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2.4.1(L) 


Hopefully, it is clear by now that what we don't mean is 


Figure 1 


What Figure 1 does tell us is how r varies with 8, but this is not 

what is meant by the curve whose polar equation is r = cos 8, 

0 < 8 6 IT.In fact, Figure 1 represents a curve in Cartesian 
coordinates, where the x and y-axes have simply been renamed as 

the 8 and r-axes, respectively. 

Recalling that 8 determines the line from the origin to a point 


and r the distance (either in the direction of 8 or in the opposite 


sense) from the origin to the point, we can begin our plot at the 


pre-calculus level (just as in the Cartesian case) by locating 


specific points which must belong to the curve. In chart form, we 


might have: 
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2.4.1 (L) continued 


Therefore, 


Notice two 
different names -

Figure 2 


Notice that Figure 2 gives us a collection of discrete (isolated) 


points that belong to the curve. If we did not have more know- 


ledge at our disposal, the best we could do would be to approxi- 


mate C by locating more and more points on C and then sketching 


our curve through these points. 


1t should be noted now that, although Figure 1 is an incorrect 

sketch of C, it offers us vital information concerning r as a 

function of 0 that can be used in Figure 1. For example, we can 

see at a glance from Figure 1 that as 0 moves continuously from 0 
lT
to 7, r steadily decreases. This excludes any curve such as 
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2.4.1 (L) continued 


since rl > r2 even though el > €I2. In other words, it is impor- 

tant to know such features as "the greater 8 ,  the less r." 

Similarly, such devices as symmetry help us. For example, notice 


that the points (r,B) and (r,-9) are symmetrically located with 


respect to the x-axis. (Actually, there is no need to use any 


language connected with Cartesian coordinates. The union of the 

rays 9 = 0 and 9 = IT says the same thing as the x-axis. As we 

shall soon see, the fact that we are so familiar with Cartesian 

coordinates often [but not always] makes it helpful to convert 

polar equations to Cartesian equations, but it must nevertheless 

be understood that polar coordinates exist in their own right, in- 

dependent of whether Cartesian coordinates were ever invented.) 

Hence, if f(9) = £(-9) for all values of 9, the curve whose polar 

equation is r = f(9) is symmetric with respect to the x-axis. 

In our present example, since r = cos 9 and cos 9 = cos (-9), our 

curve must have symmetry with respect to the x-axis. 

We shall pursue these ideas in later problems. For now, let us 

observe that translating the equation of C into Cartesian coordi- 

nates may make us feel more at home. Knowing that r 2 = x 2 + y 2 

and x = r cos 9, we are tempted to multiply 

- cos 9 



The only time (1) and (2) may represent different curves is when 

r = 0. (As usual, we must guard against multiplying both sides of 

an equation by zero.) Notice that r = 0 corresponds to the single 

point, the origin (since for any other point r # 0). Since the 

*
origin belongs to (1) , ,;) i.e., (0 satisfies (1), equations (1) 
and (2) represent the same curve. Equation (2), however, converts 

very simply into Cartesian coordinates. Namely, 

x 2 + y2 = x. 

Equation ( 3 )  may be transformed as 

x 2 - x + y 2 = o  

whereupon, completing the square yields 

and we recognize ( 4 )  as the Cartesian equation of the circle cen- 
1 1

tered at (2,0) with radius -2' That is, 

* A s  we s h a l l  s e e  i n  more d e t a i l  l a t e r ,  t h e  o r i g i n  b e l o n g s  t o  a 
curve a s  soon a s  t h e r e  i s  a v a l u e  o f  0 which a l l o w s  r t o  equal  0. 
This  v a l u e  of 0 need n o t  i t s e l f  be  0 .  That i s ,  (0 ,O)  i s  t h e  o r i g i n  
f o r  any v a l u e  of 8 .  
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2.4.1 (L) continued 


Equation (4) follows 

from the Pythagorean 

Theorem applied to 

APQR 


Figure 3 


A quick check shows that the discrete points located in Figure 2 


satisfy C as drawn in Figure 3. Moreover, C, as shown in Figure 3, 


is the desired curve since equations (4) and (1) name the same 


curve (in different coordinate systems), and Figure 3 is the curve 


named by equation (4) . 
Also, in accord with an earlier remark, we should observe that the 


curve C as shown in Figure 3 can be verified without any reference 


to Cartesian coordinates. Namely, 
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In AOPS, since = 1, we have immediately that r = cos 8, since 

OP = 0s cos 8. 

Notice, however, that not only have we chosen P to lie in the first 


quadrant, but our diagram also seems to suggest that for the par- 


ticular value of 8, r is non-negative. For example, P could have 


been chosen in the fourth quadrant, in which case it would have 


been on the curve for a second-quadrant angle 8 and a negative 


value of r. In this case our diagram would have been 


From hOPS we have 


Therefore, 


r = 1 cos(?-€I) 

= cos IT cos 0 + sin IT sin 8 

*The p o i n t  i s  t h a t  we could not have named 3 SOP 8 .  Among o t h e r  
t h i n g s ,  8 was d e f i n e d  t o  l i e  between 0 and IT, thus  making 8 a 
f i r s t  or  second quadrant a n g l e .  $ SOP, 0x1 t h e  o t h e r  hand, l i e s  i n  
t h e  f o u r t h  quadrant.  
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2.4.1 (L) continued 


Therefore, 


-r = cos 8 

and P is (cos 8,8), which shows that P satisfies the equation 


r = cos 8. 

In summary, the fact that we allow r to be negative complicates our 


analysis of a polar curve, either analytically or pictorially. 


