple expansion.

I1.3.4
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 3: Composite Functions
and the Chain Rule

[2.3.1(L) cont'd]

3 2

(x2 4 1)3 = (x2) : 3(x2) + 3(x2) + 1
= XG + 3x4 + 3x2 + L
- d 2 3 . & 6 4 2
.d—x(X + 1) —d—x(}{ + 3x° + 3x° + 1)
= 6x5 + 12x3 + 6x = 6x(x4 - 2x2 + 1) =
6x(x% + 1)2 (5)
Equation (5) shows us that é% [x2 + 1)3 # 3(x2 + 1)2. In
fact it is easy to see that the necessary "correction" factor is
2x, which is precisely the derivative of (x2 + 1) with respect
to X.
22
a 3 4 _daBx> +2x + 1) daexd ¢ 2x + 1)
Ix (3 + 2x + 1) = 3 . 3
a(3x> + 2x + 1) ®
= 4(3x> + 2x + 1)3 [9x% + 2]
Alternative way:
4
3 4 Yy =u
y = (3x7 + 2x + 1) means: 3
u=3x" +2x +1

= 4ud (9%x2 + 2)

olg
oS
|
Els
AH

2

4(3x% + 2x + 1)° (9x% + 2)

ET .35




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 3: Composite Functions
and the Chain Rule

[2.3.2 cont'd]

Next, if y = [(3x3 + 2x + 1)4 + 2]5 we may write:

u = 3x3 + 2x + 1
5 BN - dy _ dy dv du
B T E T3 T av &u ax
¥y =Y
dy _ 4 3 2
5 (5v7) (4u”™) (9x° + 2)

5t + 294 4(3x3

+ 2x + l)3 (9x2 + 2)

4 3

200(3x3 + 2x + 1)% + 21% (3x 2

+ 2x + 1)3 (9x

I

+ 2)

In terms of "peeling the onion":

3 4

sp(3x> + 2x + )4+ 21% 1ax3 + 2x + 1)3] [9x2 + 2]

2.3.3(L)

One form of the chain rule tells us that

dy _ dy/dt
dx  dx/dt

dy _ dy dx . .
Namely -y gl o implies the above result.

The mair problem seems to be that many suspect that

a’y _ a’ysat?
ax®  d°x/ac”

Certainly, one can compute g—% and g—%, and one can form the
dat dt
IT.3.6
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 3: Composite Functions
and the Chain Rule

[2.3.3(L) cont'd]

2 2
quotient é—x-% é—i but, in general, this quotient is not equal to
2 at?  at? =
d’y
dx2

In the form of an aside, notice the notation of how the "2's"

are placed in dy, If we could treat dzx and dzx as fractions, we

2 —
would obtain: 9X¥ at? dt
2 2 2 2
dy .dx _dy Aot dy
dt?  at? @k Has®

Of course, the above discourse is more of an excuse than a

reason. The more important observation is that if g%-and g% are
functions of t then so also is g% (= g% 5 %%). Hence we may apply
the chain rule to %%. That is:

2

dy - d_ 4y, _d [dy/de] _d_[dy/ar) ae

i ax cdx) dx [dx/dt t | dx/dt| dx (1)

; dy/dt _ dg(t) _ dg(t) d4dt
(That is, let ﬁ = g(t). Then %{—- = —-gt— E')

Applying the quotient rule, we obtain:

2 2
dx d _ (4 d™x
(& D - G

d [aysat] _ 9t at? dt )
dt |dx/at a2
(55)
It
EL. 347




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 3: Composite Functions
and the Chain Rule

[2.3.3(L) cont'd]

Coupling (2) with the fact that %5 - g;’ (1) becomes:
dt
@ (& gy (@ ax oy _ gy a’x
dzy _ at dt dt dt2 1Y dt at dat at
ax’ {2y T (@,
d dt

To see how this works in a particular problem, we investigate

part (b).
_ 42, ax _
X =t - g =2t . dy _ dy/dt _ 4t>_ 2 3
4 dy 3 = T AR dx/dt 2t
y =t > gg=1t
From (3) we next obtain:
a’y . d_dy, _ 4 (5¢2) = L (2¢2) 9t = 4e/ax = at/2t = 2 (4)
dx dx 'dx dx dt dx d_t —

*This, too, is a corollary of the chain rule. Namely when
we say that y = f(x) and x = g(t) imply that dy/dt = dy/dx dx/dt
nothing excludes the possibility that y = t. That is, the first
and third variables can be equal. 1In this event

dy _ dy dx
dt ~ dx dat

becomes, when we replace t by y:

ay _ dy dx N
dy il (de (dy) ¢* dx dx

and we see still another resemblance of derivatives with fractions.

IT.3.8
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 3: Composite Functions

and the Chain Rule

[2.3.3(L) cont'd]

(Beware that you don't say %;(2t2) = 4t, but %E(2t2) = 4t.)
As a check observe that we can eliminatezt and obtain y
directly in terms of x. Namely y = t4 = (t2) = x2. But
dy _ i = i .
e 2x (and since x = t°, this agrees with (3))
2
y = x° >
d2
= 2 (and this, clearly, agrees with (4))
dx

In general it is either difficult or impossible to eliminate
t to find y in terms of x. (For example, see Exercise 2.3.5.) We
chose an example in which t could be eliminated so that we could
see what was really happening. However while we are on the topic,
notice that something is "lost" when we eliminate t. For example,

when we eliminate t, both

Il

2 _ .4
Y k and Yy = t2 become y = x>

but if we think of t as time, all we are saying is that the path
traced out by the particle P(x,y) is the same (y = x2) but the

particles traverse the curve differently - for example if y = t2
then at t = 2 we are at the point (2,4) while if X =t
y = t4 then at t = 2 we are at (4,16).

2
X =t

I1.3.9




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 3: Composite Functions
and the Chain Rule
2.3.4
x = t2 + 1 ax - 2¢
at ay _ 3t? -1
5 a +d_¥c= 2t (1)
= N dy _ 342 _
Y t t 3t = 3t I
2 2

d

0

Q.
"

2

) |:2t(6t) = (3% = 1) (2)]
at

_d @y, -4 (3t2 -1)_a (3¢% -1 d_t=d_(:3t2— e
dx 'dx dx 2t dt 2t dx dt 2t 2t

B
nh‘

with t = 1, (1) and (2) become:

- = =1
xx=l

ans.
2
dy -3+ 1
2 4 =
dx

Now the point on the curve

(2)
dy d2y
(Note: We must find == and E;? in

general and then let t = 1. 1In
other words f" (1) does not mean
[£'(1)]"',since this would always
be 0 because f'(l) is a constant.

Rather f" (1) means f"(x).J .)
x=1

corresponding to t = 1 is

X = 12 + 1,y = l3 - 1 or (2,0). The slope of the curve at this
point is gsz = 1.
ax
x=1
T 1310

il S S S = BN S EE G EE e
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 3: Composite Functions
ana the Chain Rule

[2.3.4 cont'd]

Hence the equation of the tangent line is

¥y =0 o i AT
== l: or y X 2
235
. 2 ax _ 4
Also when t = 1, x=3, y=7
g=t? + 2e + 4 3 et + 6t2
dt
- dy 6t5 -+ 6t2
ax gt opoae
d__l = 12
dxt=l 7

Thus the point on the curve is (3,7) and the slope at this

point on the curve is é%u
<y -7 _ 12
** x -3 7

or: Ty - 49 = 12x - 36

or: 7y = 12x + 13

I1.3.11




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 3: Composite Functions
and the Chain Rule

[2.3.5 cont'd]

Notice again that while it may be difficult to compute g%
in certain cases, it still is always a slope. Secondly, observe
the difficulty in trying to eliminate t from this pair of parametric

equations.,

2.3.6(L)

All that happens here is that the chain rule takes on a
different look. We are being asked to find

d(x% + 16)
At = 13

Mechanically, if we use differential notation we obtain:

2xdx - jL
3x2dx 3x

If we wish to see the chain rule more concretely we may let
y = x2 + 16 ana u = x3 - 1. Then, in this language, the problem

is asking us to find %%. By the chain rule:

dy _ dy/dx _ 2x

du du/dx 3%

2

In any event the answer is f%u

IT+3:12
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 3: Composite Functions
and the Chain Rule

2.3.7(L)

When we write y = f(sz* we mean:

y = £(u) and u = x2 {1)

If we only assume that f is a differentiable function, the chain

rule applied to (1) allows us to conclude that:

dy _ df (u) du

ax du dx

£'(u)2x (2)

Without further information, (2) is as far as we can go in

our attempt to determine %% explicitly. In this problem, however,

we are given the additional information that f£'(x) = 4x3 + 1.
Recalling that the name of the variable is irrelevant (that is,
£'(x) = 4x°> + 1 should be thought of as £'([ 1) = 4[ 1> + 1), we
have that f£'(u) = 4u3 + 1. With this, equation (2) becomes:

= (4> 4 1)2x (3)

2l

and finally since u = xz, (3) can be rewritten explicitly as a

function of x. That is:

= (41x%17 + 1)2x = 2x(4x® + 1)

D-, ol
bl et

2 ky = f(xz) is a special type of function of x. The notation
f(x”) emphasizes that the variable,_.x, always appears in the form x
For example f(xz) could denote (xz)3 + X4 + Jx22+ 1. Another way
of denoting this is to write y = f(u) and u = x°. With regard to
our present illustration if f£(u) = u” + u + Ju ¥ I then f(xz) is

(xz)3 + x2 + sz + 1.

IT.3.13




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 3: Composite Functions
and the Chain Rule

2.3.8

(a) We want:

dx* + 7x% +8) _  (4x® + lax)ax
d(x3 - 2Xx) (3x2 - 2)dx
- 4x3 + 14x S
3x7 - 2

In terms of the chain rule, we let

4 2

Yy =X + 7x° + 8
u = x3 - 2X
Then Y = dy/dx _ 4x3 + 1ldx
du du/dax 3x2 -2
(b) y = £(u)

= dy _ dy du

* ¢ o du dx

= f'(u)3x2

=—29"—)3x2
u” + 1
x3 + 1 2

= 3 2 3x
(x + 1)° + 1

_ %% (%2 ¥ 1)

= 5 3 ans.
X 4+ 2% + 2

IT1.3.14
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation

UNIT 4: Inverse Functions

2.4.1(L)

We have already solved part (a) as Exercise 1.4.9(L). Of
course, we've come a long way since then. In particular, with
our knowledge of derivatives we can sketch the graphs y = g(x)

and y = h(x).

In particular, since f_l(x) =X Z ?, the curve y = g(x) is
simply the straight line whose slope is % and whose y-intercept
is 7. That is:

y
A
_,/’—-'1
> X
; _ 1 _ ) -1

On the other hand, since h(x) = TR (2x - 7) ~, we see

that:
; o =2
h'(x) = =2(2x - 7)
and
; _ -3
h" (x) = 8(2x - 7)

Thus the curve y = h(x) is always falling, it "holds water" if

7
2! 2! 2
of a point on the curve. Thus:

X > d spills water if x <

IT.4.1
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 4: 1Inverse Functions

[2.4.1(L) cont'd]

Y
S

s |
\%

»
[
TR

Superimposed in a single diagram, we see quite vividly that

the curves y = g(x) and y = h(x) are quite different:

+
g = X ! 7
A
0.1
WA g = - ?*?
-~ T O2x+7 \
.«’/ \
b
N
/ \\"""-.....
- X
——-.,,‘__‘y = Z.
0,3 T |2
J 7 \'\_ I
i |
|
‘\\i
|
|
II‘4.2
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 4: Inverse Functicons

[2.4.1(L) cont'd]

(The curves meet at two points and these are determined analytically

. x+ 7 _ 1 2 B -
by solving 5 = %=’ ©F 2X" + I 51 = 0.
- -7 + - -
G HLVIT T o T8 VBT o TR AL ey,

Again this portion of the exercise is designed to emphasize
the fact that f-l(x) and

point of view.

f?%T-are very different from a conceptual

On the other hand, part (b) is designed to reinforce the idea
that as differentials gﬁ-and ggvare indeed reciprocals and that
since as far as derivatives are concerned, we have shown that
%%—and %3 are reciprocals, we CAN conclude that f and £71 are
characterizea by the fact that their derivatives are reciprocals.

In this particular exercise we chose a rather simple computational

problem. Namely if f£(x) = 2x - 7, it is clear at once that f'(x) =
while since g(x) = f-l(x) = X ; ?, it is equally clear that
g'(x) = %. This shows, at least in this example, that f' and g'

are reciprocals.

Moreover, it is not too difficult to generalize the result

of this exercise and this is exactly what we did in our discussion

of the chain rule. The only "special case" aspect of this
exercise was that both f' and g' were constants. In this example,
it was correct to say that g'(x) = ET%ET‘ In the general case we

must be more careful in specifying the variables. That is, what
is true in general is that:

y _ 1
9"y = iy

o where ¥y = f(Xl)

IT.4.3
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 4: Inverse Functions

[2.4.1(L) cont'd]

Pictorially, since g undoes £, it is clear that g "operates" on
f(x). "That is:

g(f(le) = X

¥i = f(xl)n

e P B T T e (2 ¢ o e

(Notice also in the above diagram that we do not invert
merely by interchanging the x and the y axes. If we did this

we would obtain

and this 1is an incorrect orientation of the axes.)

2.4.2(L)

This exercise serves as an introduction to the subject known
as implicit differentiation. That is, from the given equation we

see that x and y cannot be chosen independently. So we assume,

IT.4.4
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 4: Inverse Functions

[2.4.2(L) cont'd]

whether we can explicitly do it or not, that y is defined as a
single-valued function of x. With regard to this exercise we

assume that y is precisely that function of x which makes

x> + 3x2y + y7 = 4 an IDENTITY. That is, we assume that y is

that function of x for which 4 and x5 + 3x2y + y? are synonyms.

We can conclude that:

a(x> + 3x2y - y?) _ d(4) *
dx dx

Thus:

d(x>) , dB3x%y) , dy))
dx dx dx

This, in turn, says that:

2
5x4 + [éxz(gﬁJ + 6x£] + 7y6(§§ = 0 (where we find d(gz )
by the product

rule)
5 o cg ¥
(Again, beware it is dé§ ), not déﬁ ), which equals 7y6;
d(y7) = d(y?) ay by the chain rule)
ax dy ax ¥

*This result is not as trivial as it might seem. It is crucial
that we have an identity. For example, given 2x = 5 if we differ-
entiate both sides with respect to x, we obtain 2 = 0 which is
absurd. The point is that 2x and 5 are not synonyms. That is,
2x = 5 is not an identity but a conditional equality.

On the other hand, if f(x) = x2 - 1 and g(x) = (x+1) (x-1) then
f and g are identical and for this reason, since they are just
different names for the same thing, they have, among other things,

the same derivative. As a check, f'(x) = 2x while by the product
rule, g'(x) = (x+1) (1) + (x-1) (1) = 2x.
LL, 4.5




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 4: Inverse Functions

[2.4.2(L) cont'd]

Thus:
(Sx4 + 6xy) + (3x2 + 7y6)(§§) = 0, whereupon:
4
dy _ -(5x" + 6xy)
ax (3x% + 7y%)
24,3

As usual, we need only know the slope (%%J of the tangent

line at (1,1). In this case, we find 9 by differentiating

implicitly. Thus:

a(x7 - 5x3y + y6) _ a7
dx

This leads to:

7x6 + 15x2

|
o

3.d 5 d
y + 5x° (50 + ey (aﬁ)

Hence:
dy -(7}{6 + lezy) (1)
dx 3 5
(5x~ + 6y7)
Setting x = y = 1, we obtain that (gz = :%% C

B2,

IT.4.6
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 4: Inverse Functions

[2.4.3 cont'd]

In other words, we simply want the line whose slope is -2 and

which passes through (1,1). This line is given by:
y - 1 _ _
x - 1 -

or :
2x +y =3

(Note: It is worth checking that (1,1) actually belongs to the
curve, It does by virtue of the fact that x7 + 5x3y + y6 =7

is satisfied when x = 1 and y = 1. The point is that in Eguation
(1) we can replace x and y by 1 and get an answer, even if (1,1)

weren't on the curvel!)

2.4.4 (L)

At first glance this might look like a problem that we have
already solved. The thing to note is that when n was a positive
integer we proved the recipe by the binomial theorem. When n
was a negative integer, the binomial theorem did not apply, and

we used the quotient rule to derive the desired result.

Neither of these cases applies, however, if n is not an
integer. Recall that a rational number is by definition the
quotient of two integers; so if n is a rational number there
exist integers p and g such that n = p/q. Therefore y = x" means
that y = xp/q’ and this in turn says that yq = xP, since p and g
are integers we can use the previous results to obtain by implicit

differentiation:

IT.4.7




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 4: Inverse Functions

[2.4.4(L) cont'd]

g-1 dy, _
qy ( dx) pPX

-1 -1
.-. gx = E- xp = B xp —] E— xp""'l P—E..
ax g.9-1 g E)q_l q x g
|
P_1
= B 9
q
n- s
= nx since n =

\Q '

Aside from giving us another illustration of implicit
differentiation, this example gives us an excellent illustration

of how the same recipe may require a completely different proof

in one case than in another. It is important to note the logical

study here of how each case is reduced to the case which has

been solved previously.

2.4.5 1 1

: _ 2 ay - 1.2 1
We now know that if y = u” then 35 54 Vo

we had the result of Exercise 2.4.4 we did not know this.)

(Until

At any rate, we can now solve this problem by our previous
techniques. Namely, we can let u = x2 + 16 and v = §§T' The

problem translates into finding dul/2 at x = 3.

av

II1.4.8
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I SOLUTIONS: Calculus of a Single Variable - Block II:
l Differentiation - Unit 4: Inverse Functions
[2.4.5 cont'd]
l Thus:
L L
B au® _ du? fav
av dx dx
| CRE
Now S8 /-2 fd—;=%u2(2x)=/£_-= x
l 2 Vx® + 16
X dx d
I e G Hgoyp)  ElaggpoxgplEel)l oy % @
while O > > g = 5
(x-1) (x-1) (x-1)
I * d(vx® + 1e) X -1
X 2
d(X——T) 1/32 + 16 (x-1)
I _ —x(x-1)°
' Vel + 16
I and when x = 3 this becomes
l w3 g=1)2 -3(4) _ -12
% 5
3% + 16 2
I IT.4.9




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 4: Inverse Functions

ax
2
d
== (1)
Y
2 . 2
From (1), 9_% = &Yy o 4 (X,
d dx "dx dax® .2
X b4
y?2x) - x* (v
B 4
y
2xy - 232§X
= gg (2)
3
¥
; dy . . : S
Replacing ax i (2) by its value in (1), we obtain:
2 x2
2xy - 2x (=)
d2 _ ;?. _ 2xy3 - 2x4
T 5
dx Y ¥y
_ -2x(x3 - y3)
- 5
y
= :E% (since x° - y3 = 1) (3)
Yy
Y. 4.190
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 4: Inverse Functions

[2.4.6 cont'd]

Explicitly x3 - y3 = 1 implies that
. .- -
or 1
g = (x3 B 1)3
whereupon
dy _ 1,3 )3 02 x°
= (X~ - 1) (3x7) = (4)
dx 3 (xj _ 1)2/3
’ 3 3
(Recalling that x~ - 1 = y~, (4) becomes
ay . _x*___x%
2/3 2
(v y

which checks with (1).)

If we now apply the gquotient rule to (4), we obtain:

ol
o
o]
e
o

Q.
LS

2
_d X
dx ‘dx dx (x3 B l)2/3)

1
) —
_ 21?32k - %2 [%(x3-l) 33x;]

g b
3 .2/ 2x*
2%(x"-1) T T3 173 3 4
_ =170 2x(x3-1 -2kt _ ~2x
1) 3 (31573 o IR
11 411

(5)




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 4: Inverse Functions

[2.4.6 cont'd]

If we replace x3 - 1 by y3 in (5) we obtain:

d2 _ -2x _ -2x
dx (YB) W2 YE

which checks with (3).

2.4.7(L)

In the previous exercise it was cumbersome but not too
difficult to solve explicitly for y in terms of x. In this
exercise it is a bit tougher to do this, so it is to our advantage
to rely either on inverse functions or implicit differentiation
to come to our aid here.