As a final note about our decision to allow r to be negative, 


notice that had we restricted r to being non-negative, C would have 


been the upper half of the circle since the lower half comes from 

71 
r = cos 8 with 8 between 5 and n and r being negative. 

In other words, if r could never be negative, equation (1) would 


have the additional constraint. 


In this case, the Cartesian graph of r versus 8 would be 


since r < 0 is forbidden. 

In fact, to get the entire circle, if r were restricted to being 


non-negative, we would have to let 8 vary from 0 to 2n, noticing 


that the lower half of the circle would come from 8 varying between 


and 2n since r would then be non-negative. In summary, to obtain 
2 

the whole circle, subject to r 3 0, we have 
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r doesn't exist This half is traced 
for 8 between as 8 varies between 
IT 3n- and - r 
2 2 0 and -2 
since cos 8 is 
then negative. 

out 

This half is traced out 
as 8 varies between 
3rr- and 2r.2 

To think of things in a "smoother" way, imagine that for those 

values of 8 for which r is negative the curve remains fixed at the 

last "real" point. For example, in this exercise, we might think 

of the curve as follows: 

On the other hand, if r can be negative, r = cos 8, 0 6 8 < IT, 

traces out the circle twice, once as 8 goes from 0 to A and again 

when 8 goes from .rr to 2rr. 

2 . 4 . 2  

2 2We have 3 -- 4 cos 8 + 9 sin 8 (r # 0). Multiplying through by r2 
r 

yields 

2 2 21 = 4r cos 8 + 9r2 sin 8. 
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Recalling that x = r cos 8 and y = r sin 8, (1) becomes 

3. = 4x2 + 9y2 

and we recognize (2) as the ellipse:" 


2.4.3(L) 


This exercise was "riggedn to show once and for all that there are 


times when one coordinate system has a definite advantage over 


another. 


a. r = sec 8 would probably look more familiar to us in the form 

I
r = - 

cos 8' 


" Observing that cos 8 = 0 when 6 = -z" or T,we recognize trouble 
I T  ?T 1with equation (1) when 8 = k T ,  and thus that r(T) means lim -cos 8' 

e+; 

*Even had  we n o t  r e c o g n i z e d  t h e  e l l i p s e ,  w e  c o u l d  h a v e  p l o t t e d  i t .  

Namely, 1 = 4x2  + g y 2  i m p l i e s  t h a t  o u r  c u r v e  i s  s y m m e t r i c  i n  a l l  

q u a d r a n t s ;  h e n c e ,  we wou ld  o n l y  h a v e  t o  s k e t c h  39 = i n  
t h e  f i r s t  q u a d r a n t .  We s h o u l d  a l s o  r e c o g n i z e  w i t h o u t  c a l c u l u s  

t h a t  1x1 < 51 
and l y l  4 -1 

s i n c e ,  f o r  e x a m p l e ,  1x1 > -1 
i m p l i e s  t h a t

3 2 

4x2  > 1 a n d  h e n c e  t h a t  4 x 2  + 9y  > 1 ( s i n c e  9 y 2  i s  n o n - n e g a t i v e ) .  
F o r  f u r t h e r  r e v i e w  o f  t h e  c o n i c  s e c t i o n s ,  s e e  Thomas, C h a p t e r  1 0 .  
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We will bypass the traumatic experiences that the novice can en- 


counter if he tries to graph (1) in terms of r and 8, and, instead, 

7r
we will rewrite (1) in Cartesian form. As long as 8 # tr, we may 

multiply both sides of '(1) by cos 8 to obtain 

r cos 8 = 1, 

Since x = r cos 8, (2) becomes 

which we recognize at once as the line parallel to the y-axis. ' 

passing through (1,O). That is, 

Q Notice that in polar coordinates 
each point P(r,8) for which 
r = sec 8 is on the line x = 1. 

@ Observe that our "nice" straight 
line does not contradict the fact 

IT IT
that as 8+5 (or - T ) ,  r increases, 
without bound! 
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The key point we are making is that x = 1 is computationally more 

desirable than the form r = sec 8. So, at least in this example, 

Cartesian coordinates have ari advantage over polar coordinates. 

b. 	 The polar curve r = 8 is rather easy to sketch. First of all, if 

8 3 0, we have the "spiral" 

@ Note the need here 
for radian measure 
since r is not an 
angle. 

@ Notice also that 
our curve is multi- 
valued with respect 
to x and y, but single 
valued - in fact -
(the curve never 

crosses itself) with 

respect to r and 8. 


Of course, 8 is allowed to be negative (i.e. measured clockwise). 

In this case, r = 8 means r < 0 ,  but we have also agreed to permit 

this. The graph now is 

IThis is traced 	 @ Notice that we do 
out as 8 goes 	 not get the same curve 

when 0 exceeds B IT even 
though 8 = O0 andfact that r < 0 
8 = O0 + IT are the 

curve bein 	 same ray. Their value 

is O0 on one ray but 


O0 + IT on the other. 

In other words, our 

curve spirals on 

"indefinitely." 


/ I 



Thus, as shown above, r = 8 plots as a "double" spiral. 

2 2 2If we convert r = 0 into Cartesian form, we have r = x + y , 
whence r = 2 - and tan 8 = $ or €I = tan-' $ provided we view 
tan-' as a multi-valued function of which the principal value 

is but one branch. 

That is, in Cartesian coordinates, our curve is named by 

IT 71 
2- = tan-' $ + 2nk (where --2 tan-' $ ( ; k = 0,&I,k 2 ,  . . 

It should be clear at a glance that in this case the polar form is 

to be desired over the multi-valued Cartesian form. 

We also wanted to use this exercise as an excuse to warn against 

too loose an interpretation of the principal values of the inverse 

trigonometric functions. 

The point is that unless a convention is made to the contrary 

tan y = x 

for a given x allows infinitely many correct values for y. It is 

only when we want to talk about an inverse function, so that 
-1 y = tan x is the same as tan y = x, that we had to pick a 1-1 

branch, etc. 
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2.4.3 (L) continued 
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In polar coordinates, when we write tan 8 = $, we are assuming 
that 0 can exist in any quadrant it,can exceed 2n, etc. In this 


case. if we were to rewrite tin 8 = $ as 8 = tan-' $. we would 
mean that tan-' was a multi-valued function. In summary, if tan-' 

is required to mean the principal branch, then tan 8 = $ must be 
interpreted as 

0 = 	tan-' 5 + 2nk, where k = 0. t1. t2,. .. . 

2.4.4(L) 


a. 	While the obvious aim of this exercise is to give you a supple- 


mentary list of conditions for symmetry when curves are given in 


polar foq, another aim is to provide an "excuse" to obtain further 


experience with what is meant by -r, -8, etc. We make no attempt 


to be any more rigorous than a simple diagram depicting 8 in the 


first quadrant. The interested reader can extend these results to 


other quadrants. 


(1) We have that the curve C is given by r = f(0) and that (ro,80) 

is on C. We are told that this implies that (-ro,-eO) is also on 

C. 	Drawing a diagram, we see 


Y 

(Case 1, ro b 0) A 

From elementary 

Notice that P1 8 = 
geometry, it is 
clear that Po and 

is in the 2nd P1 are symmetrically 
quadrant even 
though -€I0 is 

in the 4th 

located with respect 
to the y-axis. 

quadrant. This 
is the effect of 
-r being
0 

negative. 
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@ Notice that -ro and 
r have the same magni-
0 

tude. and also that since 


/ "01 r is negative, -r is-

(ro '< 0 Po 

0 0 

+ positive. 

is in the @) Since -r is positive. third 0 


quadrant) (-ro,-go) is in the 


direction of 8 = -BO. 

@ Again, it is clear that Po and PI 
are symmetric with respect to the 

y-axis. 


@ Just a final note of caution: 
One tends to read (r, 8) as. if r >/ 0. 
The point is that r can be negative, 
in which case, -r is positive. 


IT 
(2) Here we present only the case in which ro > 0 and 0 E B0 6 5. 

Again it should be clear 

from elementary considera- 

tions that Po and P1 are 


symmetric with respect to 

the x-axis. 


*It i s  c l e a r  i n  t h i s  d i a g r a m  t h a t  Po c o u l d  a l s o  h a v e  b e e n  named by  

( r o , - B o ) .  I n  t h i s  fo rm,  t h e  c h e c k  f o r  symmetry w i t h  r e s p e c t  t o  t h e  

x - a x i s  i s  e x a c t l y  a s  g i v e n  i n  t h e  t e x t .  The m a j o r  p r o b l e m ,  a n d  
t h i s  w i l l  b e  e x p l o i t e d  i n  t h e  n e x t  few e x e r c i s e s ,  i s  t h a t  g i v e n  a 
p a r t i c u l a r  p o l a r  e q u a t i o n  f o r  a c u r v e  C ,  s a y , . r  = f ( B ) ,  i t  i s  
p o s s i b l e  t h a t  ( - ro ,n -go )  w i l l  s a t i s f y  t h e  e q u a t i o n  w h i l e  ( r o , - g o )  

w o n ' t  - e v e n  t h o u g h  b o t h  name t h e  same p o i n t .  
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b. Given that the equation of C is 


r = sin 28 

we test for symmetry with respect to the y-axis by replacing (r,8) 

in (1) by r - 0 . This yields 

-r = sin 2(-8) = sin(-28) = -sin 28 

r = sin 28. 

Since the equation remains unchanged by this substitution, we con- 


clude from part (a) that our curve is symmetric with respect to 


the y-axis. 


We then test for symmetry with respect to the x-axis by replacing 


( 0 )  in (1) by ( r  - 8 . This leads to 

= sin 2 7 ~cos 28 - cos 2~ sin 28 

= 0 - sin 28 

Therefore, 


r = sin 28, 

which is the same as (1). Therefore, again by part (a), we con- 


clude that C is symmetric with respect to the x-axis. 


Now, just as in' our use of Cartesian coordinates, we may use sym- 


metry to simplify our graphing problem. In this example, we need 


only sketch the curve in one quadrant, whereupon the remainder of 

the curve is obtained by symmetry. 
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IT
Since 0 d 0 < 7 implies that 0 6 20 d IT, which in turn implies 

that r (= sin 20) b 0 in the first quadrant. In other words, in 

this example, as 8 sweeps the first quadrant, so also does our 

curve. Hence, it is convenient to graph the curve in the first 

quadrant. 

To this end, noticing that 0°, 30°, 45O, 60°, 90°, 120°, 135O, 

150°, and 180' are convenient angles for finding sine, and noticing 

that r = sin 20 means that we are looking at the sine of twice 0, 

we conclude that the values 0 = 0°, 15O, 22.5O, 30°, 45O, 60°, 

67.5O, 75O, and 90' would give us a nice collection of points on C 

in the first quadrant. 

Leaving the details to the reader, we obtain 


8=90° 0=67.5O 

(Note that all rays 

can be constructed in 

our diagram by use of 

compasses and straight 

edge. ) 

(We use degrees here rather than radians simply to reinforce the 

idea that when it is clear we are dealing with angles, the unit of 

measurement is irrelevant - besides you might feel better seeing 

degrees once in a while in this course.) 