Since the equation is in the form x = f(y), it is more
dx dy

convenient to find == than . In fact,
dy dx
dx _ 2
By the chain rule g—f—;— =/d_x
Y
1 :
' A (1)
% 8 3y" + 1
IT.4.12
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 4: Inverse Functions

[2.4.7(L) cont'd]

Differentiating both sides of (1) with respect to x, we obtain:

G (dY) - 2.2 3.
dx (3y2 - l)
or:
2 d(l) _,d 2
de (3y2 ” 1)2 dx

(We must be very careful here the derivative of g(y) with respect

to x is g'(y)%% by the chain rule. That is, the "prime" here

ang 99(y) _ dg(y) dy )

indicates differentiation with respect to y; = dy
Notice also that while 42 =1 3 it is not true that
a’y _ 1
dx d2X
dy
d2x d 2 d2
(in fact if we "invert" —= we get the form %Y nhot ——%9.
. 2
dy d ' x dx
At any rate we obtain:
; 6 d
9_%A = . Y - o (2)
ax @y° + 1)° O
dy _ 1 . . . .
From (1) = ——=——— and putting this into (2), we get:
dx 2
(3y™ + 1)
IX:4:13




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 4: Inverse Functions

[2.4.7(L) cont'd]

Q.
N

_ -6y
(3y% + 1)°

o,
»

(3)

Let us also observe that we could have obtained the same

result by differentiating implicitly with respect to x. Namely:

dx 2 i which is the same as (1).

Next starting with (3y2 + l)%% = 1 and again differentiating
(this product) implicitly with respect to x, we obtain:

2
d d 2 d _
(v @) Frv’+n =0
dx
d dy, _ dy .
(where we observe that E;(dx) = 5 and by the chain rule
€ (3y® + 1) = 6y . a4
dax dx”
I1.4.14
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Differentiation - Unit 4: Inverse Functions

[2.4.7 (L) cont'd]

ay. 2
.oady _ T Ee
dx (3y2 + 1)
- 2-6y 3 Sinceg% - _21—
(3y™ + 1) 3y + 1

Let us conclude with two observations: 1) we never had to solve

our equation explicitly for y as a function of x, and 2) there

was no unique way of solving the problem,

t 2
Here == 5x° + 3Xx . Hence

g_% - __4__1 > (1)
5x° + 3x
dx _ 1

when x = 1, (1) yields = =

8
at the given instant is %.ft/sec.

To find the acceleration we use

a=dx=d._(.z.)=(_i;_. 1
dtz dt 'dt dt Sx4 & 3x2
_a 1 dx
dx 5x4 + 3x2 dt
II.4:15
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Differentiation - Unit 4: Inverse Functions

[2.4.8 cont'd]

= (5x4 + 3x2)(0) - l(20x3 + 6X) 1
(5x4 + 3x2)2 5x4 + 3x2
_ -(20%° + 6x)

(2)

(sx? + 3x%)°

Putting x = 1 into (2) we obtain that the required accelera-

tion 1is:

(20 + 6) _ =26 _ =13 o /. 2

(5 + 3)3 512 256

2.4.9 (L)

This problem not only affords us a review of several
principles of calculus as well as an interesting application of
calculus to geometry; but it allows us to introduce a rather
important geometric concept which has application to several

aspects of physics and engineering.
At any rate, let us begin with the solution to the problem.

If the circle is to be tangent to the curve at (1,2), it
means that the circle must pass through the point (1,2) and have
slope equal to 2 at that point (since the curve has slope 2 at

this point: f.e8.., g% =2x | =2).
x=1 x=1

If we aifferentiate the equation of the circle implicitly,

we obtain:

(x = h) + (y - k)dy/dx = 0 (1)

ILad.16
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 4: Inverse Functions

[2.4.9(L) cont'd]

whence:
dy/dx = -(x - h)/(y - k) (2)

Using (2) with x = 1 and y = 2, we see that the slope of the
curve at (1,2) is -(1 - h)/(2 - k) and at the same time, we know

that the slope must equal 2 at this point. Hence:
-{d: = B) {2 — K) =2
and this in turn leads to the fact that:
h + 2k =5 (3)

Since h denotes the x-coordinate of the center of the circle,
and k its y-coordinate, we have from (3) that the line

X + 2y = 5 is the locus of the centers of all circles which are
tangent to the curve y = x2 + 1 at the point (1,2). This is

illustrated in Figure 1.

Next we observe that dzy/dx2 for the curve is 2; hence, for
part (b) we wish the second derivative for the equation of the
circle to equal 2 when x = 1 and y = 2. To find dzy/dx2 for the
circle, we may differentiate (1) [or for that matter, (2)]

implicitly. We obtain:
2 2
1 + (dy/dx) (dy/dx) + (y - k)dy/dx” = 0
(Observe again that in differentiating (y - k)dy/dx with respect

to x, we must apply the product rule and that (dy/dx)' = dzy/dx2
while (y - k)' = dy/dx.)

I1.4.17




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 4: Inverse Functions

[2.4.9(L) cont'd]

Thus:
2
dy
2y _ 1t @D
dx k=¥
2
< 1+ [ ]
v - d - (1,2))
dx¥ k - 2
(1,2)
But we already know that (g% = 2. Putting this into
we obtain (1,2)
a’y __5
2 k - 2
il (Y
a2
Since ——%- must also equal 2, we have:
85" [ ,29
5 -
k - 2 B
or:
2k - 4 = 5
or:
_ 9
Rk

This value of k put into (3) shows us that

h-# 2 (%) = 5

I1.4.18
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 4: Inverse Functions

[2.4.9(L}) cont'd]

or:

hi = =4

Finally since (x - h)2 + (y - k)2 = r2 must be satisfied when

x =1 and y = 2, we have that h, k, and r are always related by:

(1=-hn%+ (2 -k =2
Replacing h by -4 and k by %, this yields:
2 4 ()" - 2 o r? = 25 + 232 125
3 =ED L E s T 1
X 5/5 (Physically the radius of a circle
% E = S cannot be negative; so we discarded
the negative root.)

Hence our required circle in (b) is centered at (-4,9/2) with
radius é%i gee Figure 1). Thus the equation of this circle is

2
2 9% 125
(x +4)" + (y - 5) = =7

ox
a(x + 4)% + (2y - 9)2 = 125

or

4x2 + 32x + 4y2 - 36y -20

IT.4.19
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Differentiation - Unit

[2.4.9(L) cont'd]

Yy =2¥}

Tangent line to the

curve y = x2 + 1 at (1,2)

Osculating Circle 11

Figure 1

.‘

/
Y
"

._‘“\.
Sy

/"“~x+2y=5

locus of all
points (h,t) for
which h + 2k = 5

The circle whose first and second derivatives are equal to

those of the curve at (1,2) is called the OSCULATING circle at

(1,2). In many types of kinematics problems when we wish to

study the acceleration and speed of a particle moving along a

curve, it turns out that in a neighborhood of the point in question,

I1.4.20
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 4: 1Inverse Functions

[2.4.9(L) cont'd]

we may replace the curve by its osculating circle. 1Indeed since
the velocity and acceleration of a particle at point P depend
only on the first two derivatives at P (and since the point P
has no way of knowing whether we are viewing it as being part of
the curve or as being part of the circle) it "figures" that we

can replace the curve by the circle in dealing with instantaneous
speed and acceleration.

IT.4.21
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation

UNIT 5: Continuity

251 t5)

Our definition of continuity requires that

lim
X+C

f (x) f(c)

if £ is to be continuous at x = c.

2% o B & B

In the present exercise c¢ = 2, while f(x) =

x - 2
Now: x2 -5x+6 _ (x-2)(x - 3)
X - 2 (x - 2) (1)
Hence, if x # 2, f(x) = x - 3 (since, as long as x # 2, we can

cancel x - 2 from numerator and

denominator of (1))

Thus:

lim _ lim s

. f(x) = %52 (x 3) = -1

32 < 515+ 6
Or the other hand, f(c) = f(z) = R = %, so £(2)
is undefined. In other words, in this example, lim 25 exists
but f(c) doesn't. xre
2
For this reason = ; Ex2+ J is not continuous at x = 2.
2

To see what has happened here, observe that the graph of

is the same as that of x - 3 when x # 2. Thus:

B s .




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.1(L) cont'd]

P )
y = x-3 y = f(x) is the
Ty /f curve y = x-3
/ with the point
/ (2,-1) deleted.
f _}x
(2,-1)
(0,-3)/

(Figure 1)

Thus, our curve seems to be missing a point, and this is
what prevents the curve from being "unbroken." (Here is a good
place to point out the difference between a point and a dot.

A point, having no thickness, cannot be detected when it is
deleted from a curve; for if we can see the deletion we have
taken out more than a point. 1In other words, "deleting a point"
can be done analytically, but not pictorially, and this, then,
is one place where the graph can be misleading.)

lim

Of course, the fact that %2 f(x) = -1 gives us a strong

hint as to how f(2) should be defined if we want f to be
continuous at x = 2. Namely, f(2) should equal -1. More
formally what we do is observe that f(2) is not defined, so we

"invent" a new function, say, g such that

glx) = f(x) if x # 2

-1 if x = 2

LE. 52
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.1(L) cont'd]

The main idea is that g(k) is precisely f(x) when x # 2, but
when x = 2 g(x) is defined (that is g(2) = -1 by definition
of g) while f(x) is not defined at x = 2. We shall expand this
idea in the next exercise, but for now let us observe that our
last remarks are the analytic equivalent of "plugging in" the

x2 - 5x + 6

=3 to make it continuous.

point (2,-1) to the curve y =

Aside from providing us drill with the definition of
continuity, this problem is meant to emphasize two things.
In the first place, by definition, f cannot be continuous at a
point at which i? is not defined. 1In still other words, the
im

criterion that - f(x) = f(c) implies that f(c) must exist.

Secondly, this exercise provides us with an example of
a discontinuity which is neither a "jump" nor an "infinity."

It is merely a missing point from an otherwise continuous curve.

Such a discontinuity is called a removable singularity

since, as the name implies, we can remove the "bad" spot by
"plugging in" the appropriate point.
Observe that this problem was with us from the time we

f(x + Ax) - f(x)
Ax

when Ax = 0. This is why we introduced deleted neighborhoods of

defined a derivative. Namely is not defined

0 when we talked about

lim [f(x + Ax) - f(x)

Ax~0 Ax :
f(xl + Ax) - f(xl)
In other words if we define g(pax) = r g
Ax
cannot be continuous at Ax = 0 since g(0) = % which is indeterminate.
FE.5.3




SOLUTIONS: Calculus of a Single Variable - Block IT:
Differentiation - Unit 5: Continuity

[2.5.1(L) cont'd]

In this case &iig g(Ax) is not g(0). That's why the condition
lim £ _ i .. i :
st (x) = f(c) is not as trivial a condition as what first

meets the eye.

(By the way, do not confuse this discussion with the
special problem in this exercise. 1In this exercise f' (c)
doesn't exist because f(c) doesn't exist. That is,

. _ lim £(2 + Ax) - £(2)
£1(2) = Ax>0 [ Ax J

but f£(2) is undefined.)

2s552

Here we see that g(3) is not defined. On the other
hand, however, if x # 3 then we can cancel x-3 from both the

numerator and denominator of g(x) to obtain that g(x) = x + 5
for all x provided x # 3. 1In any event ii? g(x) = 8, and since
for the continuity of g at x = 3 we must have iig g(x) = g(3),
it follows that g(3) = 8.

In still other words, if we define, say, h(x) by

h(x) = g(x) if x # 3

c 1if x = 3, where ¢ is any constant

I1.5.4
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.2 cont'd]

then h is defined for all real numbers. The only value of c
that can be chosen, however, if we desire that h be continuous
at x = 3 is ¢ = 8. If c¢ # 8 then h is discontinuous at x = 3

just as g is, even though h is defined at x = 3 while g isn't.

MY = x+5

wY a ,ff The graph of h is
s the line y = x+5 but
v with the point (3,8)
A& (3,8) deleted and replaced

A by the point (3,c)
4 \ (If c=8, then we get
2 * the continuous line,

///’ , y = x+5)
///// } X

2.5.3(L)

Before proceeding with this exercise, let us point out
from a more intuitive point of view what this exercise is
trying to tell us. Geometrically, continuity refers to an

unbroken curve. Now it is clear that a curve can be unbroken

but still have "sharp edges". In other words, the curve can be
unbroken but not "smooth". Differentiability refers to
"smoothness". After all the derivative involves the slope of a

line tangent to a curve at a point, and if we can draw the

tangent line the curve must be "smooth".

IT.5.5
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Differentiation - Unit 5: Continuity

[2.5.3(L) cont'd]

We shall substantiate these ideas more rigorously in a
few moments. For now, observe that it is fairly clear,
geometrically, that a smooth curve must be unbroken but an
unbroken curve does not have to be smooth. Translated into
the more formal language this says that a differéntiable
function must be continuous (part (a) of this exercise) but that
a continuous function does not have to be differentiable (part

(b) of this exercise).

As for the actual details, let us start with part (a).
To prove that f is continuous at x = X, we must show that

iiz f£(x) = £(x;), and this is equivalent to showing that
1

Mmoo ex) - £(xy)]1 = 0 (Again, continue to be alert in

XX 1 5 L ’

distinguishing between XX, and f(x)+f(xl) If £ is not continuous

at x = Xy, f (x) need not approach f(xl) as x+xl)

Now, we are armed with the knowledge that f'(xl) exists.
Elx) - f(xl)

X—Xl

This, in turn, means that lim
XK

] exists and

is equal to f'(xl).

To utilize this information, we write f(x) - f(xl) in

our usual "clever" way. That is:

f£(x) - f(xg) = X = % (x = %)

Applying our limit theorems, we obtain:

II1.5.6
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.3(L) cont'd]

2 ; f(x) - £(x,) ;
lim [E(E) - f(xl” _ llml[ l] 1lim (x_xl}

XX XX X = X x>
1 1 *1

Il

f'(xl)(O) where f'(x,) 1is some
real number

or iiﬁ [£(x) - f(x;)] = 0, which establishes part (a).
1
As for part (b), we need only give a counter-example
(that is, one example in which f is continuous at x = x
but not differentiable at x = xl) to establish that the

result need not be true.

1

To this end, consider, for example, f defined by
lim

f(x) = |x|. It is easy to see that w0 E(x) = £(0).
Pictorially:
T = |x|
Y . x x>0
s Y F
-x x <0
,__“a.x
Now, for x < 0 f(x) = -x, hence f'(x) = -1, while for
positive values of x, f(x) = X, hence f'(x) = +1. Thus,

the graph of y = £'"(x) is given by :

IT.5.7
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Differentiation - Unit 5: Continuity

[2.5.3(L) cont'd]

graph of f' (x)
where f(x) = |x|

and we see that there is a "jump" at x = 0.

More importantly f'(0) doesn't exist.

_ lim f(Ax) - £(0)

Indeed f' (0) = xsoah iz

and in this case since f(x) = |x]|,

. *
lim |&x| (1)

] —
f(O}—&mo Ax

In (1) |Ax| = Ax if Ax > 0 while |Ax| = -Ax if Ax < 0

Therefore (1) implies:

*
For what it's worth notice that l%l is just another way of
; 1 if u >0 . . u .
saying ) _y jf 4y < o Since the magnitude of a (u # 0) is always
1, but since |u|> 0 the sign is positive if u is positive and
negative if u is negative. In any event the strange-looking
expression agrees with our previous results.

IT1.5.8
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.3({L) cont'd]

lim f(Ax) - £(0)]1_ lim ]&x| _ lim Ax\_ +1
Ax o A + \Ax)™

Ax+0"T axsot L AX x>0t \ 4%

while
lim_ [f(f_\x)ﬁ— f(OJ] _ lim_ |:|ix|]__' lim_ (-ix)= 1
Ax=+0 5 Ax—+0 % Ax-+0 %
lim [ f(Ax) - £(0) :
(2) and (3) show that Ax+0|: = ] does not exist
I 11m+ [fmxix- £(0) ] » 11m_. I:f(axix— f(O)]
Ax+0 Ax~0

Let the polynomial be denoted by

_ n n-1
P(x) = ax +a ;X t...t a;x + ag where ags

For any number c, we have:

IT.5.9
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.4 cont'd]

+ +o - o+ +
X+C X+C a_ X X alx ao)

lim lim n n-1
P (x) ( n an-l

. n ” n-1 2
lim x lim x lim x
%n (x+c ) * an—&.(x&c ) Fomnt al(x+c

_ n n-1
= ac - a _,¢ +...+ a,c + a,
= P(c)
lim : .
But B P(x) = P(c) means that P is continuous at x = c.

An alternative way which utilizes the result of Exercise
2.5.3(L) is to observe that we have already proven that P is a
differentiable function, hence by 2.5.3(L) part (a), P must

also be continuous.

2.5.5(L)

Graphically, y = mx + b is the straight line of slope m
with b as its y-intercept. Thus:
y=mx+b

2 (a4
y=x

IT.5.10
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.5 (1)) cont'd]

we have the graph of f(x).

From the graph, it is clear that we have a jump dis-

continuity at x = 0 unless b = 0.

Once b is zero, the graph is continuous for any real value
of m. That is

A 'ﬂ €——no matter how we "pivot"
7 this line through 0, the
; curve is unbroken at

\ (0,0)

From a more analytic point of view, we observe that

11m+ f(x) = b, llm_ f(x) = 0 and £(0) = b. (Notice that we
x-+0 x>0
cannot say f(0) = 0 because f(x) = xz for x < 0; 0 falls into
the x > 0 category, and for x 3 0, f(x) = mx + b.,,£(0) = b).
Thus, for f to be continuous at x = 0 we must have
11m+ f(x) = llm_ f(x) = £(0) and this says b = 0.
x>0 x+0 .
As for part (b), we observe that for x < 0, f'(x) = 2x
and for x > 0, £'(x) = m. Thus llm_ f'(x) = 0, while llm+f'(x) = m,
x+0 x+0

IX:8:01




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.5(L) cont'd]

Hence, if there is any hope that f'(0) exists, it had better

be that m = 0. (What we mean by "any hope" will be discussed

at the end of this exercise.)

It should be stressed that as always we can work directly
from the basic definition. That is, we want to compute f' (0)

and we know that:

fi0) - Lim [f(O +0x) - f(O)]

Ax~+0 Ax
From part (a) we have f(x) = mx for x > 0, hence £(0) = 0.
Thus:
lim £(Ax)
L] —
£100) = Ax~0 Ax
We next note that f(Ax) depends on whether Ax < 0 or
*
Ax > 0. If Ax < 0 then f(Ax) = (&x)2 ; whereupon

lim £(Ax) _ 1lim  (Ax)2 _  1im B
= Ax - = &‘ - - Ax = 0
AX>0 Ax>0 x AX>0
If Ax > 0 then f(AXx) = mAx; whereupon
* : 2
Again observe that, for example, f(x) = x~ means
£([ 1) = [ ]2 (or: output = (input)z). Thus f(Ax) = (&x}z.

IX.5.12
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.5(L) cont'dl]

lim f(Ax) lim mAx (2)

= ——— :m
ax-0t X ax>0"

. lim £ (Ax) . i

In particular, for Kas® — BE to exist we must have:
lim f(Ax) _ lim f (Ax)
ax0t  BX px»0"  BX

and from (1) and (2), this requires that m = 0.

In terms of the graph, the x-axis is the only straight
line by which we can "continue" y = xz if the resulting curve

is to be smooth at the origin. That is:

A .
/ — Both lines make the curve

unbroken at 0, but only
the x-axis makes the curve
smooth here.

IL:5.13
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Differentiation - Unit 5: Continuity

[2.5.5(L) cont'd]

In Summary:

f is differentiable at x = 0 €% m and b are 0

f is continuous at x = 0 &b = 0

There is a subtle case that occurs and which can cause
great confusion if not properly handled. Let us modify the

present exercise by letting g be defined by:

g(x) = xz, ifx< 0

c , if x>0

our f(x) is the special case of g when ¢ = 0. The graph of
g looks pretty much like the graph of f (when m = b = 0)
except that the x-axis looks "displaced". That is:

y
y=f (x)=x> 9§

y=f (x)=c

~s
b

If we look at the graph, we might get the idea that g'(0)
exists and is equal to 0. Certainly in terms of the picture,
it seems that the slope of the curve is 0 at x = 0, but here
we run into the subtle problem of the difference between a point

and a dot. More specifically, notice that it is true that for

I1.5.14
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.5(L) cont'd]

lim

x <0, g'(x) = 2x and as a result _ 9'(x) = 0. Moreover,
: x+0
since g'(x) = 0 for x > 0, 11m+ g'(x) = 0. Thus we see that
x>0
llm— g i) = lJ.m+ g'(x) = 0
x>0 x>0

and all this tells us for sure is that if g'(0) exists, then

it equals 0. However g'(0) need not exist.