Figure 1 
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dr

If we now want to bring in the information contained in de (which 
tells us whether r is increasing or decreasing as 8 changes) we 

have, from (1) , that 

dr
- =  2 cos 28.
d8 

Now, cos 28 b 0 if 0 6 28 < 90°, or, 0 d 8 d 45'. Thus, r should 

increase (the point moves further from the origin) as 0 varies 

continuously from 0 to 45'. 

Similarly, cos 28 6 0 if 90° d 28 d 180°, or, 45O d 8 90°. So, 

as 0 varies from 45' to 90°, the point moves in closer to the 

origin. 

The fact that = 0 when 8 = 45' means that r is stationary at 

that instant [i.e., the curve at (1,45O) "looks like" the circle 

r = 1. It does not mean that (1,45O) is a high or low point of 'c, 

as is clear from Figure 11. Anyway, combining this discussion 

with Figure 1, we see that a sketch of C in the first quadrant is 

given by 

at this instant 


r steadily increases as 0 goes from 
and decreases as 8 goes from 45' to 

Figure 2 


The remainder of the graph of C follows by symmetry from Figure 2. 

Name 1 y , 
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(We shall refer to Po and 4 in 
Exercise 2.5.2.) 

Figure 3 


As a final note on Figure 3, it should be clear that we were not 

forced to use symmetry to sketch C. We could have let 8 vary con- 

tinuously from 0" to 360" and traced out the curve in this way. 

We have placed arrows on our curve C in Figure 3 to indicate the 

path which would have been traced had we let 8 vary continuously 

from 0.O to 360°. For example when 8 is in the second quadrant, 

we have 90° $ 8 6 180" whence 180° 6 28 < 360'. Since sin 28 is 

negative then, it means that our curve appears in the 4th quadrant 

when 8 is in the second quadrant. The interested reader may check 

the correctness of our arrows in the remaining cases. 

c. Since r cos 8 = x and r sin 8 = y, we might be tempted to write 

r = sin 28 

in the form 


r = 2 sin 8 cos €I 

and then multiply by r2 on both sides to obtain 


2

r3 = 2r sin 8 cos 8 

r3 = 2 (r cos 8)(r sin 8) 

S.2.4.18 
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whence 


Again, a word of caution concerning ( 3 ) .  When we made the conven- 

tion that f l meant 1 x 1 rather than rx, it was because we wanted 
to have single-valued functions. The point here is that if we 

write 

we must allow both square roots, since r may be negative. 


To avoid this problem, it is safer to replace ( 4 )  by 

In this context, we should also eliminate the square root in ( 3 )  

so that we are not tempted to forget about the negative roots. 

Thus, we should square both sides of ( 3 )  to obtain 

As a final note, Figure 3 is also the graph of (5). That is, don't 

lose sight of the fact that equations (1) and (5) describe the 

same curve but with respect to different coordinate systems. 

2 . 4 . 5 ( L )  

a. Solving 


r = c o s 0 + 1  


r = c o s  0 - 1  


simultaneously, we may subtract the bottom equation from the top 


to obtain 
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Equation (1) is a contradiction, from which we conclude that 


curves C1 and C2 have no simultaneous solutions. 


b. Using a plot of specific points on C1, we obtain 


8 cos 8 r = c o s e + l  


0 1 2 


1
-TI 9 3  1 + 2fi%1.876 2 


IT 1
za 1
a 	 1 + 2fi =1.71 

-IT -1 	 1 

3 2 1 + -2 = 1.50 	 Since cos 8 = cos (-8), C1 

is symmetric with respect 
-IT 	 to the x-axis. 0 1 + 0 = 1.002 


-2 n --1 1 - - =  0.50 
3 2 	 2 


-3IT 1
--a
4 2 1 - % 0.29 

-5IT 

IT -1 1 - 1 = 0  


1-+ 1 - 1 0.136 
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Using dr to help sketch a smooth curve through the given points 


and reflecting this about the x-axis yields 


Figure 1 


If we now do the same to sketch C2, we see that we obtain what 

appears to be the same curve as in Figure 1 but with a difference 

in phase with respect to 8. For example, when 9 = -71, cos 8 - 1 = 

1 1 	 1 7a
-~fi- 1 = - (1 + . ~ence, P2(- [l + ~fi] belongs to C2. 

But this means that P1 = P2! 

Thus, C1 and C2 are different equations of the same curve. A 

point P belongs to C1 for one value of 8 and to C2 for another 

value of 8. 

c. 	The main aim of this part of the exercise is to emphasize the 

difference between solutions to equations and simultaneous solu- 

tions. This type of distinction did not exist in Cartesian co- 

ordinates. Namely, in that case, we knew that if P1(xl,yl) = 

P2(x2,y2) then it had to be that xl = x2 and yl = y2' 

Perhaps at this time a parenthetical note is in order. The usual 


meaning of "simultaneous" implies the idea of things happening 


at the same time. Clearly, from its use in elementary mathema- 


tics, "simultaneous" does not imply time. For example, when we 


, • 
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2 . 4 . 5  (L) continued 

asked for the simultaneous solutions of the pair of linear equa- 

tions x + y = 8 and.x - y = 2, there is no mention of time. 

Geometrically, the simultaneous solution of this pair of equations 

is the point at which the two lines intersect. That is, 

The complication sets in when we think of particles traversing 

these curves, since it is of course possible that two particles, 

each traversing a different one of the above curves, need never be 

at the point (5 ,3 )  at the same time. 

More generally, from a mathematical point of view if u and v are 

any two variables, and we have the two equations f(u,v) = b and 

g(u,v) = c, where b and c are given constants, we refer to a 

simultaneous solution as being one for which the same values for u 
and v satisfy both equations. That is, u = uo, v = v is called a 

0 

simultaneous solution if f(uo,vo) = b -and g(uo,v ) = c. 

0 


With respect to Cartesian coordinates, (xo,yo) and (xl,yl) cannot 
name the same point in the plane unless both xo = xl and yo = yl. 

This need not be true for other coordinate systems. In particular, 

it is not true for polar coordinates. For example, since the 

domain of 8 is unrestricted, it may, in particular, exceed 2n. 
1 n 1 13a n 13n
Thus, (Z,g) = ((.Z.T) even though g # -* 6 - 


This is not the worst of the problem, unfortunately. The fact 


that we have accepted the convention that r may be negative causes 


*Beware h e r e  o f  confus ing  t h e  f a c t  t h a t  f (-)13a (where f£(a) = 6 

denotes  any c i r c u l a r  f u n c t i o n )  w i t h  t h e  f a c t  t h a t  -n = -13a As 
6 6 '  

numbers, -13= exceeds  -n by 2a. Remember, f i s  n o t  1 -1 ;  h e n c e ,  i t
6 6 


should be  no s u r p r i s e  t h a t  £ ( e l )  = £(€I2)  even though # e 2 .  
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2.4.5 (L) continued 


a less obvious but, in many ways, a more serious problem. Notice 


that by our convention (r,9) and (-r,9+a) also name the same 


point. 


What is even more unfortunate is .that the same point P may satisfy 


a polar equation for one of i<s "names" but not for the other. 

1 a
Again, by way of illustration, P(-i.,3) (satisfies the polar 


equation r = 1 - cos 9 since 7 = 1 - cos $. ) Now, another name 

for P is - 1 4a Notice that, with respect to the "new" name, P 

no longer satisfies the equation r = 1 - cos 9. Namely, 

1 4IT 4 a 1 3
--2 = 1 - cos 7 is false since 1 - cos -3 = 1 - (-2) = z. 
Clearly, either P is on the curve or it isn't. Yet, for a given 


-form of the equation of the curve, P satisfies the equation with 
one name, but not with the other. The key point is that, while in 

Cartesian coordinates a curve had a unique equation, in polar co- 

ordinates the same curve may be represented by different polar 

equations. This means, awkward as it may seem, that given two 

curves that intersect at a point P, P, with a chosen name, may 

satisfy neither,one, or both of the particular equations that were 

chosen to represent the curves. [As a trivial example, the point 

(0,30°) belongs to both r = sin 9 and r = cos 0, yet it satisfies 

neither equation.] 

This exercise is meant to shed some light on this problem. 


In particular, to see why (a) and (b) are not contradictory, notice 


first that (r,0) and (-r,9+a) are two different names for the same 


point. In this respect, the equations for C1 and C2 are much more 


strongly related than may at first meet the eye. Beginning with 


the equation for C1, namely 


we replace r by -r and 8 by 8+a. In effect, this leaves the point 


P unchanged but does change its name as described above. At any 


rate, with this change, we obtain the'new equation 


-r = cos (e+n) + 1 



- - - - 

Solutions 

Block 2: Vector Calculus 

Unit 4: Polar Coordinates I 


2.4.5(L) continued 


which happens to be the equation for C2. 


In other words, by construction of C2, the fact that (r,e) satis- 
.-
fies C1 guarantees that (-r,8+~) satisfies C2. From a different 


emphasis, we are saying that if (r,B) satisfies C1, it cannot 


satisfy C2. 


The main aim of this exercise is to extend the results of the 


previous one in terms of how we solve pairs of polar equations to 


find all points of intersection of two curves. From Exercise 


2.4.5 and our lecture, it should be clear that points of intersec- 

tion must be of one of the following types. In what follows, we 

assume that the equation of C1 is r = fl(8) while the equation of 

C2 is r = f2(8). 

(1) Since the origin is characterized by r = 0, independent of 

the value of 0, we simply check whether each of the equations 

fl(B) = 0 and f2(8) = 0 have solutions. If each has a solution, 

then r = 0 satisfies each equation and, therefore, the origin will 

be a point of intersection. If it happens that f1(8) = f2(e) = 0 

for the same value of 8, the solution will be called simultaneous; 
otherwise, not. 

( 2 )  To take into account the fact that (ro,Bo) and (roteO + 2ak) 
are different polar names for the same point (where k is any in- 

teger), we must find all solutions of the equation: 
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2.4.6(L) continued 


If it turns out that f2(8 + 2a.k) = f2(8), the point of intersec- 
1 ~ / 1  Ation will be a simultaneous one; otherwise, not. 


, 

( 3 )  To take into account that (ro,Bo) and (-ro, go + IT + 2ak) name 

the same point [and remembering that ro = f (go) or f (go) depend-

ing on whether we are talking about C1 or C21r we must also find 

all solutions of 

Here no solution can be simultaneous (unless r = 0, which was 

treated above) since if r # 0, r # -r. Hence, (r,8) is not the 

same number pair as (-r,8+~). 

Notice that, while it is unfortunate that there are so many ways 

to name the same point in polar coordinates, the three categories 

described above exhaust all possibilities for finding all the 

different names the same point can have in polar coordinates. For 

example, if we are told that (ro, go) = (rl,el) then it must be 
that ro = ?rl, since as soon as 1 ro 1 # I rl1 , we must have two 
different points since they are at different distances from the 

origin. In a similar way, except at the origin (which we have, 

therefore, considered as a special case) unless either = €lo + 2ak 

or O1 = go + a + Zak, the two points have different directions 

(including sense) and hence must be different. 

s 


We have that C1 is given by r = cos 28, while C2 is given by 

r = 1 + cos 8. 