In fact, in this case we see that:

_ lim g(Ax) - g(0)
9'(0) = sx>o AxX
From the definition of g, g(0) = ¢ (since 0 belongs to
{x: x 35 0})
: _ lim g(Ax) - c
#7 g Q) = Ax~>0 Ax
2

Now if Ax < 0, g(Ax) = Ax while if Ax > 0, g(Ax) = c.

; lim+ g(ﬂxix— cT - lim+ [2‘5_;_9_]= 0, as we probably
*’ Ax+0 Ax~>0

suspected. However

2
lim [g(ax) — g lim I:E'}Z - c] _ lim [f}.x _ _g__]
Ax>0" Ax ] RO Ax Ax+0 . Ax

= - o unless c = 0

I1.5.15
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Differentiation - Unit 5: Continuity

[2.5.5(L) cont'd]

That is if ¢ # 0 b [q(f_\)g)—-c:] doesn't exist.
Ax>0" x

Pictorially

—~

for any of these horizontal lines it is true that

" gt {x) = 11m_ g'(x) = 0; but only for the x-axis (c=0)

x+0 x+0

lim

is g differentiable at x = 0.

From a practical point of view this means that displacing

(i.e., moving it "parallel" to itself) a graph changes its

properties only at the point of origin of the displacement.

This last example shows again that if a curve is broken at
a point, it is not smooth at that point. In terms of more
analytic language, then, this also illustrates that a dis-

continuous curve is not differentiable at that point, no matter

TT.5.16
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.5(L) cont'd]

how nicely it behaves at all other points in the neighborhood.

There is, however, one other special case for which

"differentiable" and "smooth" are not the same. Consider for

example the curve y = xl/3. This curve is smooth. 1In fact,
its graph is given by:
nNY
1/3
_,f"""’_'}y = X /
i 5 e i A N
.") f
{__h_,’

Now, if we look at the picture, we see that the curve

has a vertical tangent at (0,0). Since we exclude "infinity"
as a limit, we have that g% does not exist at (0,0). 1In
the language of functions, if f(x) = xl/3 then f'(0) does not

exist. Indeed:

Ax~0 Ax

_ lim [f(ﬂx)]
Ax-+0 AX
lim &x1/3]

Ax~+0 AX

£1(0) = lim [f(o + Ax) - f(O)]

_ lim 1 . o
Ax+0[%§273 B 0
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.5(L) cont'd]

In any event at this stage it might be to our advantage to
summarize various combinations of continuity and discontinuity.
Briefly, a curve is continuous, (in which case it can be

"smooth" but doesn't have to be) or it is discontinuous.

If the function is undefined at x = ¢, it cannot be
continuous at x = ¢ since in this case f(c) doesn't exist,
and as a result, it is impossible to satisfy the criterion
that iiﬂ f(x) = f(c).

Hopefully, it is also clear that if f(c) doesn't exist
then neither can f'(c) since the definition of f'(c) involves

f(c) explicitly. That is:

£f'(c) = )];ilg [ftx}){ : (f:(C)

In any event, perhaps the following sketches will be of help:

Continuous:

= )

(a) (b) (c)
smooth since f' (c) curve is smooth at curve has "sharp"
exists x=c but f'(c) doesn't corner at X
exist in the sense That is, f is
that £'(c) = « continuous at

x=c, but not f'
which has a "jump"

at x=c
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SOLUTIONS:

Differentiation - Unit 5:

[2.5.5(L) cont'd]

Discontinuous

(a)

Removable singularity

Calculus of a Single Variable - Block II:
Continuity

(e)

"Infinite" discontinuity at

at x=c but f(c) is not f(c) doesn't exist. That is,
defined. Hence f'(c¢) lim Elpd = o 1im Elx) = o
is not defined either. D x+c+
Y
T l A |
v=f (%)
' : y=f (x)
i |
/ :
T T X e p—— X
I
4 (e)
(i) (ii)

Both (i) and (ii) are examples of "jump" discontinuties.
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In each case 11m+ f(x) # llm_ f (x)
X+c  2do
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.5(L) cont'd]

Also in both (i) and (ii) f'(c) fails to exist. This 1is

not too surprising in (i) since llm+ f'(x) # llm_ £ {xx)s
X+C X+C
However in (ii) llm+f'{x) - llm_ f'(x) (=0, as we've drawn it)
X*>C X*C
but f'(c) still doesn't exist . (In this case, at all costs,
avoid confusing f'(c) with iig f'(x); £'(c) is, if it exists,

lim [f{x) - f(c) )

X>C X - C

2.5.6
For x > 0 we have f'(x) = 3x2 while for x < 0, we have
£1(x) = 4x°
Hence llm+ £* [ag = llm_ i) =0 (1)
x-+0 x+0

On the other hand

£'(0) = lim £ (Ax) - £(0)
Ax~+0 Ax

_ lim f£(Ax) - 0* _  1lim f(Ax)
TAx+0 Ax T Ax+0 Ax

*
Again f(0) is defined by f(x) = x3 not by f(x) = x4+l.
Since 0 belongs to {x: x>0} and not to {x:x<0}.
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.6 cont'd]

lim £(Ax) _ lim  (Ax)> _  1lim

2
Now = = (Ax)” = 0
axsot 8% px»0t  (8X) Ax+0"
lim £ (Ax) Lim ()% + 1 iim 3 1
But S e _ (Ax)” + Tim Ax = "o
Ax~+0 Ax-0 Ax~>0 -
Ax~>0

«. £'(0) does not exist since

lim f(Ax)-£(0) o lim f(Ax)-£(0)
Ax+0T Ax Ax+0" Ax

(Notice that we are talking about different limits in (1)

and (2) and it's critical that we see the difference.)

24947

From an intuitive point of view, this exercise is an
example of trying to show that "combinations" of "smooth"
functions yield "smooth" functions. Slightly, more formally,
this exercise is specifically concerned with showing that the
sum of continuous functions is also continuous (or at least
a finite sum - we must deal with infinite sums later in the
course). Similar results hold for differences, products,

and quotients (except, of course, for dividing by zero).

LL.5..21
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.7 cont'd]

As for part (a) the fact that f and g are continuous

LM £ (%) = £(c) ana 1M

at ¢ means that
X+C X>+C

g(x) = g(c).

If we now define h by h(x) = £(x) + g(x), we are being asked to
show that h is continuous at x = c. The key point here is that
everything follows directly from our previously-derived limit

theorems. In this case:

lim _1lim

mh(x) = AT [£(x) + g(x)]
_ lim lim
T x»c £{x) + X+C g (x)

= f(c) + g(c) (by definition of £ and g being

continuous at c)

= h.(e)

but iig h(x) = h(c) is precisely what we needed to show in

order to prove that h = f + g is continuous at x = c.

As for part (b) we can show that if fl' 58 % fn are
each continuous at x = ¢ then so also is h where h is defined

by h(x) = £1(x) + ... + £ (x).

Moreover, we do not even have to invoke mathematical
induction here since the key steps have already been proven
by induction (such as the fact that the limit of a sum is
the sum of the limits).

IT.5.22
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.7 cont'd]

We have:
lim _ lim
oc h(x) = e [fl(x) R fn(x)]
_ 1lim lim
= Sind fltx) F o F e fn(x)
Since fl' ey fn are each continuous at x = ¢, we have
that:
lim _ lim _
e fl(x) = fl(c),..., iy fn(x) = fn(c)
Hence:
Lm (%) = £ () + + £ (c)
X*+C 1 e n

h(c)

and the proof is complete.

255 8(L)

While one major aim of this exercise is to emphasize some
important properties of continuous functions, the exercise
also seems to illustrate how topics which were once
considered under the heading of "advanced algebra" are better

off if left to the calculus. For example, in pre-calculus
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.8(L) cont'd]

algebra courses, we were often concerned with finding roots
of equations such as f(x) = 0 where f(x) might have been a
polynomial or a trigonometric function or a logarithmic

function etc.

A common technique for solving such problems came under
the name of "Horner's Method." 1In this method we tried to
find two numbers, say m and n (without loss of generality
assume m < n) such that f(m) and f(n) had different signs.
We could then conclude that f(x) = 0 had a root for some number
X between m and n.

To understand why this method was valid, let us first
observe that equations and curves are related by the fact
that the roots of f(x) = 0 are precisely the x-coordinates
of the points at which the curve y = f(x) crosses the
x-axis. The method relies on the fact that f is a continuous
function, for if the curve is continuous it cannot get from
above the x-axis to below the x-axis without crossing the
x-axis. (Pictorially this is simple to see. In the language
of mathematical analysis we say that if f is continuous on

[m,n] then for every number y between f(m) and f(n) there exists

a number x € [m,n] such that f(x) = y. That is, a continuous

function assumes all intermediary values.)

With respect to this particular problem, since £
is continuous on [0,1] and f(0) is negative while f(1l) is
positive, we have that £(0) < 0 < f£(1) and by the result
concerning intermediary values there must be at least one

number x between 0 and 1 such that f(x) = 0. More intuitively,

I1.5.24
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.8(L) cont'd]

since the curve is below the x-axis when x = 0 and above the
x-axis when x = 1, the fact that the curve is unbroken means

that it crosses the axis somewhere between 0 and 1.

Again notice the fact that the interval is from 0 to
1 has no bearing on the theory here. Quite in general if £
is continuous between a and b and f(a) and f(b) have
different signs then we know there is at least one number x
between a and b such that f(x) = 0.

Of even more importance, we must be careful to avoid
pitfalls and not read more into this result than what is
really there. We shall illustrate our remaining remarks
pictorially:

(1) If f£f is not continuous on [0,1] the conclusion need not
be true (although it can be true).

For example:

2 K

y=Ff (x) y=£{x)

S
r/(
L.

(a) (b)

IT.5.25




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.8(L) cont'd]

In (a) we have a finite jump discontinuity at c where
0 < c < 1while in (b) we have an infinite jump at c where
0 < c < 1. 1In both cases £(0) < 0, £(1) > 0, yet there is
no x € [0,1] for which f(x) = 0. '

Of course the jump could occur after we cross the axis
in which case the result would hold sort of by "luck." For

example:

Here 0<t<l and
[ f(t)=0 even though
f is still dis-
continuous at x=c.

|

Q

(2) We are guaranteed that there is at least one root between

0 and 1, but Figure (d) indicates that there can be more:

i
“ C
. \\ A4
SNSRI, S S— \_;._ frvsmem e __) ®
Cl 02C3 CS
|
x =1
(d)
I1.5.26
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.8(L) cont'd]
In (d) £(0) < 0, £(1) > 0 and

f(cl) = f(cz) = f(CB) = f(c4)

where 0 < cl < ¢, < Cy < c4 < c5 < 1.

(3) The result of this exercise also depends on the fact that
f is single-valued. If f were multivalued the curve, if
continuous, would still have to cross the x-axis, but not

necessarily between 0 and 1. For example:

y
N y=F (x)

f is not single-valued

f(c)=0 but c¢[0,1]

(e)

(4) The fact that £ changes sign is sufficient to guarantee a
root but it's not necessary. For example:

IT..5.27




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

[2.5.8(L) cont'd]

In (f) f(cl)=f(c2)=0 where
0<c1<02<1 yet £(0) and £(1)

are both negative and certainly
f is continuous on [0,1]

£L,.0)

(£)

(Figure (f) indicates the weakness of Horner's Method. Namely,
if we don't pick our "inputs" sufficiently close, we can "skip
over" candidates for roots. 1In (f) notice that there are

neighborhoods of both c1 and <, in which f(x) changes sign but

[0,1] is too "crude" to pick these neighborhoods up!)

(5) Finally, if we add our knowledge of differentiability to
that of continuity we can make stronger statements. For example,
if £f'(x) > 0 for all x € [0,1] and £(0) < 0 while £(1) > O

then there exists exactly one number c where 0 < ¢ < 1 for which
f(c) = 0. Namely

The fact that f'(x)>0 means the
curve is always rising, hence once
it gets above the x-axis it can't
get back down!

I1.5.28
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 5: Continuity

25,9

(a) Since a fraction cannot be zero unless the numerator

is zero, it is impossible for f(x) 0 for any real number x
since the numerator of f(x) is always 1, and hence, in
particular, never equal to zero. Since f(x) can never equal
zero for any real value of x, there are no values of x

between 0 and 1 for which f(x) can equal 0.

(b) To obtain the result of Exercise 2.5.8(L) it was
necessary that f be continuous for all x between 0 and 1.
However, in this problem f isn't defined (let alone, continuous)

at x = 1/2. That is, £(1/2) = T%T which looks like "infinity."

That is f(x) increases without bound as x approaches 1/2 from
the right and it decreases without bound as x approaches 1/2
from the left. 1In other words, f has an "infinite-type" of

discontinuity at x = 1/2. 1In terms of a picture:

A

|
AN
—‘\ 173700 X
\l

|
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation

UNIT 6: Applications of the Derivative I

246 1L{T)

Notice that these two parts are identical except for the
fact that one deals with f' while the other deals with £".
Thus, these two parts, side by side, serve as a good vehicle
for emphasizing the difference between the first and second

derivatives as they apply to curve plotting.

As for (a), we have that our curve must pass through the
point (1,0) and the curve falls to the left of the line x =1
while it rises to the right of this line.

Thus a suitable curve would be:

\ y = £(x)

(1,0)

Observe that in the above diagram we drew the curve as if it
always "held water," that is, as if f£"(x) > 0 for all x.
Nothing in the requirements of (a) makes this mandatory. For

example, the curve below also exhibits the required properties.

IT:6:l1




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.1(L) cont'd]

f" in the same domain is
negative here but f' is

still positive

(1,0)

Just as (a) emphasizes rising and falling without regard
to concavity, (b) emphasizes concavity without regard to rising
and falling. That is, in (b) we are told that the curve passes
through the point (1,0) and that the curve "spills water" to
the left of x = 1 while it "holds water" to the right of x = 1.
Thus, for example, we could have

| holds waterh(even though the curve

. } rises part of the time
i \J / and falls at other

/ {8 times)

FlNS

Notice here that the tangent line to the curve at (1,0) need

#
spills water
i J

not be horizontal. All that must happen is that the tangent
line appear to "cross" the curve at (1,0) [because the concavity
reverses as we pass through (1,0)]. Of course the tangent line
could be horizontal at (1,0). For example,

IT.6.2
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.1(L) cont'd]

/{1.0)
i

Notice, in this case, that while the sign of f" changes as

we pass through (1,0), the sign of f' is always positive
(the curve is never falling) except at (1,0) where it is

stationary.

As a final point in the treatment of this exercise let
us call attention to the notion of SMOOTHNESS. Suppose that
we wanted to find the curve y = f(x) such that the conditions
imposed in (a) and (b) are simultaneously obeyed. Then to
the left of x = 1 the curve must be falling and spilling water.

That is: \\ To the right of x = 1 the curve must rise and

hold water. That is:'///

If we put these two pictures together we obtain:

IT.6.3




SOLUTIONS: Calculus of a Single Variable - Block II:

Differentiation - Unit 6: Applications of the
Derivative I

[2.6.1(L) cont'd]

e’/”’,»"sharp“ corner

(1,0)

This curve is CONTINUOUS but not smooth. It "abruptly" goes
from falling to rising as it passes through (1,0). (that is,

the slope goes from negative to positive without ever equalling
0}

2.,6.2
y
1\ ]
|
1
: point of
'I// inflection
5 ;/u
UL
KPN\-‘/ /
e g e b i
@401 2,0 7
f(x) = f(-x) means 8 , f(x) > 0 means the
the curve is symmetric }ﬂgrée curve cannot be on or
with respect to the — spillsé&— below the x-axis
y-axis ater
here
— cirve is€—
fallinglin
her¢ |
' l
\ 1
!
|
I1.6.4
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

2643 (1)

While, on the one hand, this is a typical exercise in
the use of the first and second derivatives in curve plotting,
on the other hand, it also affords us an excellent review of

the material on ways of combining function.

To begin with, let us find y' and y". Applying the
quotient rule to y = x/(x + 1), we obtain:

y' = —— (1)
(x + 1)
and from (1), we obtain:
g = __:2___§ (2)
(x + 1)

Analyzing (1), we see that y' cannot be defined for
x = -1. [More formally, y' increases without bound as x
"nears" -1]. When x # -1, y' is positive since (x + 1)2 is
positive. Thus, in the sketch of the curve we will find that

it is rising wherever it is defined.

From (2) we see that y" also is undefined at x = -1. We
also see that when x < -1, (x + 1)3 is negative; hence,
-2/(x + l)3 is positive. That is, when x < =1, y" is positive,
and similarly if x > -1, then y" is negative. Thus, the curve

holds water for x < -1 and spills water for x > -1,

We can now couple this information with a few facts

about y = x/(x + 1) and sketch the curve quite accurately.

IT.6.5




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.3(L) cont'd]

For one thing, we again see that x = -1 is a "bad" value, since

y is undefined there. We can also see that when x is "near"

-1, (x + 1) is small in magnitude, and y very large in

magnitude. The sign of (x + 1) is positive if x is greater

than -1, so if x is "a little more" than -1 our numerator is

a negative number nearly equal to -1 while our denominator

is a positive number very nearly equal to 0. Thus the quotient

is negative and large in magnitude. In more formal language:
Um - x/(x + 1)) = - =

x+=1

In terms of the sketch of the curve this means that for values

of x immediately to the right of x = -1 the points on the curve
are very "low." A similar analysis shows that to the left of
x = -1 the points on the curve are very high. That is:

lim

[x/(x + 1) = =
x+-1

We also see that when x = 0, v = 0 [so (0,0) is a point
on the graph]. A final observation might be that for large
values of x, x and x + 1 have approximately the same magnitude
[that is, in the sense that iim [x/(x + 1)] = 1].

=300

The fact that the curve is defined for all values of x
except for x = -1 is the strong hint that x = -1 will be an

assymptote.

IT.6.6
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the

Derivative T

[2.6.3(L) cont'd]

We now sketch the curve based on the above information:

rising but i
holding water I8
here 7

x=-1

EEr—

( T—
e K S = STR———

(This is still a fairly rough
draft. If we wanted a more
precise one, observe that we
can find both y and y' for
specified values of x and thus
we may obtain "check points"
as to where the curve must be
and what slope it has there.)

y = 1 is an
assymptote since

lim _X_ _
— o X2 x4l
R 4 Y=l

x+=1

(Figure 1)

L1677

curve must rise and spill
water

—Large negative valuefor y as

-




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.3(L) cont'd]

While it is always a dangerous habit to try to
determine the equation of a curve merely by looking at the

graph, the fact does remain that Figure 1 suggests that the

curve is a hyperbola. Let us now see how we can handle this

notion from the point of view of combining functions. To

begin with, let

g(x) = x/(x + 1)

1

NOWX/(X+1)=l-x—+—T

(This result can be obtained by long division or by the

n " : : X (X‘['l)—‘l . .
clever" ruse of writing T as =+ which in
turn can be written as:

(x + 1) _ 1 )

(x + 1) T T
If we now let f(x) = 1/x (and this is a function we have

graphed many times and which, hopefully, we know by now is

a hyperbola)

b4
A
S
Y= x
N X
F i
(Figure 2)
1T1.6.8
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative T

[2.6.3 (L) cont'd]

we see that

g(x) = 1 - f(x + 1)

Now for any function f, the graph of f(x + 1) is the
same as the graph of f(x) EXCEPT it is displaced to the LEFT
by one unit. Applying this information to Figure 2, we see
that

'
x=-1
e\:k graph of f(x + 1)
i
i s
— e s sy X
1
i
(Figure 3)

We also know that the graph of f(x + 1) and the graph of
-f(x + 1) are mirror images of one another with respect to the

x-axis. If we apply this knowledge to Figure 3, we obtain

I1.6.9




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.3(L) cont'd]

x=-1

| >
i
i
| "
|
|

/

(Figure 4)

graph of -f(x + 1)

X

Y
>

Finally, if we think of -f(x + 1) as being k(x) we recall
that the graphs of k(x) and 1 + k(x) are the same EXCEPT that
1 + k(x) is superpositioned one unit ABOVE the graph of k(x).
If we apply this to Figure 4, we obtain:

y
A graph of 1 - f(x + 1)
: [= 1+ {-f(x + 1)}]
i
i el N

~N

(Figure 5)
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SOLUTIONS: Calculus of a Single Variable - Block II:
Applications of the

Differentiation - Unit 6:

Derivative I

[2.6.3(L) cont'd]

Figure 5 represents the graph of 1 - f(x + 1) = g(x), and,

hence, (just as it should be), we see that Figures 5 and 1

represent the same picture.

Figures 2, 3,

Moreover, in going through

4, and 5, we not only develop the proper graph

of g(x) = x/(x + 1) but we also see just how it is generated
from the more basic function f(x) = 1/x.
2.6.4

y = £(x) = x4 4x2 = xz(x2 - 4) [, curve crosses xX-axis

£V i(x)

£ (X)

12x

- 8

dx (x° - 2)

II.6.11

at 0, -2, 2

Horizontal tangent at

points for which

x=0, -/2 ,/2

Points of inflection
2 2
when x~ = 3 or

1
X = + gu/gﬁ% + 0.8



SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.4 cont'd]

i y X
-4 =3 7
4
when x~ = 2, x = 4
. 4 2
s X - 4X = 4 - 8 = -4
when x° = 2 x4 - 2
I -9
I“ x4 - 4X2 =
(-/2,-4) (/2,-4) 4 8 _ 4 _24_ 20
9 39 9 9
f(x) = f£(-x) » the curve is symmetric with respect to the y-axis
2.6.5(L)

This exercise affords us the opportunity to see how curve
plotting is related to analytic problems, and it also allows us
to reinforce an idea presented in the text concerning a short-cut

method for sketching certain types of curves.

IT.6.12
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative T

[2.6.5(L) cont'd]

To begin with, if we let x denote any real number, then
the reciprocal of x is denoted by 1/x (except, of course, if
x = 0 in which case there is no reciprocal). Then, (a) we wish
to examine x + % for positive values of x and (b) see for what

value of x this expression is minimized.

In terms of curve plotting, this means that we want to
look at the curve y = x + % and find where the lowest point
of the curve is in the region to the right of the y-axis.

To sketch the curve we first observe that if x is small in
magnitude then x + % "behaves like" %; while if x is large in

magnitude x + %—"behaves like" x. In terms of a picture, this

means:
¥ =«
oyt
e iy S s s = . _ex
.ff y=x+% must lie in the shaded region. For
| ' ! ixample, i{ x>0 then x+§-exceeds both x and
_;\ { % SO y=x+— lies above each of the curves
/fi;i;EI y=X and yzé. A similar treatment applies to
_;f’_; M3\ x<0, Thai is, x<0 implies that both x and %
f{iy,‘?;/ A exceed X+2, hence y=x+% must lie below each
/// _.-‘;},"'\ of t?e curves y=x and y=%. In other words,
// ' t y=x+§ exists in the shaded region.
.

IT.6+13




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.5(L) cont'd]

The above analysis gives us a pretty good idea about the
graph of vy = x + %, but to be more precise we can compute y'
and y". This leads to:

~ 1
y' =1 - (2)
X
y" = (3)
X

From (2) we see that the places on the curve at which the
slope is 0 are the points corresponding to x = 1 and x = -1;
and from (1) we see that these are the points (1,2) and
(-1,-2).

Moreover (3) tells us that the curve is holding water at
(1,2) and spilling water at (-1,-2). Putting all this together,
we obtain:

IT.6.14




SOLUTIONS: Calculus of a Single Variable - Block II:

Differentiation - Unit 6:

Derivative I

[2.6.5(L) cont'd]

we are not interested in
f(x) = x + % in this =
problem; but rather

£G) = x + % and x > 0

.. we exclude the graph | /

to the left of x = 0. .~

Applications of the

From the above diagram it is clear that for positive

values of x, x + % is at least as great as 2.

IL:6.15




SOLUTIONS: Calculus of a Single Variable - Block II:

Differentiation - Unit 6: Applications of the
Derivative I

2:6.6

_ 4
Let f(x) = x + ;2—

Then, our problem is equivalent to finding the lowest point
on the curve y = £(x) = x + —%- and x > 0
x

4

%
negative if 0 < x < 2
£1(x) = 1 - 5 .. £1( x) is{ zero if x = 2
* positive if x > 2
24 . =
f"(x) = =z - f"(x) > 0 for all x
4

.. Lowest point on curve occurs when x = 2, at which point y = 3
since y = x + —%—
X

Hence:

K / X = 0 (the y-axis)

/ is a vertical assymptote
since ;%— > o as x + 0,
(2,3)
e - - ey X
IL.6..16
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.6 cont'd]

Thus, if x is positive, x + ~§-—is at least 3 and this
p.4

occurs when x = 2,

2507 th)

This exercise actually highlights the use of calculus in
solving algebraic equations. The point is that the roots of
the equation 2x3 + 2x2 - 2x - 1 = 0 are precisely the x-coordinates
of the points at which the curve y = 2x3 + 2x2 - 2x - 1 crosses

the x-axis, i.e. when y = 0,

To find where the curve meets the x-axis, we proceed as

usual and determine y' and y". This leads to:
y=2x0 + 2x% - 2x - 1 (1)
y' = 6x2 + 4x - 2
=2(3x - 1)(x + 1) (2)
y" = 12x + 4 (3)
From (1) we know that when x = 0, y =-1; and from (2)
we know that when x = 0, y' = -2,

Thus the curve passes through (0,-1) with slope equal
tO -2.

(2) also tells us that the slope of the curve is 0

when x = 1/3 or x = -1. From (3) we see that y" is positive
when x = 1/3 and negative when x = -1. We also see from (1)
LLw6:«dT




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.7(L) cont'd]

that when x = 1/3, y = -37/27; and when x = -1, y = 1.

Thus we also know that the curve has a minimum point at
(1/3,-37/27) and a maximum point at (-1,1).

Fianlly, (3) tells us that y" = 0 at x = -1/3., From (1)
we see that when x = -1/3, y = -5/27; and from (2) we see that
when x = -1/3, y' = -8/3.

This means that the point of inflection is (-1/3,-5/27)
and that the slope of the curve at this point is -8/3.

Putting all this into a sketch, we obtain:

<

point of inflection

!
i(0,-1)

//z" in
int e TS
y-intercept | 1 -37
3r 27

I1.6.18
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.7 (L) cont'd]

From the sketch so far we can get additional "checks." For
example, our sketch seems to indicate that the curve will fall at
all points whose x-coordinate is between -1 and +1/3; while it
will rise elsewhere. This is verified from the factored form of
(2). We also see from (3) that the curve spills water to the
left of the line x = -1/3 and holds water to the right of this
line. This is also indicated by our plotted data.

A glance at the sketch also seems to indicate that the
curve will cut the x-axis in three places, one of which is to the
right of the y-axis and the other two to the left of the y-axis.
As for the x-intercept of the curve to the right of the y-axis,
we sense that it is close to 1. To see how close, we let
x = 1 in (1) and obtain that when x = 1, y = 1. This tells us
that (1,1)is on the curve. In particular, the curve lies above
the x-axis when x = 1; hence, it must have crossed the x-axis
at a point whose x-coordinate was less than 1. From (2) we see
that y' = 8 when x = 1, so that the curve is rising quite quickly
at the point (1,1).

Our graph also indicates that another x-intercept must be

slightly to the left of x = -1/3, while the third x-intercept
must lie to the left of x = -1 (why?). To help us get a better
perspective, we look at (1) and (2) when x = -2, (1) shows us
that when x = -2, y = =3 [thus the x-intercept is between -2 and

-1 (why?)]; while (2) shows us that at (-2,-3) the slope of the

curve 1is 14.

IT.6.19
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SOLUTIONS: Calculus of a Single Variable - Block II:

Differentiation - Unit 6: Applications of the
Derivative I

[2.6.7(L) cont'd]

Adding this data to our sketch, we obtain:

K
= 2%° 4 2 2
Y = 2x0 4+ 2x7 - 2x - 1
| i
. 6
oA ;
; |
! \ |
\
-—m-—~—~*——w»m€y——— __QLHM_- 1@— e R 2 4
=
".’ '
\}" J
P\ /
\f
S
approx1mate
I roots of i
' ]
f2>:3+ 9%2 = gle 1 =0

|
1
&
l

Next we observe that adding 3 to each y value raises the curve

by 3 units; and this is equivalent to replacing the x-axis in

the above diagram by the line y = -3. 1In a similar way, subtracting
3 from each y value means that we replace the x-axis in the above

diagram by the line y = 3. Putting all this into one picture, we

obtain:
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.7(L) cont'd]

X /g 1.1

S p—

(a) roots are approximately
0.8, -0.4, -1.2

(b) root is x = -2

B SR Py

(c) root is approximately
x =1,1%

33

N, ! P
Xy -1.2 5& -0.4 X
‘ u

S oW =00 O o0 o0 0N O &N B PR O o0 m om om

€3 3

M

- G e : » iy = =3
X = =2
(by a fortunate
coincidence, this
is an exact root (why?)

I1.6+21



SOLUTIONS: Calculus of a Single Variable - Block II:

Differentiation - Unit 6: Applications of the
Derivative I

[2.6.7 (L) cont'd]

As a final observation in this exercise let us notice that
we could locate the roots by analytic methods rather than by
geometric methods.

For example, with f(x) = 2x3 a ; 2x2 - 2x - 1 we observe:

f(-2) = -16 + 8+ 4 -1 <0 root between -2 and -1 by "Horner's
Method" (see solution to Ex. 2.5.8)

f(-1) = -2+ 2+ 2 -1 >0
root between -1 and 0 by "Horner's
Method"

£(0) = -1 <0

f(1) =2+2 -2 -1 >0 root between 0 and 1 by "Horner's
Method"

(Recall "Horner's Method" refers to continuous functions
which change sign).

Now, to get a better approximation of the root of f(x) = 0

which lies between 0 and 1, we can use "Newton's Method."

(1,1)

IT.6.22
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SOLUTIONS: Calculus of a Single Variable - Block IT:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.7 (L) cont'd]

This amounts, for example, to picking x = 1 as a first
approximation and drawing the tangent to the curve at (1,1)

and seeing where it crosses the x-axis. When x = 1,

= 8
1

|
£ (x| = 6x° + 4x - 2 |
x =1 xﬂi

8x - 7

Il

.. Equation of tangent line is i - i =8 ory

(0, %) is where this line crosses the x-axis (y = 0)

" A

is a bit greater than the desired root (see above figure), and

ol ~J

we can repeat the process starting with x = % and in this way

obtain better approximations.

2.6.8(L)

(a) The slope of y = §_§_T at (xl, yl) is given by

dy . _=¢
dx (i 4 l)i
Hence when x = 2, g% =.__J§L_§_.= %g
(2 + 1)
Since we desire dy _J =1 , it follows that 1 = %g
dax £ 9

c = -9

(b) Again (b) is the part that requires a less mechanical
approach. The key difference between (a) and (b) is that in (a)

we were given the point on the curve that was of interest to us.
¢

x + 1 °

In (b) we do not know where x + y = 3 is tangent to y =

IT.6.23
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Differentiation - Unit 6: Applications of the
Derivative I

[2.6.8(L) cont'd]

It might also be interesting to observe that except for

. . . _ c . ; .
helping us visualize the graph y = T T (and nothing in this
problem says we have to be able to draw the graph), we can solve
this problem without recourse to calculus. Even though we can
avoid the use of calculus, part (b) has much to offer us in

terms of enhancing the analytic approach to geometry problems.

At any rate if:

_ c
Y = 51 (1)
%X = '__:S__E (2)
X (x + 1)
2 5
dy _ 2c (3)
dx2 (x + l)3

Let us assume that c¢ is positive (If c is negative all that
happens is that y changes sign. Hence, if c is negative, our
graph is the mirror image with respect to the x-axis of the

graph of y = = i T )-

Since c # 0. ﬁ_g_T # 0, hence y # 0 (from (1))

.

the curve never crosses the x=axis (a)

IT.6.24
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.8(L) cont'd]

Moreover from (1) we also see that y is undefined when x + 1 = 0

the curve never crosses the line x = -1. (b)

From (2), since (x + 1)2 can never be negative and since
c is positive, %§ is always negative (if ¢ were negative then

ke would be positive).

dx
,, the curve is always falling. (c)
a2
Finally (3) tells us that ——% has the same sign as x + 1
dx

[since a number and its cube always have the same sign]

W the curve holds water for x > -1

(d)
the curve spills water for x < -1

Putting (a), (b), (c), and (d) together, we obtain
I f
\
J always falling but holding
f water for x > -1
o/

falling but spilling
water for x < -1

A

=S RSy L T ! U Ry IRy S -a-ﬁ._,(.._,;’__} X
e\ |
\ ;

X = -1

(Figure 1)
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.8(L) cont'd]

If ¢ is negative, the graph has the form

Y
N
?: Graph of y = ;—%—T for ¢ < 0
-J/
/"; l
o
Lf“. I ) 5 5
| . ey
.-"f
| mx”’
I /JJ
L 40,0
b/
'y
t
(Figure 2)

A glance at Figure 2 shows us that there can be no solution
to our problem if c¢ is negative, for in this case the curve
y = ¢/(x + 1) is always rising, while the line x + y = 3 has a
negative slope (m = =1). Thus, the line x + y = 3 can never
be tangent to the curve y = ¢/(x + 1) if c is negative, since the
line is falling while the curve is rising. Again, this is seen
at a glance from the diagram since it is visually clear that the

line, for any negative choice of ¢, intersects the curve twice,

IT.6.26
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.8(L) cont'd]

once on each branch. That is,

(Figure 3)

Thus, it becomes clear that if our problem is to have a
solution, it must occur only for positive values of c. Therefore,
let us turn our attention to the case in which ¢ is positive.
Again our graph seems to indicate two general cases: namely,
the line intersects the curve in two places or not at all. (By
the way, when there are points of intersection, they must be on
the upper branch of the curve, for the lower branch of the curve
is in the 3rd quadrant while the line X + y = 3 is never in the
third quadrant.)

IL.6.27




SOLUTIONS: Calculus of a Single Variable - Block II:
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[2.6.8(L) cont'd]

Pictorially, we have

Yy
X+y=3 e
| No points of intersection
:
-l
I \ Y =x+71
|
1 \\M R
x ="1 \
(Figure 4)
or: Yy

Two points of intersection

{

'

H

i

E

1
W

(Figure 5)

IT.6.28




B

&ah AWM W N am m

S &l TS E aE B oh a b e

Fa

SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.8(L) cont'd]

How can ¢ be located? There are a few nice ways, and we
shall discuss one of them here. For one thing, if we wish to
find where the two curves intersect, we may find the simultaneous

solution of their equations. Thus we may try to solve the

equations:

y =3 -x
and

y = c/(x + 1)
This leads to:

3 -x=c/(x+ 1)
or:

(3 - x)(x+ 1) = c

i s 3x - x2 + 3 -x=_cC

or:

22 =2 ¢ o= ) =0 (4)

We can now use the quadratic formula in (4) to find the x-

coordinate of the point of intersection. Namely

x = X + /4-4(c-3) _ 2 + 2/1-(c-3)
B 2

> =

Hence:

x=1% JToE (5)

IT.6.29




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.8(L) cont'd]

Equation (5) shows that if 4 - ¢ < 0 (i.e., if ¢ > 4)then x
cannot be real. In terms of our previous geometric considerations,

(5) shows that Figure 4 applies when c > 4.

Secondly, if ¢ < 0, (5) shows that one value of x is less
than -1 while the other is greater than 3. (That is, ¢ < 0 ~»
Jb-c>2+1-/1-¢c < -1.)

Therefore, as suspected earlier, (5) confirms that Figure 3

applies when c¢ is negative.

Finally if the required solution is a transition between
the case of two intersections and the case of no intersections,
(5) indicates that the solution occurs when V4 - c = 0 (since

s r—

then 1 + /4 - ¢ is the same regardless of our choice of sign.)

Thus ¢ = 4 is the only candidate for a solution.

. 4
Now, when ¢ = 4, x = 1, Therefore our curve is y = ST

and the point at which y = 3 - x is tangent to the curve occurs

when x = 1. Therefore the point is (1,2). As a check, when
_ B dy _ -4 . (dy - 1. .
Y =S X F I rax T 2 .- (dx) L 1. Equation of tangent
(x + 1) %=1
. .y—2__ _ B
line is =—v = lory 3 X.

The main reason for checking is that there are some general
problems which happen not to occur in this example, but which

can occur in other cases.

IT.6.30
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SOLUTIONS: Calculus of '‘a Single Variable - Block II:
Differentiation - Unit 6: Applications of the
Derivative I

[2.6.8(L) cont'd]

For example, the mere fact that there is only one value of
x does not guarantee that we have found a point of tangency. The
graph might have looked like:

\ only one point of intersection
- but not a tangent

)~

Secondly, the fact that a line meets a curve more than
once does not exclude it from being tangent to the curve as the

following configurations indicate:

Two points of . One point of
tangency £9W“~ tangency; one

_ - ff other point of
d/fg\\d// \\ Q. intersection.

What is important is that a combination of analysis and

geometry has shown us precisely what is happening in this problem.
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation

UNIT 7: Applications of the Derivative II

2.7 1LY
We first observe that the solution of this exercise does
) , 1.4
not depend on whether we understand why the "recipe" pv = c

works.* All that is important in terms of related rates is that
we have managed to relate p and v. We merely assume that both
p and v are differentiable functions of time and we then differ-

entiate pvl'4 = ¢ implicitly with respect to time (notice here

that we have a new use for implicit differentiation; that is, we
assume that somehow or other p and v are functions of time even
though we do not know explicitly how they vary with time). 1In

any event we obtain

dp. 1.4 0.4 dv _
a:v + 1.4PV E*‘ 0 (l)

If we next observe that v0'4 # 0, and since for physical reasons
we can assume that v # 0, we may divide through by v0'4 in (1)
to obtain

*Just as a little aside for those who may be more familiar
with the relation pv = constant, let us observe that pv = ¢
pertains to an isothermal situation (that is, where the tempera-
ture is held constant). 1In this problem we are assuming
that we are studying a process in which there is no flow of
heat. Quite in general, in an isothermal situation we must
add or subtract heat. For example, this is done in a
temperature bath when we hold temperature constant by
either heating or cooling the bath as conditions change.

IT.7.1




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 7: Applications of the
Derivative II

[2:7.1(L) cont'd]

dp ar
The beauty of (2) is that it tells us how v, p, %%3 and %% are

related at any given instant and thus we can find any one of
these quantities once the other three are known. Notice that
all we have to know is what the values are at that instant and
not how they got that way. That is, equation (2) utilizes
nothing more than the fact that p and v are differentiable
functions of time. It does not matter, for example, what was

going on to make p = 40 when v = 16.

Now to solve Exercise 1.7.1(L) explicitly with respect to

the given data, all we need do is return to (2) and let p = 40,
_  av av
v = 16 and 3E = 2. (Recall that 3t

for expressing the change of volume with respect to time and we

is just the calculus way

use the minus sign to indicate that the volume is decreasing.)

We obtain

1699 + (1.4) (40)(-2) = 0

or:

That is, at the given instant the pressure is increasing (since
dp
dt
second.

is positive) at the rate of 7 pounds per square inch per

More importantly, notice that (2) was the most crucial part

of this problem since once (2) is obtained we can find out what's

II-7.2
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 7: Applications of the
Derivative II

[2.7.1(L) cont'd]

happening at any particular instant PROVIDED ONLY THAT p AND v
ARE DIFFERENTIABLE FUNCTIONS OF t.

2,7.2

Here we again assume that p and v are differentiable

functions of t and we differentiate pv = ¢ implicitly to obtain

dv dp _
Pzt * Vgt T O
: _ dav _ ;
Now letting p = 40, v = 16 and aE = -2, we obtain:
(40) (-2) + 1632 = o
dt
whence
dp _
at - 2

Thus, at the given instant the pressure is increasing at a rate

of 5 pounds per square inch per second.

2:743

At any instant, v = %ﬂIB. So, if we only assume that v

and r are differentiable functions of time, we obtain

av 2 dr
T = 4mr dt (l)
I1.7.3




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 7: Applications of the
Derivative II

[2.7.3 cont'd]

Equation (1) shows how %%, g%, and r are always related.
In particular, if we now also know that %% = k(4wr2), for

some constant k (which is exactly what is meant by the fact

that the change in volume is proportional to the surface area),
(1) becomes

2 2 dr
kdnr = 4dnr d_t (2)
From (2), we see that
dr _ _
5 = k = constant

which i1s the desired result.