*Notice here that it is irrelevant which curve is labeled fl and 

which is f2. That is, we could just as logically solve the equa- 

tion f2(8) = fl(8 + 2ak). Indeed, from an analytical point of 

view, let I$ = 8 + 2ak. Then, 8 = I$ - 2ak, whence f1(8) = 

f2(8 + 2ak) implies fl(I$ - 2ak) = f2(@). Since k is an integer, 

so also is -k, and our last equation has the desired form. 
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2.4.6(L) continued 


Step 1 


The simplest test is to see whether the origin is a point of in- 

tersection. To this end, we need only check that each of the 

equations cos 20 = 0 and 1 + cos 0 = 0 has a solution. Now, 

cos 20 = 0 when 0 = -a (or 0 = 3a 3s be-. Hence, (0,i) [and (OIT)1 

long to C1. And, 1 + cos 8 = 0 if 0 = a. Hence, (0,~) belongs to 

The intersection, however, is not simultaneous because C2. 
 s
el # 02, i.e. ,# s. Therefore, the origin belongs to both curves 

(for C1. 0 = 7a or --3n for c2, = n)-
4' 


Step 2 


Letting fl(B) = cos 28 and f2(0) = 1 + cos 0, we now check for in-
tersections of the form 

In this case, we get the equation 


cos 20 = 1 + cos (0 + 2ak), 

and, since cos(8 + 2ak) = cos 0, equation (5) becomes 

cos 20 = 1 + cos 8." 

Equation (6) becomes easier to solve if we express cos 20 in terms 

2.of cos 0, thus giving us a quadratic equation in cos 0. To this 


end, 


*Notice that (6) could have been obtained had we neglected to in- 
clude 2sk in (4). In many cases, as in this example, every time 
0 appears, it happens that f(0) = f(O + 2ak). However, as we 
shall show in 2.4.7, do not automatically exclude 2ak in ( 4 ) ,  
because it can make a difference. As a good rule of thumb, al- 
ways use (4) and then see in each case whether 2ak can be neg- 
lected. Where it can be neglected, we will obtain simultaneous 
solutions. 
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2 2 2 2 2 cos 2 8  = cos 8 - sin 8 = cos 8 - (1 - cos 8 )  = 2 cos 8 - 1. 

Then, (6) may be rewritten as 

22 cos 8 - ~ = ~ + c o s8 

or 

22 cos 8 - cos 8 - 2 = 0. 

From ( 7 ) ,  we obtain 

cos 8 = l k m -- 1 . m  
4 4 

We may discard the plus sign in (8) since cos 8 cannot exceed 1. 

4 
> -That is, I + I + > 1. Hence,4 

To find r, we need only put ( 9 )  into the equation of C1, 

r = cos 2 8 , "  and obtain 

* ~ e c h n i c a l l ~s p e a k i n g ,  we m u s t  b e  v e r y  c a u t i o u s  h e r e .  F o r  e x a m p l e ,  
i t  m i g h t  h a v e  s e e m e d  q u i t e  n a t u r a l  t o  s u b s t i t u t e  ( 9 )  i n t o  
r = 1 + c o s  9 ( i . e . ,  C ) s i n c e  t h e n  t h e  c o m p u t a t i o n  w o u l d  h a v e  b e e n2 
g i v e n  m o r e  s i m p l y  b y  

T h e  p o i n t  i s  t h a t  when we w r o t e  f l ( 8 )  = f 2 ( 8  + 2 r k )  we w e r e  i m p l y -

i n g  t h a t  ( r , 8 )  d e n o t e d  t h e  g e n e r i c  p o i n t  on C l ( r  = c o s  2 8 )  w h i l e  

t h e  c o r r e s p o n d i n g  name f o r  t h e  same p o i n t  o n  C 2 ( r  = 1 + c o s  8 )  was  

( r y e  + 2 ~ k ) .  T h a t  i s ,  o n c e  8 w a s  d e t e r m i n e d  f r o m  (9), r s h o u l d  
h a v e  b e e n  c o m p u t e d  f r o m  t h e  e q u a t i o n  o f  C1. I n  t h i s  c a s e ,  h o w e v e r ,  

i t  s i m p l y  h a p p e n e d  b y  c o i n c i d e n c e  t h a t  f 2 ( 8 )  = f 2 ( 8  + 2 r k ) ,  s o  t h a t  

e v e r y  s o l u t i o n  o f  t h i s  t y p e  i s  a  s i m u l t a n e o u s  s o l u t i o n .  F o r  t h i s  
r e a s o n ,  we w e r e  f r e e  t o  c o m p u t e  r f r o m  e i t h e r  o f  t h e  two e q u a t i o n s .  
I n  g e n e r a l ,  h o w e v e r ,  a s  we s h a l l  s o o n  s e e ,  when t h e  s o l u t i o n s  a r e  
n o t  s i m u l t a n e o u s ,  i t  i s  c r u c i a l  t h a t  we k e e p  t r a c k  of  w h i c h  c u r v e  
i s  b e i n g  r e p r e s e n t e d  p o i n t w i s e  i n  t h e  f o r m  ( r y e ) .  



I
Solutions 

Block 2: Vector Calculus 

Unit 4: Polar Coordinates I 
 I 


2.4.6 (L) continued 


I
2 2 2 r = cos 28 = cos 8 - sin 8 = 2 cos 8 - 1 = 

I 

1 


From (9) and (10) we see that the simultaneous intersections are 


the points 
 I 

(5 - cos-1 1 -4m) I 

and 1 


I 

where we are honoring the convention that the domain of cos-I is 


[O,IT]. In this context, cos (l -41 refers to the second I 

quadrant angle, while its negative is the third quadrant angle. 


1 -The fact that 4m is negative means that the angle must be in 


either the second or third quadrant since its cosine is negative. I [  


From tables we then see that --3*1 = -(0.775).4 

cos 39O x 0.775. 

Thus, 

TO get a more concrete feeling for (ll), observe that Jl';i % 4.1; 
- 1 - 4 . 1 - 
-hence, = $ = 0.225. Similarly, 1-J1? " I4 
 4 4 

I 

I 

I 


Recall how we measure 2nd quadrant 

angles. 
referen

The 39' angle is our 

ce angle. 1 


I 

I 

I 
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2.4.6 (L) continued 


Thus, numerical approximations for the points found in (11) are 


and 


or, more compactly, 


Step 3 


What remains now are those intersections which come from the 


equation 


fl(0) = -f2(8 + IT + 21~k). 

In this case, (12) yields 


cos 28 = - [l + cos (8 + IT + 27rk)1. 


Since cos(8 + r + 27rk) = cos(8 + IT) = cos 8 cos IT - sin 8 sin IT = 


-cos 0, equation (13) becomes 


cos 2 0  = -[1 - cos 81 = cos 8 - 1. 


Therefore, 


cos 28 - cos 8 + 1 = 0, 


2
and again letting cos 28 = 2 cos 8 - 1, (14) becomes 


2
2 cos 8 - cos 8 = 0 


whence 


cos 8 (2 cos 8 - 1) = 0. 


S.2.4.29 
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2.4.6(-&) continued 

Therefore ,  

1 cos  8 = 0 o r  cos 8 = -2 ' 

Therefore ,  

Now, however, w e  must be  extremely c a r e f u l  which curve  w e  use  wi th  

(16) t o  f i n d  r s i n c e  o u r  s o l u t i o n s  cannot  be simultaneous! R e c a l l  

t h a t  i n  o u r  n o t a t i o n  (r,8) was i d e n t i f i e d  wi th  r = f (8) while
1 

( - r ,8  + A )  was i d e n t i f i e d  wi th  r = f ( 8 ) .  S ince  we have le t
2 

f 1(8)  = cos  28 [ see  equat ions  (12) and (13)1, w e  must o b t a i n  va lues  

f o r  r us ing r = cos  28. (Later  w e  s h a l l  do t h e  problem i n c o r r e c t l y  

s o  t h a t  you can see t h e  d i f f e r e n c e . )  

A t  any r a t e ,  

'ATherefore ,  (-1,~)is one o f  o u r  p o i n t s .  

S i m i l a r l y ,  

lT
Therefore,  (-1,-~)is  another  po in t .  

1 aTherefore ,  (-T,j-)  is another  p o i n t .  

1 ATherefore,  ( -T , -~ )  i s  another  p o i n t .  

Summed up, then,  four  p o i n t s  of i n t e r s e c t i o n ,  wi th  names chosen t o  

obey r = cos  28, a r e :  
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2.4.6 (L) continued 


IT
( - 1 , )  and 


Notice that not one of the points listed in (17) can satisfy 

r = 1 + cos 8, for if this were the case the point would be a 
simultaneous solution, and we found all of these in Step 2, and 

none of the points in (17) was obtained as a solution in Step 2. 

For example, with r = -1 and 8 = -IT 2' r = 1 + cos 8 becomes 

-1 = 1 + 0, which, trivially, is false. 


What is true, however, from our general theory is that if (r,8) 

satisfies C1 then (-r,8 + IT)will satisfy C2. With this in mind, 

each point in (17) becomes a point which satisfies C2 (i.e., 

r = 1 + cos 8) as soon as we replace r by -r and 8 by 8 + n. 

Therefore, from (17) , we obtain 

( 1 , ~  IT and
f 


satisfy r = 1 + cos 8. 
1 71
For example, with r = 3 and 8 = IT - 3, r = 1 + cos 8 becomes 

which checks. Notice that (17) and (18) name the same four point,s, 

but (17) is in the form which satisfies r = cos 28, while (18) ' -

satisfies r = 1 + cos 9. 

To get back to an earlier remark, had we used (16) together with 

r = 1 + cos 8 to find r, we would have obtained the four points 

3 IT
and 


While these points belong to C2, we get into trouble now when we 

replace r by -r and 8 by 9 + T. 

For in this case, the points in (19) become 
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2 .4 .6  (L) continued 

3 a
and (-,a+ .2 5) 


3 IT
Among other things, it is impossible for (-,n + to be points on 
2 


C1 since from r = cos 28 we see at once that Ir 1 < 1. Thus, 
3 a 3(-,IT+ lies "outsiden r = cos 28, since - > 1.2 2 


Hopefully, the case we have taken in this example allows you to 


see the various pitfalls. 


As a pictorial summary, we have 


C1: r = cos 28 

egins here at 8=O and 

the arrows as 8 goes 


from 0 to 2a. 


Figure (i) 


The graph of r = 1 + cos 8 is given by 
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2.4.6 (L) continued 


Figure (ii) 


And, if we now superimpose (i) and (ii) 


Figure (iii) 
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2.4.6 (L) continued 


Summary of (iii) : 

(1) P is the origin, which belongs to both curves. 

1 


(2) P2 and P3 are the points (0.23,141°), (0.23,-141°) respec- 


tively which are simultaneous intersections. 