2.7.4(L)

In principle, this exercise is the same as the others, but
it is the first one we've tackled in which we must derive the
relationship between the variables rather than having the rela-
tionship given to us at the outset. Moreover, this exercise
also affords us the opportunity to do the same problem both
implicitly and explicitly and thus be able to compare two

different computational techniques.

Pictorially, we have

IT1.7.4
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Differentiation - Unit 7: Applications to the
Derivative II

[2.7.4(L) cont'd]

25] - e - — In the language of
.T S this diagram, we
e h want to find ds when,
at
50 i ™ by similar triangles,
\\,( we know that:
s _ 30
0 h
=< - ——
s = I500R™
ds _ _ -2 dh _ =-1500 dh
qE = 1500h aE = ~—;7—- 3t (1)

Now (1) can further be refined by the information that

h = 16t2. Hence, %% = 32t, and putting this into (1), we obtain

ds _ -1500(32t) (2)
dt h2

Thus, the solution to this exercise is obtained from (2) with
t = 1/2 (which means that h = 4). That is, at t = 1/2,

dt 2
(4)
TL 75




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 7: Applications to the
Derivative II

[2.7.4(L) cont'd]

(If the magnitude of this answer seems too large from an intui-
tive point of view, merely observe that if we were to draw the
diagram to scale, after 1/2 second the distance to the shadow is
small compared with what it was just 1/2 second earlier. Namely,
at the instant t = 0 the shadow is "infinitely far away." Thus,
the rate of change is extremely great during the first few
"instants" of the fall.)

Observe that we could have, in this particular example,
found g% more explicitly. In fact, using the same diagram as
before, we can replace h by 16t2 BEFORE we differentiate, and

obtain at once that

_ 1500
16t2
-1500
45 - =239 (3)
8t
(3) yields at once the result that g% = -1500 when t = 1/2.

It is again of interest to observe that (3) yields much more
than the correct answer to the exercise. It shows us how ds/dt
depends on t for all values of t during the fall of the ball. 1In
particular, (3) tells us that the rate of change of the shadow
is inversely proportional to the cube of the time. (Thus, for
example, if the time of fall is doubled, the rate of change of
the shadow decreases by a factor of 8.) As sort of a check, we
observe that the relation 50 = 16t2 shows that the ball is in

IT.7.6
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 7: Applications of the
Derivative II

[2.7.4(L) cont'd]

flight for approximately 1.75 seconds which is 3%—times greater
than 1/2. Now (3.5)> = 42.875; hence at the instant the ball
hits the ground the rate of change of its shadow should be about
1/43 of 1500 or about 35 ft/sec. Replacing t in (3) by v50/16 =
2%31 we obtain that ds/dt = -24v2, which agrees nicely with our
approximation. Our main point is that results such as (3) are
of ten more important than the specific value at which the

exercise asks us to evaluate (3).

2475 (1)

Here again we need only assume that x and y are differen-

tiable functions of t. Then the fact that x and y are related

by x2 S y2 = 1, leads to:
dx dy _
Since we are interested in finding %%, we rewrite (1) as:
i _ 9%
ay = dt (2)
dt y
We then observe that (2) tells us how x, y, g%y and g% are

related at any time t except that we must be very careful when
y = 0 since we cannot divide by 0. From a philosophical point

of view, since the circle has a vertical tangent at y = 0 we do

8 O i £




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 7: Applications of the
Derivative II

[2.7.5(L) cont'd]

not talk about a y-component of speed at y = 0 since at this
instant y is changing while X remains 0. However, we can look
at the limit of %% as y approaches zero in (2).

In any event, in our given exercise, we know the additional

information that X = -y, hence if y # 0, (2) yields the result

dt
that:

(3)

2je
I
»

(Referring to our previous parenthetical remark, we may define
the speed at y = 0 to be the limit in (3) as y approaches 0. 1In
this case x is either 1 or -1; hence, when y = 0, if the speed

is continuous, it must be that %% is either 1 or -1 depending on

the orientation of the motion.)

With regard to the orientation, we have from our given
information together with (3) that g% = -y while g{-= X. Thus,
in the first quadrant where x and y are both positive we have
that %% is negative while g% is positive. This means that in

the first quadrant the particle is moving up and to the left

and this means the motion is counter-clockwise. A similar check

verifies this result in all quadrants. For, example, in the second

quadrant X is negative while y is positive; hence g%-is negative

while g% is also negative. This means that in the second quad-
rant the particle is moving down and to the left, and this is

also the counter-clockwise direction. Pictorially,

LL. 7«8
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 7: Applications of the
Derivative II

[2.7.5(L) cont'd]

; X < 0
f‘+"‘*~ d Y = 0 !
] dy 2t
PN ax 7 LN
, .: dt N,
/ ! dx x>0 ; \
ETW%“ .Q_QE _______ > 0 ?
‘,\I s
\ i
LY ! S
. T

X >
y <
‘i
| dx
dt
We may also check the result (3) by means of the chain rule.
Namely, by implicitly differentiating x? + y2 = 1 with respect
g dy _ dy _ -x
to x, we obtain that 2x + 2ya§ = 0 or that B = 3;3 (4)
On the other hand, by the chain rule, g%-is the quotient of
Ay yaco g dx ; I < -X ; :
It divided by EE-Wthh is = or F and this checks with (4).
LX.T:9




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 7: Applications of the
Derivative II

[2.7.5(L) cont'd]

NOTE :

If we define the instantaneous speed of the particle in the
"usual” physical sense, we notice some interesting special
results in this case. Namely, let us define the speed as

dx, 2 gx 2 i dx _ _ gz.= ;
/QE? 4 (dt) . Then, since It y and 3t X we obtain that
the speed is given by./x2 + y . We next note that x and y are

related by x2 + y2 = 1. Hence, in this problem, the particle

is moving along the circle with a constant speed of 1 (and this
clearly checks with our earlier parenthetical remarks that if

the speed is continuous it must be 1 or -1 when y is 0).

Now, we have also learned in physics that, in such a case,
the acceleration is always directed toward the center of the
circle. An interesting point is that we are now in the position
of checking such facts by a purely mathematical approach, and
we no longer have to rely exclusively on physical intuition.

2 and a%y/at? to find
the horizontal and vertical components of the acceleration. We

For example, we can compute both dzx/dt

obtain

2
d"x _ 4 ,dx, _ d _ - —dy _ _
== * aF g " 3E B gy X
at

QEZ = 4 Ay = @ 5y o=

g2  dt ‘at at Y

.". The slope of the acceleration "vector" is =Y or

4
X

I1.7.10
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 7: Applications of the
Derivative II

[2.7.5(L) cont'd]

On the other hand, the slope of the circle (%%J is %;.

Since-%—and :§-are negative reciprocals, the acceleration
is at right angles (normal) to the circle; hence, the accelera-
tion is always directed along the radius and a simple check of

signs shows that this direction is always toward the center,

2.7.6

We know that g% = x and that 4x2 + 9y2 = 36. Thus, if
we assume, as usual, that x and y are both differentiable func-
tions of t (and please note that unless such assumptions are
made, we cannot use the results of differential calculus), we

obtain by implicit differentiation

dx dy _
SXEE- + lBydt = 0
Hence ’
dx
SXE + lBy}( = 0

Thus, if we assume that x # 0 (which, in particular, is true in
the present exercise), we obtain that:

dx _
8d_t. + lBy = 0
QX'
dx _ =9y
de 4
I1.7.11




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 7: Applications of the
Derivative II

[2..7.6 cont'd]

. = -y/2, and this, of course,

4v2
9

Q[QJ
ot X

In particular, then, when y =

is the x-component of the speed.

IO

In terms of a diagram we have:

ds
dt
given conditions apply. At the given instant a = 40 and b = 30

What the problem asks us to do is find at the instant the

so s = 50 by the Pythagorean Theorem, but note that we do not
know at what instant this occurs. Moreover, we cannot assume
that the ships are moving at a constant rate for, in particular,
the ship which has gone the furthest has AT THE GIVEN INSTANT a

lesser rate of speed than the ship that has not gone as far.

However, once we assume that a and b are differentiable
functions of t, the Pythagorean theorem yields the following

general result:

da db _ ds - 2 2 _ 2
ZaEE - ZbEE = 2saE- (since a~ + b s7)
IT. Twl2
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[2.7.7 cont'd]

Thus:

——

or:

e

i
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In the given exercise a

2(40) (20)
ds _
it = 31

SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 7: Applications of the
Derivative II

= 40, b = 30, ‘diz—= 20, 3—1;-—- 25 sbd & = 50,
+ 2(3 = as
(30) (25) = 2(50)3%

miles per hour.
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation

Unit 8: Applications of the Derivative III

2«81 kD)

In most problems of this type the usual procedure is to find
the values for which g% is zero (in this exercise there are no
points at which the derivative does not exist, nor need we check
the endpoints of a closed interval since we are assuming that £
is defined for all real numbers). Thus we easily arrive at x = 1,
X =2, x =3, and x = 4 as our CANDIDATES for high-low points.

One then looks at f" (x) for these candidates and unless
f"(x) = 0, we can tell from the concavity whether we have a high
or a low. If f"(x) = 0, however, we gain no information about high

or low points.

In this particular problem, notice that it is first of all
gquite a chore to compute the second derivative since we have a
product of four factors. Even worse is the fact that once we do
compute f"(x) we find that £" (1) = £"(2) = £"(3) = £"(4) = 0.
Namely, if we recall the recipe that we differentiate a different
factor each time, we obtain:

£V ) = il = 1) = 203 = 9% s 418+ 3ix = 1Y - 297

= 35k~ H% + 6z - /¥ = 2% - 3370 - 4)°
+8(x - V¥ - 2)3x = 3)%=x - 4)7

(x - 1)3(x - 2)%(x - 3)°(x - 9 'g(x)

Il

where g(x) = 4(x - 2)(x = 3)(x - 4) + 3(x - 1)(x - 3)(x - 4)

+ 6(x - 1)(x - 2)(x - 4) + 8(x - 1)(x - 2)(x - 3)

IT.81




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 8: Applications of
the Derivative III

[2.8.1 (L) cont'd]

So, in this exercise, we must make use of the first derivative

more directly. Recall that

£ x) =W = (x-1%x-2)3(x- 3)0x- 48 (1)

312

Since every factor in (1) except (x - 2)3 appears to an even power,

only (x - 2)3 can change sign as X varies.

In any event, let us investigate what happens to f'(x) in a
neighborhood of x = 1. That is, we shall look at f'(x) when x is
"a little less" than 1 and also when it is "a little greater" than 1.
We then see from (1) that:

£'(17) = (#) (=) (#) (B "= -

and

g1

(F) (=) (+) (#) = -

Thus, the curve is falling "just before" and "just after" x = 1.
In other words, x = 1 is neither a high nor a low. In a similar

way:

*We are focusing our attention only on the sign of the factors
in a deleted neighborhood of 1. All factors except (x - 2)3 are

automatically non-negative pecause of even exponents. (= 2)3
changes sign in a neighborhood of 2; however, since we are inter-
ested in what is happening near 1, we may assume that our neighbor-

hood of 1 is chosen sufficiently small so that (x - 2)3 will always
be negative.

1I.8.2
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 8: Applications of
the Derivative III

[2.8.1 (L) cont'd]

£'(027) = () (=) () (+) = -

£'2%) = (+) (#) (#) (+) = +
Hence the curve is falling just before x = 2 and rising just after
x = 2; that is, x = 2 denotes a low point, even though f"(2) = 0%*.

Continuing, we find:

£'(37) = (4) (+) (+) (+) = +

Y. -

£'(37) = (+) (+) (+) (+) = +

and again we see that f(3) is neither a high nor a low; rather the

curve rises before and after x = 3.

Finally:
£'(47) = (H) (4) (4) (+) = +
i +
£'(4') = () (H)(H)(+) = +
Pictorially: yp
» In fact in this particular

\\m //" example %% € 0 if x < 2

>0 1 fExy 2

*If this seems unnatural to accept, sketch, for example,

2
y = (x - 2)4 which has a minimum at x=2,yet 9y =0

2
AxX =2

IT.8:3




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 8: Applications of
the Derivative III

[2.8.1 (L) cont'd]

The important point is that when the second derivative is zero
we can find out all we need about high and low points by considering
the first derivative (slope) directly. We emphasize this point
mainly because of the overwhelming desire to compute f"(c) once
f'(c) = 0. It's fine when this works, but we must remember the basic

concept of slope when it doesn't work.

2.8.2

2% Yy

A = xy (1)
X + y© = 4r (2)

Method #1 (Expressing A explicitly in terms of x)

From (2), y = (+) qﬁrz - x2

s (1) becomes:

A = xVir® - x
= x(4r2 - x2)1/2 (3)
ﬁ%% = x[%(4r2 - xz)_l/z(-Zx)] + (4r2 - xz)l/2
s 2 g2
2 e s e i e g8 = BE_ = 2X (4)

r = X V4r! = 3

IT.8.4
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SOLUTIONS: Calculus of a Single Variable - Block II:

Differentiation - Unit 8: Applications of
the Derivative III

[2.8.2 cont'd]

. %:04.._;};2:2;52
ve dX

But x° + y2 = 4r2

.'.x2 = 2r2(—-)y2 = 2r?
. dA _ 2 2
-oa'}—{—()‘_"’x =y

«—¥x =y (Recall physically that x,y > 0)

/. Rectangle is a square,

(It is also intuitively clear that these values yield a
maximum for A rather than a minimum, for we can make A as small

as we like merely by choosing x as small as we like.)

To be sure, we could find A" from (4) and see that A" is
negative when x = /2r. This would tell us that the curve spills
water at this point and hence that we must have a maximum. A
less tedious way involves the principle of Exercise 2.8.1l. Namely,
in (4) we observe that when x is slightly greater than /fr,%% is
negative. Thus the curve is rising before we get to x = y/2r and
falling afterwards. This also indicates that we have a high point

on the curve when x = /2r.

Method #2 (Implicitly)

From (1)
dA _ _d
= = *x t Y (5)
From (2)
2% + 2ygL = 0
or
dy _ _X
= = = (6)

II.8.5




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 8: Applications of
the Derivative III

[2.8.2 cont'd]

Putting (6) into (5):

ol .
e = X y) + ¥
2 _ 2
Y
da _ 2 _ 2
soax - 0 - X Again: x,y > 0
— y = X

2.8.3 (L)

Sketching the situation, we have the following central

cross-section:

[

i

: ” x denotes the radius

) xs of the base of the

] cylinder. y denotes

I half the height of the
k _____ cylinder.
I

I

|

!

|

I

1

I

Since the height of the cylinder is 2y and the radius of its

base is x, its volume V is given by:

vV = Zﬂxzy (1)

IT-8-6
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SOLUTIONS:

the Derivative III

[2.8.3 (L) cont'd]

Calculus of a Single Variable - Block II:
Differentiation - Unit 8:

Applications of

where the variables x and y are relaﬁed by:

We can now find av

dx

(2)

either by solving for x as a function of y

[from (2)] and putting this into (1), whereupon we differentiate

explicitly, or we may differentiate both (1) and (2) implicitly with

respect to Xx.

Putting this into (1), we

obtain
vV = 21T(r2 - yz)y
0 S y<r
= 2nr2y - 2ﬂy3
We then obtain
av _ 2 2
a; = 27r 6Ty (3)
2
g—% = =121y (4)
dy

From (3), we see that

dav _ _
a‘f—O(_)Z'TTr = 6my

That is,

Method #1

From (2) x2 = r2 - y2

2 2

LL 87

Method #2

From (1),

av _ 2 dy
= 4nxy + 27mx I (9)

and from (2)

2x+2yg-§=o

o dy _ _X
a0 a% = y (lOJ
Putting (10) into (9),

av
dx

dnxy + 2wx2(—§)

- 2nx3
Yy

_ 4ﬂxy2

(11)
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the Derivative III

[2.8.3 (L) cont'd]

> y° = 3~ (5)
o

== ¥ =i == (6)

Putting (5) into (2), we find

»
Il
g

(7)

Then, putting (6) and (7) into
(1),

v = 2 (4r%) (—é)

_ 41Tr3 4/§ﬂr3
9

3/3

Il

(8)

Finally, since (4) shows us

that d2v
dy2

(8) must denote a maximum.

< 0 for all y > o0,

From (11), g% 2§

4ﬂxy2 = 2ﬂx3

x2 = 242 (12)

Putting (12) into (2),

292 + y? = 12

5
Yy =3 (13)
[Notice that (13) and (5) say

the same thing so that the two

methods yield the same result.]

We shall not quibble as to whether Method #1 or Method #2 is

to be preferred. What is interesting is that while the two methods

ultimately yield the same result, they seem to emphasize different
aspects. For example, in Method #1, we find y and x in terms of r
directly, while in Method #2, we find the relationship between x

and y which yields the maximum result.

We would now like to make a few observations based on this

exercise:

11.8.8
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 8: Applications of
tne Derivative III

[2.8.3 (L) cont'd]

(1) As we saw 1in Exercise 2.8.2 the largest rectangle that
can be inscribed in a circle of radius r is a square. Thus, it
might be natural to assume that the greatest area generates the
greatest volume. However, tnhe solution to this problem shows that
as natural as it may seem, the assumption is false. The reason
for this can be best explained from Equation (1). Namely, X appears
to the second power while y appears only linearly. Thus a small
change in x can produce a more drastic change than a similar change
in y. We shall say more about this in a separate note at the end

of this exercise.

In particular the inscribed square has the length of its side

equal to ¥2r. ©Noticing that in this problem x and y denote half

the length of a side, we see that x = y = —/"r = ;: in the case of
2
the square. Putting these results into (1) we obtain:
2
v=on(5" E= 03 (14)
)

The point is that the inscribed square has a larger area than

the inscribed rectangle for which y = —Ev(see equation (6)). Yet

that inscribed rectangle generates a larger volume than that gener-

ated by rotating the square. The proof lies in the fact that the
3

volume generated by the rectangle is —g—nr (see equation (8)) while
from (14) the volume generated by the square is JLIB. Since
4/3 , _1* V2
S k= the result follows.
V2

*A convenient way of comparing radicals in inequalities is to
raise both sides to a power which eliminates the radical. In this

case 2 2
4/3 1 (4/")>{_1) ,%§>%.
V2

But it is easy to see that %ﬁ >

N =

IX.8.9
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Differentiation - Unit 8: Applications of
the Derivative III

[2.8.3 (L) cont'd]
(2) In our solution of this exercise, we must not lose sight

of the independence of equations (1) and (2). No matter what func-

tion of x and y we were given, the fact remains in this problem

that x and y are always related by (2). That is, from our initial
diagram, we must have that x? + y2 = r2.

By way of illustration, suppose we wanted to find the cylinder
which had the maximum surface area. Letting S denote the surface
area, we have that our cylinder consists of two faces which are
circles of radius x (hence of area wxz) and a "side" of area 2y
times the circumference of one of the circles, that is, (2y) (27x).

(This is called the lateral area of the cylinder.)

S = 2mx° + 4mxy (16)

We now want to maximize S, The point is that (16) replaces (1) but
(2) still remains in effect. For example, we may differentiate (16)

implicitly with respect to x to obtain:

jo N
43}
g2

== = 41mx + 471X + 4my (17)

; dy _ _x
Since ax = 7y (as before),

2 2
ds _ _X _ 4nxy - 4mx" + 4my
&= 4mx + 4mx( y) + 4ny v

2
a5 _ 0 «—> 4mxy - 4ﬂx2 + 4ny” = 0
dx
) yz + Xy = x2 =0
II.8.10
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 8: Applications of
the Derivative III

[2.8.3 (L) cont'd]

- x Jx: + 4x

2

-
-
o2

Il

l

-x +/5% (We discard the minus root since y

4 must be positive.)

~The maximum surface area occurs when:

(V5 - 1) x ¥ (2.25 - 1)x
D 2

<
Il

2 -g-x (18)

Summed up: Y X yields the square (rectangle y maximum area).
.7x [from (12)] yvields the maximum volume.

y A
y ¥ 0.63x [from (18)] yields the maximum surface area.

2.8.4 (L)

(a) First of all let us point out why x is defined as it is.
In averaging numbers, there is a chance that a large negative number
can cancel the effect of a large positive number. In this sense,
then, it might be advisible to measure only the magnitudes of the
errors without regard to signs. Observe that squaring the error
makes each error positive. Thus, the recipe for x involves the
sum of the squares of errors and this technique is known as the
method of LEAST SQUARES.

The solution of the problem is perhaps the easiest part of

the whole thing. Letting e = (c1 - x)2 + sas + (cn - x)z, we obtain:

IT.8.11
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Differentiation - Unit 8: Applications of
the Derivative III

[2.8.4 (L) cont'd]

d
3% = -2(cy; = x) + ...t [-2(c, - x)]
= —2(cl + ... + c, nx)
Therefore:
C., F ava + C
%% = 0 if and only if x = x 2 (1)

Notice that the right hand side of (1) is precisely the
AVERAGE of Cilr weey and Ch- Thus we have shown that the usual
notion of arithmetical average turns out also to be the best

least square approximation.

A generalization of this idea is presented in the next part
in which we try to find the best least square approximation in
terms of a straight line to estimate a collection of points in the

plane.

(b) Notice that mx, + 1l is the y-coordinate of the point on

the line y = mx + 1 whose x-coordinate is Xy Therefore, ¥y - (mxl+l)
[= Yy, - mx,- 1] is the difference between the actual y-value and

the y-value of the corresponding point on the line, and (yl— mx; - 1)2
is the square of this difference. In other words, once we find the
value of m that minimizes the sum given above, we find the line of

the form y = xm + 1 that has the property that if we square the
verticle distance of each point from the line, the sum of these

squares is as small as possible.

Again the actual solution is straight-forward. Namely,

S T TS s ol e
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Applications of

Differentiation - Unit 8:
the Derivative III

[2.8.4 (L) cont'd]

_ a _ 2
W = (yl mx 1)

2
- (Y4 - mx, - 1)

dw _
g = —2x1(yl - mx; - 1) - 2x2(y2

- 2x4(y4 - mx, - 1)

+ (y2 - omx, - 1)

- (y3 - mx3 - 1)

- mx, - 1) —2x3(y3 - mxy - 1)

4
. dw _ _ - =
e E: x, (yy = mx, = 1) =0
k=1
4 4 4
2
(-———-;Z xkyk-mz xk—z xk—O
k=1 k=1 k=1
4 4
Z xkyk-z £
k=1 k=1
— m = 2
Y
k
k=1
4
E: X, (¥ 1)
n = k=1 ;
2
k
k=]
o = X)(yy = 1) + x50y, = 1) + x5(yg = 1) + x,(y, = 1)
< A 2 2 2 2
xl + x2 + x3 + x4
(1)
II.8.13
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[2.8.4 (L) cont'd]

particular in our problem:

2
X ¥y vl oxe o x(yp-1)
1 3
-2 5 oy 4 3
0 1 0 0 0
1 2 L X L
3 3 2 9 6
i 5
Xy 7¥K FHEH
10 3
~2 = ¥
0 0 1
5 1.2
1 7 ==
15 22
3 = =
IT.8.14

Calculus of a Single Variable - Block II:

Differentiation - Unit 8: Applications of

(1) now tells us how to find m for any four points. In

4
:E; %, (y) =1)=3+0+1+6=10
kK=

2
xk=4+0+l+9=l4

e

o q=t0_3
«M=77257  ans.
S
Yk lyk_ﬁxk-l |
B 1
2 12
1 0
8
2 i
1
3 -7
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 8: Applications of
the Derivative III

[2.8.4 (L) cont'd]
TY

=2
q—7x+l

(]
('2!'£

2.8.5 (L)

Here we have an example wherein the shortest distance is not
the "guickest" path. On the one hand, we can head straight for A which
will give him the shortest distance at the slower speed but which
will leave him furthest from B once he reaches the road. On the
other hand, he could head straight for B which would give him the
longest path at the slower speed but which leaves him no distance
to travel once he reaches the road. Of course, if for some reason
he could travel faster in the desert than on the road, it is trivial

to see in this case that he should head straight for B.

IT.8.15




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 8: Applications of
the Derivative III

[2.8.5 (L) cont'd]

In any event, let us tackle this problem directly as a max-min
problem. We start with the diagram

For part (a),
Xx +y =25 (1)
&2 4 25 .
Now, to get from M to P takes ———Ig—-—-hours, while to get from
P to B takes %? hours. Thus, if t denotes the time of the trip,

we have:

o ey
_ Vx© + 25 Y
t= 15 * 39 (2)

Differentiating (2) with respect to x, we have

.(_i.E= X +L
dx  15y%% 4+ 25 39

(3)

55

dy _
From (1), 1 + a5 0

gﬁ=-1 (4)

I1.8.16

l B DE G0 U5 US Of O U uE B o Uy U S U S Gm e b




@ 0 & S8 e N s D A N AR S Bl e e P

/a s e

SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 8: Applications of
the Derivative III

[2.8.5 (L) cont'd]

,dt = Lk = L
e = 0 =3y 13

& - _1é9
25 (x° + 25)
2 7
——169x" = 25x° + 625
G*—+l44x2 = 625

12x = 25 (We discard the negative root since,

physically, x is non-negative.)

H

(”-‘“‘5}(:2'—'2—

This answer is very interesting for two reasons:

(1) In arriving at (4) from (1), we didn't really use
X +y =5 as much as we used x + y = constant. That is, if we
started with x + y = ¢, we would have still obtained that dy/dx = -1.
Thus, our answer to (a) would be the same for any value of B
PROVIDED ONLY THAT THE DISTANCE FROM A TO B WAS AT LEAST 25/12 miles.

In particular, then, x = 25/12 miles would also be the correct

answer to (b).

(2) If B is less that 25/12 miles from A, the point P in our
diagram would be beyond B. Hence, in this case, it would be quicker
to head straight for B. Since in (c¢) the distance from A to B is
only 1 mile, he should head for B directly.

This problem seems to have a rather straightforward generalization.

Let us assume that the motorist is a miles from A and that B is c

miles from A. Let us also assume that his rate on the desert (or

IT.8.17




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 8: Applications of
the Derivative III

[2.8.5 (L) cont'd]

any slower medium is vy mi/hr while his rate on the road (or any

faster medium) is v, mi/hr. Then we have

Now,

LAt x L+ L ay
¢ 3x v, ax
v Jai + x2 2
” X -1
v
leaz + x2 2
dt X 1 xz 1

+ x2) v%

Notice that if v, < vy
there would be no real

roots.

11.8.18
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 8: Applications of
the Derivative III

[2.8.5 (L) cont'd]

st is minimum when

s 5 (5)

A check on the plausibility of (5) comes from taking a = 5,

v, = 15, and v, = 39; since we then get the conditions of this

2
exercise. A trivial check then shows that with these values (5)
yields x = 25/12 as before.
v, a
(5) also tells us in general that if B is within 1
2 v2
2 i
miles of A, then the quickest path is the straight line that takes

the motorist to B.

2.8.6 (L)

We let x denote the amount of wire to be used in the triangle.
Hence L - x is the amount to be used in the square. (If we wished
we could let y denote the amount used in the square and later we

could make use of the fact that x + y = L.)

In any event, one side of the square would have length equal

to E%E, so the area of the square is (Eii) . As for the triangle,

one side has length x/3; hence, its altitude is x/3/6 . (Recall,
that in a 30°-60°-90° triangle the sides are in the ratio 1, 1/2,

/3/2 )

IT.8.19




SOLUTIONS: Calculus of a Single Variable - Block II:

Differentiation - Unit 8: Applications of
the Derivative III

[2.8.6 (L) cont'd]

Thus, the area, of the whole triangle is xié? . If we let S denote
the sum of the two areas, we have
s = xigg + (L;x)z (1)
from which it follows that:
*
g = X3 _ (L-x) (2)

(With respect to an earlier remark, had we let y denote the amount
of wire in the square, then the area of the square would have been
(y/4)2 = y2/16. The derivative of this with respect to x would have
been (y/8) (dy/dx). Differentiating x + y = L implicitly and setting
& = 0, follows that 1 + dy/dx = 0. Thus, y/8(dy/dx) = -y/8 =
-(L-x) /8 which agrees with the second term of (2) and may have been

computationally simpler to oktain that by the first method.)

At any rate, from (2), we see that

11} e /§ l
ST =gty (3)
Now, from (2) we see that S' = 0 if and only if
xV/3 L X _
e T BT 0 >
v3 , 1, _ L
*fg*rg =g <«
4/3 + 9 L
X(""'ﬁ'—*") 3 €
x = = (4)
4/3 + 9
d L—-x 2 L-x, d,L X
*Remember the chain rule e 1 =20 15G - 3 =
L_
255 -p .
IT1.8.20
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 8: Applications of
the Derivative III

[2.8.,6 (L) cont'd]

Since (3) indicates that S" is always positive (holds water)

then the value of x given by 4 must be the one which corresponds

to a minimum. Recalling that x denotes the amount of wire in the

triangle, we see that the sum of the two areas is a minimum when

the amount of wire in the triangle is equal to:

9L
4/3 + 9

(5)

and the amount of wire in the square is then found merely by sub-

tracting the number in (5) from L.

As a final note to part (a), we are aware that in engineering

considerations we prefer decimals to radicals. To this

end, we

note that v3 is approximately 1.73, so that 4/3 is approximately
6.92. Thus, 4/3 + 9 is pretty nearly equal to 16. Putting this

information into (5), we see that the sum of the areas is a minimum

when about 9/16 of the wire is used for the triangle and 7/16 is

used for the square. While this result may not seem at
self-evident, it does show us the beauty of the logical
through the calculus; namely, we can obtain the correct

even if it does not seem intuitively logical.

Perhaps the greatest significance of this exercise
(b). While we have stressed that there are THREE tests

dates for max-min values, the fact remains that in most

all

approach
answer

comes 1in
for candi-

exercises

the correct answers are all obtained by setting dy/dx equal to 0.

However, (3) shows us that we can NEVER find a maximum for S this

way since the curve is always holding water.
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SOLUTIONS: Calculus of a Single Variable - Block II:

Differentiation - Unit 8: Applications of
the Derivative III

[2.8.6. cont'd]

Well, since a continuous function on a closed interval (recall
that the domain of S is restricted physically to the interval

0 £ x £ L) must take on its maximum somewhere and since we have

seen that it cannot occur at an interior point, then it must occur

at an endpoint. In essence, then, we need merely compute S from

(1) once with x = 0 and again with x = L; and the larger of these
two values will be the maximum sum.

With x = 0, S becomes L2/16 and with x = L, S becomes L2/§/36 .
It is clear that L2/§/36 < L2/16 (see note). Hence the sum is
maximum when all the wire is used to make the square.

Note:

In general to compare the sizes of positive numbers which involve

radicals, we raise all numbers to a common power which eliminates all

radicals. The idea is that for positive numbers, the greater number
yields the greater power. In the particular problem here, it would
suffice to square each number. This would yield

L2 2 4
(5 = 256

[3%]

<

> o e
1796 “ 256 ~ ~36

o

36 1296

-t

As a final note, do not be confused by radicals, etc. When

all is said and done (1) represents a parabola. 1In fact the graph
looks like

11.8.22
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 8: Applications of
the Derivative III

[2.8.6 (L) cont'd]

~ S 5
2 (L L‘_‘/g‘)
L " 36
' >
9L
4/3 + 9
2.8.7
s = At - (1 + 2% ¢?
5%% =\ - 2(1 + k4)t (= gswhen t = 0. Therefore, X > 0
il 0 at £t = 0.)
dzs = -2(1 + A4) <0 (& acceleration is negative so particle
at2 - must reverse direction eventually.)
s s is maximum «— A - 2(1 + A Ht =0
>t = A 7
2(1 + )7)
2
SSpax = M1 - 1+ —2
2(1 + )2 7) 2(1 + A7)
_ N
2(1 + 2% 4@ +2Y
s = 22
MAX  Zi0 @ %) (1)
II1.8.23




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 8: Applications of
the Derivative III

[2.8.7 cont'd]

Equation (1) yields the maximum value of s for a given value
of A.

Thus, we may view Snax 25 @ function of A and compute the
maximum value that Shax aSsumes as A is allowed to vary.

Thus, from (1) we obtain:

Pmax _ a1+ @0 - 2214403 _ s+ - 1605 _ @ -

dA (41 + 242 a1+ 2 4° 2(1 + 24?2

=0&—> )\ =0 or A =11

ds
A >0 —s ——%%5 = 06—\ =1

From (1), when X = 1,

[
Il
|

max

max A

(l .r_)

2

1T.8.24
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation

UNIT 9: Rolle's Theorem and its Consequences

2:.9:1 (&)

Before we actually solve this problem, let us observe that

(xl + x2)/2 is the average of Xq and X Geometrically, this

places {x3,0) midway between (xl,O) and (xz,O). This, in turn,
says that the point at which the tangent is parallel to the chord

is midway (with respect to x) between the other two points.

The proof is not difficult. We let
f(x) = ax® + bx + c. (1)

Then,

f'(x) = 2ax + b (2)

Now, from (1), we have

£(x,) - £(xq) _ (axg + bx, + c) - (axi + bx, + c)
X, = X X, = X
2 2
=a(X2—x1)+b(x2—xl) . xz_x2=(x +x)
X, = X ! 2 1 2 1
(xz - xl)
= a(x2 + xl) + b
£, + X
= 2a( 2 ) l) + b
Bz B R
= £ () [from (2)] (3)
IT.9.1




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 9: Rolle's Theorem
and its Consequences

[2.9.1 (L) cont'd]

An interesting aside to this result is that we now have a
construction for drawing the tangent line to the parabola at
any point. Recall that in Plane Geometry courses we have only
learned to construct tangents to straight lines (since these are
self-tangent) and circles. What the solution to this problem
implies is the following. Suppose we want the line tangent to
the parabola y = ax2 + bx + c at the point (x3,y3). We locate
the points (xl,yl) and (xz,yz) on the parabola by choosing (xl,O)

and (x2,0) to be symmetrically located with respect to (x3,0).
We then draw the line which joins (xl,yl) and (xz,yz}. At (x3,x3)
we then draw a line parallel to this one; and this is the required
tangent. That is:
X4 is by con-
struction

xl + x2

2

So we obtain the
required tangent
by the result of
this exercise.

£'(x) = %x"l/z "
2vVx
S f'(e) = L-
2yc

11.9.2
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 9: Rolle's Theorem
and its Consequences

[2.9.2 cont'd]

On the other hand

£(4) - £(2) _ /3 -V2 _2-/2
4 - 2 2 - 2
Hence, by the mean value theorem,
1 _2=+/2
2/c 2
R~ | _ 2 + /2 _ 2+ 3
2 - V2 (2 = V2) (2 + V2) 2
Hoaw A ER b AB RS B AT 3438
2 4 B 4 - 2
Note: f(c) = Ve = Z_i_iz is the arithmetical average of f(2) and

2
f(4). That is, the average of V2 and V4 is 2 ;_/f.

with our result in Exercise 2.9.1 (L) with the roles of y and x

This checks

reversed. Pictorially,

By 2.9.1 (L)
f(c) bisects

[vV2,2]

IT1.9.3




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 9: Rolle's Theorem
and its Consequences

2.9.3

The corollaries to the mean value theorem tell us that if
f'(x) = g'(x) then £(x) = g(x) + c.

Hence, in this exercise,

h(x) = x> + 7x> + (2x% + 1)° + ¢ (1)
From (1), it follows that
h(o) =03+ 7(00%2+ (0+1)° +c=1+c (2)
Equation (2), coupled with the given fact that h(0) = 3,

means that:

or ¢ = 2
Since c is a constant, it has the same value for all values

of x. Putting this into (1), we finally obtain

3 2

h(x) = x~ + 7x° + (2x2

o+ 1)5 + 2

2.92.4 (L)

By the mean value theorem, we know that
f(b) - f(a) = (b - a)f'(c) where a < c < b

Hence,

|£(b) - £(a)| = |[(b - a) £'(c)]
= |b - a|| £'(c)] (1)
I1.9.4
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 9: Rolle's Theorem
and its Consequences

[2.9.4 (L) cont'd]

Since |[f'(c)| < 1, |b - a|| £'(c)| < |b - a| (1)

’ |£(b) - £(a)| < |b - a| , as asserted.

Now, as it stands, this amount of discussion hardly qualifies
as a learning exercise. However, it does give us a chance to
mention how the mean value theorem does analytically what we sense
to be true intuitively from a geometrical point of view. For
example, the fact that the magnitude of f'(x) cannot exceed 1
means that the "rise" of the curve y = f(x) can never exceed the
"run". In other words, since f'(x) denotes %ﬁv we are saying that
|ay| € |6x| . So the result in this exercise is quite clear from
a geometric view point. The main idea is that the mean value
theorem allows us to obtain the same result without reference to
a picture. This is particularly helpful later in the course when
we deal with functions of several variables and pictures are either

difficult or impossible to come by.

2:9.5

(a) By the mean value theorem, we have:

f(xz) - Elx
X%

)
1 - f'(c), for some c such that X1 < o < X, (1)
|

Now we are given that f'(x) > 0 for all x. Hence, in particular,
£' (&) > 0;

Combining this with (1), we obtain

f(xz) - f(x1)

2
%, = %] >0 (2)

II.9.5




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 9: Rolle's Theorem

and its Consequences

[2.9.5 cont'd]

Since X, < x, we know that x, - x; > 0 . Then since a quotient
is positive if and only if the numerator and denominator have the
same sign, and since the denominator in (2) is positive, it follows

that the numerator is also positive. That is:

£(x - f(xl) >0

2)
or f(xl) < f(xz) , as asserted.

(b) Let P(x) denote x3 + x-11 =0
Then P(2) = 23 + 2 - 11 =-1<0

I

33 4 3-11 =19 >0

Il

P(3)

Pictorially:
y AY
e (3,19)

(2,-1)

Since P(x) is continuous (Horner's method), there must be at
least one number r such that P(r) = 0, 2 <r < 3 (i.e., y = P(x)

cuts the x-axis at least once between x = 2 and x = 3).

Now:
P'(x) = 3x2 + 1 > 0 for all x

By part (a) we know that if f'(x) > 0, P(x) is an increasing function.
In particular, then,
if x < r, P(x) < P(r) or P(x) < O
and if x > r , P(x) > P(xr) or P(x) > 0
oo X #r > P(x) # P(r) or P(x) # 0
e r is the only root of x3 + x - 11 =0

IT.9 .6
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation

UNIT 10: Anti-derivatives or the Indefinite Integral

2.10.1 (L)

(a) In one sense since differentiation and integration are
inverses of one another, the study of one can be explained in terms
of the other. Here, we are interested in finding out what we have

to differentiate to wind up with (2x + lJ3. Our first guess might

4
be LZE_%_EL_ , but we must keep the chain rule in mind and recall
that somehow we must take into account the fact that ngggi_il = 2.

One way of doing this is simply to differentiate (2x + 1)4 with

respect to x and obtain by use of the chain rule 8(2x + 1)3. Com-
paring this answer with the "correct" one, that is, with (2x + l)3
we see that we are "off" by a factor of 8. We then adjust for this

4
by starting with iZE_%_il_ . Of course, it was crucial that we be

in error by no worse than a constant factor, since if the factor
is not constant we must use the product rule for differentiation

(see, for example, our discussion in Exercise 2.10.2 (L))

In any event we have:

4
igﬁ_g_il_ % @ (1)

f(zx + 1)3dx =

where c denotes an arbitrary constant. Moreover, it is futile to
try to define the constant since g% = 0, and, as a result, the
addition of an arbitrary constant does not change the derivative.
From an intuitive point of view, adding c to f(x) merely raises
(or lowers, depending on the sign of c) the curve y = f(x) by lc‘
units. That is, y = £(x) and y = f(x) + c may be thought of as

being "parallel" curves.

An allied question involves the converse of (1). That4is,
granted that any function, f(x) of the form f(x) = 125—%—£l~ + c
has the property that f'(x) = (2x + 1)3 (and, by the way, a very

TT.10.1




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 10: Anti-derivatives
or the Indefinite Integral

[2:10.1 (L) cont'd]

important aside here is to observe that whenever we integrate, we
have as a quick check the fact that if we are correct then the
derivative of the answer should yield the original function). Is
it possible that there exists another function g(x) not of that
form such that g'(x) is also (2x + 1)3? The answer is no! 1In

fact, the appropriate corollary to the mean value theorem tells

. : ; (2x + 1)4
us that since in this case g(x) and, for example, e have
the same derivative, they must differ by at most a constant. Hence,
4
+
gx) =222 D, .

and this establishes that the right hand side of (1) describes

every function and only those functions f for which f'(x) = (2x + 1)3.