(3) P4, P5, P6, and P7 are the "nastier" intersections. That is, 

IT
under the name (-1,-2), P 

4 is on .C1 while it is on C2 under the 


IT
name (l12). [See (i) and (ii) .I 


Similarly, IT 3IT 1 IT 1 2IT 

P5 = (-112) = (IIT) ; P6 = (-TI-T) (TIT);= 

1 IT 1 4a 

P7 = (-qtJ) = (TIT). 

Note: 

It is our feeling that Step 3 is probably the most difficult of 

the three to grasp. For this reason, it might be advantageous to 

revisit Exercise 2.4.5(L) from this point of view. If we let C1 

be denoted by r = cos 0 + 1 and C2 by r = cos 0 - 1, letting 

fl(0) = -f2(0 + IT + 21~k),we obtain 

cos 8 + 1 = -[cos(8 + a + 2nk) - 11 

= -[cos(0 + IT) - 11 

= cos 0 + 1. 

This last equation is an identity! In other words, in terms of 


the language of sets, if we let 


(8: cos 0 + 1 = -[cos(8 + n) - 111, 

then this set includes every real number (angle). 


This, in turn, means that if (cos 8 + 1, 0) [i.e., (r, 0) 1 denotes 
any point on C1, then (-r,8 + IT) denotes the name that this same 
point has on C 2' 



I 
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2.4.6 (L) continued 


This just happens to be an extreme case. In general, when we logk 


we obtain a finite number of values for 8 (including the possi- 


bility that the set is empty). For each value of 8 thus obtained, 


we compute the corresponding r from the equation for C1. Then 


(r,8) denotes an intersection as it is named on C1. We then look 

(quite mechanically) at (-r,8 + a + 21~k)and check that this names 
the same point as denoted with respect to C2. 

Our main aim here is to present an exercise for which f(8) # 
f(8 + 2~). In particular, notice that since 

f(8) = sin -4 
8 

then 


f(8 + IT) = sin (
8 + 2a1 

= sin 8 + -)IT 2 = sin -8 
4 cos -

IT 
2 + cos ;C8 sin zIT 

8 
= COS g .  

A comparison of (1) and ( 2 )  is enough to convince us that 

f ( 8  + 2IT) f f (8). 

In any case, if we let r = 
1 and 8 = 240°, then in r = sin -48' we 

obtain 


which is false. Hence, PI at least with its given name, does not, 1 . 

belong to C. 
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1On t h e  o the r  hand, another name f o r  P is  IZ,24O0 + 360°), o r  

1(2,6000). Let t ing r = - and 8 = 600' i n  t he  equation r = s i n  -82 4 '  
w e  see t h a t  

-1 = s i n  -600° = sin 150° 1 = 2.a 

Hence, P belongs t o  C but under t he  name ($,600° 1 r a the r  than 
1(z12400). 

I n  f a c t ,  from [I) and ( 21 ,  w e  s ee  t h a t  t he  curve crosses i t s e l f  
8 8
4. This, i n  tu rn ,  means t h a t  t an  = 1, whence, 

9 a 7 .  Hence, the  curve crosses  i t s e l f  a t  8 = n and 8 = 5n.Z = - O r -
P i c t o r i a l l y ,  

4 

The curve starts 
a t  0(0,0°) and 	 (Hatched port ion ends a t  	 ind ica tes  t he  p a r t  

of the curve which 
corresponds t o  t he  

X 	 range 0' 6 8 6 360°. 
Other port ion 
corresponds t o  
360' < 8 d 720'). 

W e  have f l ( 8 )  = 1 + cos 8, f 2 ( 8 )  = 1 + s i n  8, and C1 is  defined by 

r = f l ( 8 )  while C2 is defined by r = f 2 ( 0 ) .  

Step 1 

1 + cos 8 = 0 ,  i f  8 = n. Therefore, t he  o r ig in  belongs t o  C1 i n  

t he  form (0 ,a ) .  

l + s i n O = O ,  i f  8 = -3:. Hence, the  o r ig in  belongs t o  C2 i n  t h e  
38form ( O I T ) .  


Therefore, the  o r ig in  i s  a point  of in te rsec t ion .  
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S tep  2 


W e  s o l v e  f l ( 8 )  = f 2 ( 8  + 2nk). This  y i e l d s  


1 + cos 8 = 1 + s i n ( 8  + 2 1 ~ k )  


o r  


1 + cos  8 = 1 + s i n  8 


Therefore ,  


s i n  8 = cos  6 


t a n  8 = 1 


Therefore ,  


i 1 5ITThese va lues  of 8 l e a d  t o  t h e  p o i n t s  and (1- T,6,T)(1+ e,;) 
a s  simultaneous i n t e r s e c t i o n s  (where r is  found f o r  a given 8 from 

e i t h e r  r = 1 + cos €! o r  r = 1 + s i n  8 ,  s i n c e  t h e  i n t e r s e c t i o n  i s  

simultaneous ) . 

Step  3 

W e  s o l v e  f l ( 8 )  = - f 2 ( 8  + IT + 2mk) and o b t a i n  

1 + cos  8 = -(1+ s i n [ 8  + IT + 2 1 ~ k l )  

o r  

1 + cos 8 = -(1+ s i n [ 8  + I T ] )  

= -1 + s i n  8. 



i 

-, n f--,. . 
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2.4.8 continued 


Since 1 + cos 0 can never by negative while -1 + sin 0 can never 
! be positive, (1) can have no solution unless both 1 + cos 0 and 

-1 + sin 0 were 0, but clearly any value of 8 which makes 
1 + cos 8 = 0, does not make -1 + sin 13 = 0. Hence, (1) has no 

solutions, and, therefore, Step 3 yields no additional points. 

In summary, all points of intersectxon are given by 


(1) the origin (Po) 


A rough pictorial summary shows 


' + COS 0 
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