To rehash the same results, but more in terms of the language

of integrals, let us observe that the recipe:

f'n un-i—l
udu=m+c (n # -1)

requires that what is being raised to the nth power be EXACTLY
the same as what follows the "d". That is:

'[ n ( >n+l
( ) d( )=_H_+_T__+c (n # -1)

Thus, in this problem, had we been asked to find
3
f‘(2x + 1)"d(2x + 1)

then the answer would have been

(2x + 1)°

1 * e

I1.10.2

il S - TS S O E .

il S EE Sl S eE

E3 E©E3




=

-l eE .

3

aE s S

-l a s

S N & A oa e

M

SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 10: Anti-derivatives
or the Indefinite Integral

[2.10.1 (L) cont'd]

Moreover, the fact that

(2x + 1)°

7 + @ (1)

f(Zx + 1)3a(2x + 1)

gives us a nice way of using the language of differentials to

solve the problem (and while the language seems a bit different,
it is equivalent to an earlier way we discussed for solving this
exercise). Namely, we observe that d(2x + 1) = 2dx, and putting

this in (1), we obtain:

r 4
JREE: 1)%2ax = 222 1), . (2)

Since we can take constant factors outside the integral sign,

that 1is, cf(x)dx = ¢ f(x)dx [to see this let g be any function

such that™g' = £, then we merely observe that d(cgix)) = cdgix) =
cf(x)] , (2) becomes:
3 2x + 1)2
2 (2x + 1)7dx = — + ¢ (3)
Dividing through by 2, (3) becomes:
3 (2x + 1)4 o]
'j}zx + 17dx = s + 5 (4)

We finally observe that since c denotes an arbitrary constant, so

also does %; hence, we may write (4) as

(2e 4+ 1) .

f(zx + 1)%ax = . & (5)

I1.10.3




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 10: Anti-derivatives
or the Indefinite Integral

[2.10.1 (L) cont'd]

where we must remember that the c¢ in (4) and the c in (5) are not
the same number. Rather, each time c is used to denote an arbi-
trary constant. If for some reason we want to keep track of these

two constants separately, then (5) might better have been written

as:
4
3 _ 2z % 1) _C i
J}Zx + 1)7dx = g t (cl = 5) (5")
As a check in this exercise, we have that (2x + 1)3 = 8x3 +

12x2 + 6x + 1 (by the binomial theorem); hence,

[ 2x + 1)3%x

f(8x3 + 12x% + 6x + 1)dx

2x4 + 4x3 + 3x2 + x + C

and by writing c as 1/8 + C,, we obtain:

4
(2x + 1)3ax = ZX 2 1),

i i

which checks with (5').

A most important thing to keep in mind in these exercises is
that we can translate any integral problem into a differential

counterpart and thus use our previous knowledge to solve new pro-

blems.

At any rate, turning our attention to part (b) now, we
observe that our last procedure would be hardly palatable for
"simplifying" (2x + l)loo. This is why we replaced the exponent
of part (a) by 100. In other words, it was not too complicated
to rewrite (2x + 1)3 as 8x3 + 12x2 + 6x + 1, but the 101 terms
that the binomial theorem would yield for (2x + 1)100 are far from

pleasant to contemplate.

I1.10.4
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 10: Anti-derivatives
or the Indefinite Integral

[2.10.1 (L) cont'd]

What we do notice, however, is that the more cumbersome
exponent gives us no more trouble in the differential notation

than did the smaller exponent. Namely,

101
'f(zx + 1)100d(2x + 1) = (2x ;Oi) + c
whence:
101
-]kZX + l)lOOde = (2x Ioi) + c
or:
101
2d[(2x + 1)10044 = 2% Ioi) +
or:
101
.[}ZX + 1)100ax =x s

(By the way, this technique is equivalent to the substitution

lOde and we

u=2x+ 1. In other words, if we have (2x + 1)
let u = 2x + 1 then du = 2dx or dx = qu With this change of

> -
variable (2x + l)lOO

uloodu o ok ulOOdu _ i[ulOl + ¢]
2 -2 ™ ZET0L

101
_ (2x + 1)
= 202 il 1

dx becomes

(where cl = %) .

In other words, one method of attack is to reduce a given integral

Jrf(x)dx to one of the forn:[updu by an appropriate choice of u.

Again, in a manner analogous to what we discussed in part (a),

we could have taken a guess that to wind up with (2x + l)lOO after

differentiating, we should have started with (2x + 1)101. But,

the derivative of (2x + l)lOl with respect to x is

IT.10.5




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 10: Anti-derivatives
or the Indefinite Integral

[2.10.1 (L) cont'd]

101
d(2x + 1) da(2x + 1) _ (101 (2x + 1)100)(2)

d(2x + 1) dx
= 202 (2x + 1)100
: - (2x + 1)101 -
Hence, if we start with e we would obtain the desired
answer.,
2.10.2 (L)

At first glance it might seem that Jerz - 4 dx would have

been an easier problem. That is,
j\fx: - 4 dx = f(xz - )/ %ax

We might then figure that to wind up with (x2 - 4)1/2 we

3
should start with (x2 - 4) /2. However, use of the chain rule
shows us that the derivative of (x2 - 4)3/2 with respect to x is
given by
3/2
ax? - )" a? - 4) _ 3.2 412 5,
dx? - 4 dx 2
1/2
= 3xix? - 4y

Thus, it would appear that our correction factor would be 1/3x but
this is incorrect since 1/3x is not a constant and hence cannot
be taken outside the integral sign. In still other words we must

differentiate (1/3x) (x2 - 4)3/2 by the product rule and this

IT.10.6
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 10: Anti-derivatives
or the Indefinite Integral

[2.10.2 (L) cont'd]

1/2
yields two terms, one of which is the desired (x2 - 4) 4 , but
the other term introduces an error.*
Now what we could have correctly said is that
2 3/2
2 1/2 . 2 _(x° - 4)
f(x 4) d(x 4) = 373 G ol <
That is,
3/2
[\‘xz—4d(x2—4)=%(x2—4)/+c (1)
Now, since d(x2 - 4) = 2xdx , (1) becomes:
2
f\fxz - 4 2xdx = %(x2 -~ % 4 o (2)
or:
ZIsz-4xdx=%-(x2-4J3/2+c (3)

*Notice that if f(x)dx = g(x) + ¢ then g'(x) = £(x). Hence i

2 _ ,,3/2 3/2
j.sz - 4ax = & 3x4) + ¢ then g§[%§(x2 - 4) g ] = ¥x© - 4
However
372 3/2 3/2
dide?-a ) =Liaf- " sldy o -0
142
= 2365 - 7 el + [-1;-—51 (x? - 4)
X
3/2
g e
X — 4 2
3x
#Vx% - 4
IX.10.7
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 10: Anti-derivatives
or the Indefinite Integral

[2.10.2 (L) cont'd]

& fxf‘xz - 4 dx = %—(xz - 4) + c (4)

As a check:

Lide? - 0¥ 2 136 - Y2 )
Using "u" we could have let u = x2 - 4. Then du = 2xdx or
%E = xdx
. j’*xz-tlxdx:fr_g‘ll-_lful/zdu
= %[%u3/2 + c]
= %u3/2 + e
S B B

Thus, surprising as it may seem at first glance it is easier to

handle j-xsz - 4 dx (since it can easily be transformed into an
integral of the form‘j-undu) than to handle | ¥x° - 4 dx.

Keep in mind that given &2 - 4 dx we can still let u = x°- 4.

Then du = 2xdx or dx = %%. Moreover, u = x2 - 4 implies that
x2 =u+ 4 or x = yu+ 4. Thus dx = - . . In any event, then:
2/u + 4
J T ax - [
Afu + 4
11108

S U s s s e
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 10: Anti-derivatives
or the Indefinite Integral

[2.10.2 (L) cont'd]

We have thus transformed our original integral into one which
is expressed in terms of u. There is nothing wrong with this
approach. The trouble lies in the fact that the "new" integral

Ju du
2yu + 4

is no easier to handle than the "old" one.

In other words, we can always make the substitution, but unless

the new integral reduces to the special form j.undu, we are no

better off than before. (In thillanguage of functions, we are
n
saying that prn(x)f'(x)dx = EE—;i%l + c (n#1) . Thus the "u"

substitution helps us only if it converts the remainder of the

integral to within a constant multiple of g%.)

As for part (b), a paraphrase of part (a) is that if

= xJXx° - 4 then

$12

y =3 - )7 4 ¢ (5)

What (5) tells us is that our curve must belong to the "family"

2
y = %—(x2 - 4)3/ + c

The fact that our given curve passes through the point (2,3)
merely means that equation (5) must be satisfied when x = 2 and
y = 3.

Thus:

1

_ 3/2
3 = §(4 - 4)

+ c or ¢ = 3

Hence the equation of our curve is:

1I.10.9




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 10: Anti-derivatives
or the Indefinite Integral

[2.10.2 (L) cont'd]

In essence, the choice of c merely raises or lowers the curve.
The point is that since c is an arbitrary constant we have a
"degree of freedom" in the sense that we can prescribe, within
reason (for example, in this exercise x must be at least of mag-

nitude 2), a point through which the curve must pass.

2.10-3

I

x2 x~ + 1

x2 in + 1 dx

o
=
Il

Yy =.[ xz J:E + 1 dx + ¢

Let u = x3 + 1 . du = 3x2dx J.xzdx = %du

A Ixz x3 + 1 dx j(x3 -+ l)l/z(xzdx) = ful/z %E=—§jul/2du

3/2

3/2 .

1.2 _ 2
3['511 + c] 91.1

-

Sy =26+ 124 (1)

Finally, since (1,4) is on the curve, equation (1) must be

satisfied when x = 1 and y = 4.

Soa=20+ 132 4 ¢

3/2 5/2 5 B

2 _ 2 _ _ a2V2 _ _V2

orc=4-2%—=4-55—=14-4%5 4(1 9)
.. Equation of curve is:

y =2+ 1Y%+ aa - VY2

I1.10.10
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiatior - Unit 10: Anti-derivatives
or the Indefinite Integral

2,10.4(L)

This problem is basically the same as the others we have
done so far, except for the fact that x and y are not quite as
separated as we would like them. That is, in the other problems

we had things like dy = f(x)dx so that we could obtain at once
2
y = f(x)dx + c. Here if we try this we obtain dy = %—dx and

we still have a mixture of x's and y's on the right hand side of
our differential equation. The major point here is to see just
how advantageous the differential notation is. We need only

cross-multiply tc obtain

ydy = x%dx (1)

o & e 0 .. e

al N o9 A o8 on fm om e

We then invoke the corollary to the mean value theorem which tells
us that if two functions have identical derivatives (differentials)
then they differ only by an additive constant.

Making this observation in (1) and noticing that d(y2/2J= ydy

and d(x3/$ = xzdx, we obtain

v2/2

x3/3 + ¢ (2)

or:

3y = 2%x3 + ¢ (3)

(where we get (3) from (2) by multiplying both sides of (2) by 6
and recalling that since ¢ is an arbitrary constant so also is 6c).

We then complete the exercise as before simply by letting
2 and y = 1 in (3) and solving for c. Thus, 3 = 2(2)3 + c or

"
]

(9]
I

-13. ©So our curve is given by

Jg% = 9%> = 13

IT.10.11




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation = Unit 10: Anti-derivatives
or the Indefinite Integral

2.10.5

Separating the variables we obtain:

or I#

Letting u = y + 4, du=2ydy ydy = 3du

[# ITZdu=- u-l/zdu=ul/2+cl=VY + 4 +cl
:.|§2 + 4 r X + c (1)

Since (1) must pbe satisfied when x = y = 0, we obtain VOZ + 4 =
0+ c or c = 2.(Notice that the curve passing through the origin

does not mean ¢ = 0.)

. Wy + 4 =x+2 (2)

or

*Technically we should write \{(2 + 4 + c, =X + c, but the

difference of two arbitrary constants is still an arbitrary constant.

That is:
\!y2+4+cl=x+c+Vy2+4=x+c—~cl+\4;2+4=x+cz

where c2 = Cc - Cl i

II1.,10.12
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 10: Anti-derivatives
or the Indefinite Integral

[2.10.5 cont'd]

This can also be written as:

x? + 4x - y2 =: 0
or: x2 + 4x + 4 - y2 = 4
or: (x + 2)? - y2 = 4

This plots as:

T We choose this branch since in
J/(2) #yz + 4 2 0 implies x + 2 2> 0
s, X > -2 and this is fine; other-
wise the curve wouldn't pass
\ through (0,0).

Y X
(_430)

S/

2.10.6

This is the same type of problem as before, but in terms of
a different physical example. Namely, in terms of x (distance)

and t (time), %% is speed.

Thus,
v = t2 > g% = t2 * xR = %t3 + c (1)

Finally, since when t = 0 x must equal 1, (1) becomes:

IL=10:13




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 10: Anti-derivatives
or the Indefinite Integral

[2.10.6 cont'd]

3
1=30)" +c
or c¢c =1

Putting this result into (1), we obtain

3
X = %t + 1

as the desired solution.

(In still other words, this is also the solution to the

problem: determine the curve c if g% = x2 and (0,1) is on c.

The curve is then y = %x + 1.)

2:10.7
3
Again, a = é% ; hence, a = —t2 implies v = —%t + ¢ where
< is any constant. But v = %%, hence:

dx _ 3
g~ T3> te o+ &
4
1 where cq and c2 are

t +Clt+c

SR 2

arbitrary constants

Unless additional information is given, we can make no
refinements on what < and <, must equal. In essence, we have two
"degrees of freedom" which means that we can more or less prescribe

two conditions which must be obeyed by the motion of the particle.

We shall say more about this in the next exercise.

I1.10..14
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SOLUTIONS: Calculus of a Single Variable - Block II:

Differentiation - Unit 10Q: Anti-derivatives
or the Indefinite Integral

2.10.8 (L)

In the previous exercise, we had shown

_ .13
and
1 4
X = -l—z-t + Clt + C2 (2)

We are now given the additional information that when t = 0,
v =9 and x = 0. This makes (1) become:

= A 3
9 = -g(O) + Cl

or ¢, = 9, while (2) then becomes

= L opas®
0 = _IE(O) + cl(O) + c

or 02 = 0%,

Hence, under the given conditions, the answer to part (2) is

l 4
X = "-fé-t + 9k,

As for part b., we observe that x is maximug when %% = 0.
Since g% = v, we already know that %% = 0 & -%t + 9 = 0, but

this occurs if and only if t = 3.

*In the previous exercise, we talked about two "degrees of
freedom." Notice here that the choice of c, was not affected by
the value of ¢ (since cl(OJ = 0 for any vafue of cl). That is,

at t = 0, we could prescribe, say, x and v independently of one
another.

IT.10.15




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 10: Anti-derivatives
or the Indefinite Integral

[2.10.8 (L) cont'd]

Thus, the particle attains its maximum positive displacement

when t = 3, at which time

1 4 _ 81 _ 27 _ 3
-ﬁ(B) + 9(3) = 27 - 3= 27 - T = —4—(27)

»
]

I

81l
T feet

The important thing to observe is that in this unit we learned how
to find x in terms of t once the acceleration was given as a func-
tion of t. Yet once this is done we do part b. just as would have

solved any max-min problem.

Finally, fn part c, we need only observe that x = 0 implies

3. .4 _
_ﬁt +9t—0 .

Hence, t = 0, or

—%Et +9 =0

. t3 =108 or t= Y108 = 3T x 14 = 374

Thus, the particle starts at the origin (t = 0) and returns

there when t = 374 (or approximately 4 seconds).

Again, the technique hinges only on setting x(t) = 0. All we

learned that was new in this section was how to determine x(t).

4
d. x=-i—2t + 9 t=0¢ot =0 or V108 = 927 x 4 = 34
1 3
X' memk + 9 = Qe =3
x" = - t2

IT.10.16
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 10: Anti-derivatives
or the Indefinite Integral

[2.10.8 (L) cont'd]

X 81
3'&'—)

However, do not confuse the graph of x versus t with the path

followed by the particle. Recall that we are told that the parti-

cle moves along the x-axis.

t t

= 3
=yl

0
81
t = 374 4

—

particle gets
to here and

returns

2.10.9 (L)

We know that a = -2/ at, say, t = 0 (that is, we elect to
measure time from the instant the particle starts to decelerate).
We write a = —kz/g to indicate that we have deceleration. Had
we written a = -h/?I k could have been negative, hence -k would

be positive. The point is that if k is real, k? can never be

negative.

s S
Thus: ac = k™v (0)

I1.10.17




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 10: Anti-derivatives
or the Indefinite Integral

[2.10.9 (L) cont'd]

Separating variables, we obtain:

v 1/25¢ = k24t (1)

oF ; 2wi/? = k%t + ¢ (2)

(Again, notice that in going from (1) to (2) we proceed as in
each of the preceding exercises. The only new thing in this exer-

cise is that we had a new physical model which led to (1).)

Now, if we read the exercise and translate the prose into
appropriate mathematics, we have that when t = 0, v = 36. From

(2), this means:

12

2(36)1/2 =x%0 + ¢ or ¢

~ o2vl/? 12 - k2t (3)

*
Then the fact that the particle comes to rest in 8 seconds

means that when t = 8, v = 0. This causes (3) to become:

200012 = 12 - gk?

ork2=%g.=

N W

*With this in mind, equation (0) should really read
g_z:_kzvl/z' 0 & t< 8
In other words, v = 0 if t > 8, and v = 36 if t < 0

I1.10.18
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 10: Anti-derivatives
or the Indefinite Integral

[2.10.9 (L) cont'd]

Hence (3) becomes:

172 _ _ 3
2v = 12 5 t (4)
This in turn may be written as:
_ _3.,2 : (4)
v = (6 It) , V >» 0 (recalling as usual that 9
vl/z =6 - %t is only the positive branch of v = (6 - %t) )

As a check, (4) yields that v = 36 when t = 0, and that
v = 0 when t = 8. 1In any event, (4) allows us to express v for

any t such that 0 < t € 8. In particular, when t = 4, (4) yields:
3 2
v = (6 - 3(4)) = 9 ft/sec

(Once (4) is developed,we see that speed is proportional to
the square of the time. Thus, when the time is half way to the

stopping time, the speed is only % of the original speed.)

Finally, we may rewrite (4) as

dx
dt

2
= (6 - 3t)
whereupon

3
% - -%(6 = %t) 4 (5)

(Recall that in obtaining (5) form (4) we proceed just as in the

previous exercises. Namely, gEI(G 5 %5)3] = 3(6 = %E)z -%)

94z . 382 d . 4 St 9. 3t, 2
4(6 E~) . Hence EE[-§(6 =T ] = (6 - z--) .)
I1.10.19




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 10: Anti-derivatives
or the Indefinite Integral

[2.10.9 (L) cont'd]

We recall that our problem starts at t = 0 and at this time
x = 0. (In this problem x is not the displacement of the parti-

cle but more precisely it is the displacement from the time of

the deceleration.)

Thus (5) must be obeyed when t = x = 0 and this says:

0 = -%(6) + e or c =

. t seconds from t%e start of the deceleration, the particle has
moved x = -%(6 - %t) + 96 %

3
When t = 4, we obtain x = —%(6 - 3) + 96 =-%(27) + 96 = 84 feet
and it stops when t = 8, at which time x = 96 feet.

Thus the particle travels 96 feet before coming to rest in 8

seconds, and during the first 4 seconds it travels 84 feet.

I1:10:20

G2 N B 09D S O e e B e

L3

€3 a3 €3




- e e ma

€3 £33 £33 Y

SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation

UNIT 11: The Definite Indefinite Integral

2.11.1
3 2 2
a. (t™=1)dt = G(3)-G(0) where G'(t) = t"-1

0

i p I .3

.. Wwe may pick G(t) = 3 t -t

SG@3) = -;: (333 = 6

G(0) =0

3 2
f (£2=1)dt = 6-0 = 6
0

2
b. f (k1) 28x = G(2)-610) where 8V(x) = (x¥1)?
0

«. We may pick G(x) = % (x+l)3

Je@ =z @ =3 @>=0
_ A 3 4 .
G(0) = 3 (0+1)° = 3 (Note: G(0) need not equal

0. 1In terms of curve plotting G(0) is the y-intercept
of y = G(x), and G(0) = 0 merely means that the curve

& & oA &u A o8 om .

am

passes through the origin.)

II.11.1




SOLUTIONS:

[Solution 2.

Calculus of a Single Variable - Block II:
Differentiation - Unit 1l: The Definite
Indefinite Integral

11.1 cont'd]

L]

fz X »’x2+3
1

2 2. 1 26
f (x#1)%ax = 9 - 3= 2
0

]

G(2)-G(1l) where G'(x) = x/x2+3

= (24312

'
.+ we may let G(x) = %(x2+3)3/2 (check: [%{x2+3)3/2]

- = (3) (x%+3) 172 (2%) = x(x2+3)1/2)

3 (2
G(2) = %(4+3)3/2 = % 23/2 _ % 2T = % T
(1) = 3(1+3)%/? = L¥? = §

1
-]F (4x3+3x2)dx = G(1l)-G(-1): G'(x) = 4x3+3x2

-1

Let G(x) = x4+x3

ey = 1413 = 2

G(-1) = (-4 (-1n3=1-1=0

IX.11.2
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 11:

Indefinite Integral

[Solution 2.11.1 cont'd]

i
' f (4x3+3x2)dx = 2=0 = 2
- ¥ ___l
2.11.2 (L)
t=2
a. &x‘ = G(2)-G(0) where G'(t) = t-t
t=0
Hence we may take G(t) = % t2 - % E
- = I 2 1 3 _ _ 8
o G(2) = ¥ (2)" = 3 (2)” = 2 3
G(0) =0
t=2
2
t=0

Hence the particle, at t=2, is

3

of its position at t = 0.

b. If we graph v versus t, we find

2

The Definite

3 feet to the left

2,1
2
T - )
2
(2,~2)
El«11.3




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 11: The Definite
Indefinite Integral

[Solution 2.11.2(L) cont'd]

Hence, v > 0 for 0 < t < 1

v<O0 forlg txg 2

During 0 £ t £ 1, the displacement is given by

t=1 L

2 3

Ax = % tT - % £ = % feet (from left to right)

t=0 0

Since the velocity never changes sign during this time
interval, Ax is also the total distance travelled during
0 < t<1l. wWhenl g t g 2,

t=2

2
Ax = %tz - 13 . =('§) - (%) = 72 ft. (from right

t=1 to left)

Again since v doesn't change sign on this time interval,
the total distance is also |_%| ft, where the absolute
value sign indicates that we take distance to be positive
(in fact an alternative way of working with negative
speed as in this example is to write that when 1gt<2,

the total distance is given by

2 2 32
2 t t _5
jl']t—t[dt=—-— 8= ),

1T1.11.4
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SOLUTIONS:

Indefinite Intergral

[Solution 2.11.2(L) cont'd]

2.11.3
v

a‘

Calculus of a Single Variable - Block II:
Differentiation - Unit 11:

The Definite

In any event the total distance travelled is % £L

(during the 1lst second) +

5 ¢t (during the 2nd

6
second) = 1 foot.
Pictorially;
2 1
“5"% X0 X0%%
Y
. . >
=2 =1 t=l

That is, the particle starts at X, moves steadily to

the right until it reaches the point x0+% at t=1. It

then reverses direction and moves steadily to the left,

reaching the position xo-% when t=2.

£ = Bt 42 0< t< 4
t=4 5
., displacement = Ax = G(4)-G(0) where G' (t)=t"-3t+2
t=0
4
= L3 3.2
= §t - ﬁt + .2t 0
_ 64 _ _ 64 _
b = 24 + 8 = 3 16
16 _ .1
----3— ijeet
LL.olleB




SOLUTIONS: Calculus of a Single Variable - Block
Differentiation - Unit 11:

Indefinite Integral

[Solution 2.11.3 cont'd]

[
r o

v > 0when 0 g t g 1
v < 0when 1 ¢ tg 2

v > 0 when 2 ¢ t g 4

¢ 1
-e total distance |f (t2-3t+2)dt l+
0

1
4
" ‘]. (£2-3t+2)dt| = ‘ §t3-%t2+2t’
2 0
4
1.3 3,2 |1 3 8
+ 3-1: —ft +2t‘2 = \§-§+2| + |(§-6+4

IT.130:.6

TI:

The Definite

2 5
‘ (t -3t+2)dt|
1
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SOLUTIONS:

Indefinite Integral

[Solution 2.11.3 cont'd]

Calculus of a Single Variable - Block II:
Differentiation - Unit 11:

The Definite

64 8 _ |5 2 5 16 2
| otaner-Gonn | - [3]+]2E[ |2
_ 5 .1 . 14
ik Bl s
_ 17
% o feet
More pictorially,
t=0 t=2 t=1 =4 _
1 % s
3 6 3
—

B 3 g I IS

In going from P to Q the
net Ax = 0 but the vertical
distances from P to S and
S to Q are each 1
6

I ¥ .

E*E = % = difference
between total distance
travelled and the displacement




SOLUTIONS: Calculus of a Single Variable - Block IT:
Differentiation - Unit 11: The Definite
Indefinite Integral

2.11.4(L)
1 1
12 3 1 3
(x+l)dx = -2-x + XI = (2_.{-1) -0 = >
J 0
. 1 3
. 2[ (x+1)dx = 2(7) =
0
1 1
f (x+1)dx = 2x° + x| = (%4-1) = [%(—1)2“-1)]
1 =1
3 3 1
3o ()1 ()
Hence

1 1
f (x+1)dx # 2'{ (x+1)dx
-1 0

In particular, then, it need not be true that

a a
f f(x)dx = 2[ f(x)dx
0

—a

a a
Of course, it might happen thatf f(x)dx = 2-[ f(x)dx .
0

—-a

1
o
S G 0 G G S O E =D B I B S T T I U e =

IT:11.8
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 1ll: The Definite
Indefinite Integral

[Solution 2.11.4(L) cont'd)
For example, consider

1 1

2 L 1.3 _ 1

d{’ X dx = gx ’ =3
0 0

| p]
=
'_.I
"
[\
o
b
]
(W
"
w
| |
()
I
W =
=
w
—J
|
w| =
Il
£
w

While we will not discuss this idea in too much detail
we would like to make a few remarks about even and
odd functions. Observe that, in any event,

1X.11.9




SOLUTIONS: Calculus of a Single Variable - Block II:

Differentiation - Unit 11l: The Definite
Indefinite Integral

[Solution 2.11.4(L) cont'd]

a
f FlEAE = G(a)=Cl-a) where &'(%) = F(%)

=-a

a
Let h(x) = G(x)-G(-x). Hence,d{‘ f(x)dx = h(a))
-a

Now,
h'(x) = G'(x) - [G(-x)]"'

By the chain rule

dG (-x) _ dG(-x) d(-x) _ _ 4dG(-x)
dx d(-x) dx da(-x)

dG (u)

du = £(u)

But G'=f means

*
Notice that there need be no special relationship

between G(a) and G(-a). That is:
bd
/l

e - Y=G (X)
L G(a)
G(-a) @fd/fii_ﬂn_" STMRURSII. W
-a a
IT1.11.10

(1)




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 11: The Definite
Indefinite Integral

[Solution 2.11.4(L) cont'd]

J.G'(x) = £(x)

dG(-x) _ ,_
—mr— f( X)
Hence, in any case, h'(x) = f(x) + f(-x)

Equation (2) gives us the key clue. Namely if f(-x) =
(i.e., £ is an odd function) then (2) says:

h'(x) = £(x) + f(-x)
= f(x)-f(x)
0
.: h(x) = constant

But h(0) = G(0)-G(-0) = G(0)-G(0) = O

Il

., since h(0)

Il
o

., G(a)-G(-a)

In other words if £ is an odd function then

a
f f(x)dx = 0
-a

11.11.11
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1

0 and h(x) is a constant, h(x)=

(2)

-f (x)

0




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 11: The Definite
Indefinite Integral

[Solution 2.11.4(L) cont'd)

Example

f(x) = x » £ is odd; that is f(x) = -f(-x)

a a
12| 121, .2\ _1212_
df' xdx = 3X |—a_ >a (5( a) ) = za -xa = 0
-a

The other "extreme" case as far as (2) is concerned occurs

when f is even (i.e., f(x) = f(-x)). Then (2) becomes:
h'(x) = £(x) + £(-x)
= f(x) + £(x)
= 2f (x) (3)
But G'(x) = f(x) =
[26(x)] = 2£(x) (4)

Comparing (3) and (4) we see that h(x) and 2G (x) have the

same derivative

Hence,

h(x) = 2G6(x) + ¢

ITell:l2
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Unit 11l: The Definite
Indefinite Integral

[Solution 2.11.4(L) cont'd]

But
h(0) = G(0)-G(-0) = 0 =

0 = h(0) = 2G(0) + c ~»

Il

c -2G(0) -

h (x) 2G (x)=-2G(0) -~

h(a) 2G(a)-2G(0) -+

I

a
f f(x)dx = h(a) = 2G(a)-2G(0) (5)
-a

On the other hand,

a
-I. f(x)dx = G(a)-G(0)
0

a
2f £(x)dx = 2G(a)-2G(0) (6) J
0

Comparing (5) and (6) we see that if f is even,

a a .
‘[. f(x)dx = %Iq f(x)dx
-a 0

IL.11.13



SOLUTIONS: Calculus of a Single Variable - Block II:

Differentiation - Unit 11: The Definite
Indefinite Integral

[Solution 2.11.4(L) cont'd]

a
In summary, there is no fixed way of expressing'[~ f(x)dx

—a

a
in terms oﬁj- f(x)dx.
0

However,

a a
(1) if f£(x) is an even functiond[. f(x)dx = %j- f(x)dx
-a 0

a
(2) if f(x) is an odd functionf f(x)dx = 0

-a

(To see this result more physically, think in terms of

t=a
v = f£(t) so that Ax G(a)-G(-a) where G' = £, If the
t=-a

speed is the same at t as at -t for all values of t, then

it seems reasonable that the particle moves the same distance
between -t and 0 as it does between 0 and t. Moreover if

the speeds are the same at t and -t but in opposite directions,
the displacement between t = -a and t = a should be zero

since the particle moves equal distances but in opposite

directions.)

IT.11.14
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation

QUIZ

1. If x> + 3xy + y> = 5, then 3x° + 3x§§ + 3y + 3y

2
Hence, §¥-= —(3x + 3%’ and g§ at (1,1) is -1.
(3x + 3y7)

2dy

e = 0.

Thus, L, passes through (1,1) with slope -1, so the equation

of Ll is:
LoX o or y = -x + 2 (1)
x -1
Ify = x + 1 e dy . I = 1)(1) - (X + 1)(1) _ -2
Hence, at (2,3), 3§-= -2, Thus L2 passes through (2,3) with

slope -2. This means that the equation of L, g

y -3 _ -3 or y = =2x + 17 (2)

The desired point is the solution of

Y = =x'+ 2
(3)
y = =2x + 7
This occurs if -x + 2 = -2x + 7, or x = 5, but when x = 5, (3)
implies that y = -3.

Therefore, the point at which L., and L2 intersect is (5,-3).

1

IT.Q.1



SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Quiz

dy ;
3t 5t + 2

S}
e
]
r+
+
(3%
(ns
*
=
¥

t=Xx +x° +3 =~ QE = 6x° + 5x
dax

dy _ dy dt _ 4 5 4
ax = dEaxE T (5t + 2)(6x~ + 5x7)

d’y _ a,dy, _ a 4 5 4:]
Then, '—-% = a“}z(dx) e E5t + 2) (6x~ + 5x7)

d(St4 + 2)

dx

5 + 5x4J

d 5 4
(5t° + 2) &(Gx + 5x°7) + (6%

acst? + 2) at
dt dx

5 + 5x4) + (6x5 + 5x4)

fasi
(]
o
(9]
(1]
o
(]
r‘-
oy
o
]
oy
o]
l_l..
o]
H
c
[
o
il S S S S T T E Th Ea =

d
(5t° + 2) a‘;{'(ﬁx

= (5t? + 2) 30x? + 20x3) + (6x° + s5x%) (20t3) (6x° + 5x%) (1) H
Now, when x = 1, t = 5 (since t = x6 + x5 + 3). Putting this
into (1) we obtain: u
a2 4 3 ?ﬂ
( %) = [5(5)% + 21(50) + (11)[20(5)7](11)
dx x=1

-

= (3,127) (50) + 121(2500)

= 156,350 + 302,500

= 458,850

IT.Q.2
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SOLUTIONS:

3. We let y

£'(x)

Thus ﬁytan

-

Calculus of a Single Variable - Block II:
Differentiation - Quiz

1
f(x)=\5/§=x5. Then when x = 32, y = 2

= vk
LI_,.F
_4{/
(Figure 1)
_4 4
o S L € | - $32) =t = &
X=32
(In Figure 1, this means that the slope of L is gﬁ.)
(OR in Figure 1) = (d—Y) Ax = A (1) = X,
dx /) _ 80 80
X=32
QB =255 = 2.0125 ¥ BS = 33
our approximation for ¢33 is 2.0125 and this approxi-

Thus

mation is

Figure 1.

greater than 33 since L lies above the curve in
2 9

g : d -4 5
(The curve spills water since ——%-= = X < Q0 for x > 0.)

dx

[y

IT.Q.3




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Quiz

4 (a)
1
A = 5bh = x(r + y)
= dA . Jd(xr ¥ ¥) dx - Ay
LR + &+t y) X3z t Tty (1)

The constraint is:

x2 " y2 _ r2
: dy - dy _ x |
es 2x + 2ydx 0 or ax = 7y (2)
Substituting the value for g%-from (2) into (1), we obtain:
daA  _ -X
B I A G A G W A b
Y b'g
_ 2y2 + ry - r2
y
2 2

= 0 > 2y +rxry —-r =0 <> (2y —r)(y +xr) =0

IT.Q.4
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Quiz

[4. cont'd]

Since y > 0 in order for the problem to make sense, we have that
g% =0 «» y = % and this is precisely the condition that AOAB
is a 30° - 60° - 90° triangle, and this in turn means that ABCD

is an equilateral triangle.

Thus, if the area is to be maximum, the isosceles triangle

must, in fact, be equilateral.

(b)

3

\\\\
B ¥
i
{
N R
/
/R

Ml

Volume of cone is:

IT.Q.5




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Quiz

[4. cont'd]

(c)

vV = %nxz{y + r) (1)

The constraint is:

x2 +y =r or X" =r -y (2)

Replacing x2 in (1) by its value in (2) we obtain:

i

v o= gn(rz -y + 1) = %ﬂ[rzy +x°

= Y3 = yzr]

o @ _ L2 a2 i
..E—Bn[r 3y 2ry] 31T(r 3y) (r + y)

. av
Q-d‘y

0 +~ r -3y =0 or y = %

IT.Q.6
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Quiz

[4. cont'd]
2 2
Ify = %, we have x2 + (%) - r2 or x2 = E%—. Putting
these values of x and y into (1) we obtain:
v = EH(QEE) £ + 1) lm(EEi) (iE) = 32..3
3 9 3 3 9 3 81l
; i 321Tr3
In summary, the inscribed cone of maximum volume is 81
) ) , B 8 2V2r B r, _
and its dimensions are R = §I = S5 and h = (r + 30 =
ar
5
. 32 3 . .
(In passing, we note that 81 > §5 hence a comparison with

the answer to (b) shows that the greatest area need not generate

the greatest volume.)

5. (a) y=x?+x3 = P+ (1)
y' = 4x> + 3x% = x°(4x + 3) (2)
g" = 12x% + 6x = 6x(2x + 1) (3)

From (1) we see that the curve crosses the x-axis when

X =0o0or x = -1.

From (2) we see that its slope is 0 when x = 0 or x
2

(and since y = xt + x3, the points are (0,0) and (%%, %gg)-
From (3) the candidates for points of inflection are (0,0)
-1

and (:-];, E).

IT.Q.7




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Quiz

[5. cont'd]
. -3
>0 if x > '—4-"'
Voo el ; 2
y' = x"(4x + 3) _3 since x >0
<0 3f % & =—
4
X-axis is a very good approximation for
the curve near the origin since
£(0) = £'(0) = £"(0) = 0.
-3 -27 —(%%,%%} is a point of
(=, EEE’ inflection as
is (0,0)
y" = 6x(2x+1) <0 for :f]-'-<x<0.
So curve spills water only on
the interval (%%,0)
————} == |++++
——= | ++++ | +++ 2x + 1
-1
3 9
Ay | (43 4 3x2) 9
(b) 3t (4x~ + 3x7) 3t
= 5(4x3 + 3x2)
. At (1,2) %: 5(4 + 3) = 35 ft/sec.
II1.0.8
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‘ SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Quiz
‘ 6. x° + 3x2 = 2

is equivalent to

x> + 3x2 -2 =0

2

x = 1, we can be sure that P(x)
0 and 1.

We next observe that P' (x) =
negative when x > 0. Hence for x

curve y = P(x) is always rising).

Let P(x) = x° + 3x°> = 2. Now P(0) =<2, P(1) =1 + 3 = 2 = 2.

Since P(x) is continuous and it changes sign between x = 0 and

0 has at least one root between

4 + 6x and this is never

>0, P(x) is 1-1 (since the

5x

II.0.9

Pictorially,
P(x) = xs o+ 3x2 - 2
JL P"(x) = 20x3 + 6 >0 for x > 0
l .on [0,1] the curve always
holds water
' (1,2)
‘-r—x
(0,-2) 1§

(We could, for example, use Newton's Method to locate this

root more exactly if we so desired.)




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Quiz

y-2
ek S

or y_2 = =-2X + c

or 35 = -2X + C (1)
Y

When x = 3 and y = 4, (1) yields

fg = -6 + c
cec=6 + f%-= %%
- yiz o e i % _ 97 I632x
R (2)

(To conform with the notion of single-valued functions, we
have that (2) implies that

4 4

v97 - 32x -¥97 - 32x

In this event, since we know that y = 4 when x = 3, we must pick

y = . - if we require a single-valued branch.)

v97 - 32x

I1.0.10
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SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Quiz
l [7. cont'd]
l (b) g% = x¥%® + 18
[ L
oy = fx(x?‘ + 18) 3ax
Letting u = x2 + 18, du = 2xdx or xdx = %‘-du
1 1 L 4
l -.‘fx(xz+13)3dx=f%u3du=%fu3du=%-%u3+c
l 4
I =3 v e
l 4
R A S 517 b e (3)
I Letting X = 3 and y = 4 in (3), we obtain
L 4
4=%(9+18)3+c, or:
- :
l 4=-§-(27)3—+c=%(81)+c, or:
c =4 - 3(81) _ 32 - 243 _ =211
' 8 8 8
I LTdQu kYl




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Quiz

[7. cont'd]
4
- = 3 2 3 211 .
v Y 8 (x + 18) 5 or:
4
y =3 [36% + 183 - 2m
_ dv
8. (a) a —E

By the chain rule, (1) may be rewritten as:

a = Qv dx
dx dt
; _ dax
Recalling that v = 3’ (2) becones:
_ .dv
a—VEE

(1)

(2)

(3)

In (3), if we let v = £(x), we obtain the desired result:

a = f(x) £'(x)

The major use of part (a) is in the case where acceleration

is expressed as a function of x rather than t. That is, g(t)

dv

is fine, but = g(x) gives us one too many variables.

dt

In particular, in part (b),

A 53 0 B )




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Quiz

[8. cont'd]
That is, vg§-= x2. (Had we written g% = x2, we would have to

be able to express x in terms of t before we could proceed. In
this example we have no explicit representation of x in terms
of t.)

At any rate:

v%%— = x2
implies
vdv = xzdx
(oL o %vz = %x3 + oy
or: 3v2 = 2x3 + c . (4)

The fact that we are told v = 0 when x = 0 allows us to

conclude that ¢ = 0 in (4).

That is:
3
2 _ 2

¥ = 3x

3
or v = + 2X_ ' (5)
— 3
IT.Q.13




SOLUTIONS: Calculus of a Single Variable - Block II:
Differentiation - Quiz

[8. cont'd]

The fact that we are also told that the motion is in the
direction of the positive x-axis allows us to choose the

positive root in (5).

(6)

.
<
|
&
|
&)
I
Wi %
a
]

Letting x = 6 in (6), we obtain:

v = % V36 = 12 ft/sec

I1.0.14
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