Solutions
! Block 1l: Vector Arithmetic
] Unit 1: An Introduction to Mathematical Structure

1.1.9 continued

the "fact" that if a # 0 there exists a number a-1 such that

a x a-l = 1. As we saw in part (c), (2), this need not happen in
modular-6 arithmetic (in particular, when a = 3). Since the rule
does not apply here, neither need any inescapable consequence of

the rule apply.

e
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Solutions
Block l: Vector Arithmetic

Unit 2: Structure of Vector hrithmetic

1.2,14(1L)

Aside from reviewing the basic vector operations, this exercise
affords us the opportunity to see how vector arithmetic can be
applied to plane geometry by the rather neat device of
"arrowizing" (or "vectorizing") lines.

In terms of the usual plane geometry notation, we have

A

In the language of vectors we are being asked to prove that:

DE = 7 EC (1)
Notice the beauty of our vector notation. Namely, equation (1)
*

Qur convention is to write AB, say, when we are referring to the
line which passes through A and B, but to write AB when we are
referring to the length of the line segment which extends from

A to B.
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Block l: Vector Arithmetic

Unit 2: The Structure of Vector Arithmetic

1.2.1 continued

tells the whole story. That is, the fact that DE and BC are
parallel is equivalent to saying that the vectors DE and Ec*
are scalar multiples of one another; while the fact that the
length of DE is half the length of BC is equivalent to saying
in vector language that the scalar factor is 1l m other words,

using our notation for magnitude, DE = % BC i;plies, aside from
DE and BC being parallel, that |DE| = %|§E|. Notice now that a
connection between line segments and vectors is that for any
line segment AB, AB = |AB|. Thus DE = = BC also says that the

length of DE is half the length of BC.

To prove equation (1) we could employ vector arithmetic as
follows:

* %
(1) DE = DA + AE  (by the definition of vector addition).
(2) DA = % BA (by the definition of scalar multiplication,
that is, DA anb BA are parallel, and DA = % BA
RE = 7 AC|since D is the midpoint of AB).
(3) DE = 3 BA + 37 AC (by substituting (2) into (1)).

*

OQur convention is to write E% if we wish to denote the arrow
(vector) which originates at A (i.e., its "tail" is at A)
and terminates at B (i.e., its "head" is at B).

**Notice, again, the interesting result that if A, B, and X are

any three points in space them AB = AX + XB. In terms of a
"reclpe,” our definition of vector addition allows us, if given
Kﬁ, to "pull apart" A and B and insert a third point X after A
and before B. Pictorially:

X
7"'--_‘ -3 —r -+
P - AB = AX + XB
s “-""B
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A
Seka2,2

A S 2 N B9 S =l

E® §£Ea3a (a2

E Ea e

s o .




-l 0l =N

S om .

Solutions
Block 1l: Vector Arithmetic
The Structure of Vector Arithmetic

Unit 2:

1.2.1 continued

(4)

(3)
(6)
(7)

> =

1 1 o2
5 BA + 5 C =

-

LS

Therefore, 5% 1

Il

-

(BA+AC) (by the distributive property of

scalar multiplication).

(BA+AC) (by substituting (4) into (3)).
2

*
BA + AC = BC (by definition of vector addition)

1 =

Therefore, DE = 5 BC

is the desired result.

(by substituting (6) into (5)). (7)

If we wish we can rewrite steps (1) through (7) in the statement-

reason format of plane geometry without reference to any picture -

and in this way we perhaps emphasize even more the structure of

vector arithmetic.

In this context our problem and solution could be stated as

follows:
Given: DA = % BA and AE = % AC
-+ 1 =
Prove: DE = i BC
Proof:
Statement Reason
-+ -+ -+ * %
l. DE = DA+AE 1. Definition of Vector addition
-+ -+ + -+ z
2. DA = %BA, AE = %AC 2. Given
-+ -+ -+ : :
3. DE = %BA it %AC 3. Substitution
-+ > + . . .
4. lBA 4 lAC = l(BA+AC) 4, Dlstylbgtlvg property of scalar
%’ ) 2 multiplication
-+ -+
5. DBE = %(BA+AC) 5. Substitution
..E -+ -+
6. BA+AC = BC 6. Definition of wvector addition
-+ -+
7. DE = 3BC 7. Substitution q-e.d.
This is an inverse, of sorts, of a previous footnote. In the same

way, that given AB, we can separate A and B to insert X to form

AB = AX+XB,
together to form AB.

given_}&+iﬁ we can eliminate X and "squeeze" A and B
In still other words, AX+XB = AB may be

obtained by reading AB = AX+XB from right to left.

* %

R -
Notice that we may define AX+XB = AB without reference to any

diagram. To be sure, this definition is motivated by what our pictorial
intuition tells us, but this is certainly "legal,"

B le2isd
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Block 1l: Vector Arithmetic
Unit 2: The Structure of Vector Arithmetic

1.2.1 continued

Once the statement-reason format is fully understood and
appreciated, it is conventional to "abbreviate" the proofs.
For example, we might simply write

DE = DA + AE
=§-}3’i+%f
= 2 (BA + AD)
=%‘-B_E:

but we must be prepared at all times to support any statement of

equality by a suitable definition, rule, hypothesis, or theorem
if called upon to do so.

As a final note, let us observe that in "vectorizing" lines there
is no set convention as to how we should do it. For example,
had we wished, we could certainly have assigned the sense of each
vector as follows:

A

We would then have had to write things differently in terms of
this diagram. For example, as drawn, DE and CB have opposite
sense and our proof would be to show that DE = - % BC etc.

The point is that no vectors appear in the original problem; hence,
we are free to "vectorize" at our own convenience. Accordingly,

we will, to our own taste, pick a scheme which seems most
advantageous for the particular problem under consideration.

As a final note, please notice that what we call "vector methods"
is more than ordinary plane geometry in disguise. Our vector
methods are much more algebraic than geometric in application.

S.1.2.4
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Block 1l: Vector Arithmetic
Unit 2: The Structure of Vector Arithmetic

1.2.2(L)

Using a picture as a mental-aid we have

(0]

+ - >
OoC = 0A + AC

The length of AC is —=— of the length of AB.

m+n

'+- m b 0
AC = ey AB.

Therefore

5

oc = OA + ™ AB

(1)

Hence, vectorially,

(2)

The only thing "wrong" with (2) is that we do not want our answer
expressed in terms of AB but rather in terms of OA and OB, With
this in mind, we rewrite AB as AO + OB (which is the definition

of vector addition) and we then note that A0

= —ah since ﬁb and dﬁ

have the same magnitude and direction, but the opposite sense.

Hence, (2) may be rewritten as
OC = OA + —= (A0 + OB)

~5 &

—— (-OA + OB)

m
m+n
m
m+n
-+ m -+ m -
A e OA (6)
=
m+n

m+n
= - Y. B
= (1 ) OA + 0B
Therefore
<~ n -+ m -+
ocC = = OA + =y OB

B.1.2.5
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1.2.2 continued

Notice that our string of equalities seemsto be derived as if

we were using ordinary "algebra" applied to numbers. In terms

of our "game" idea, this occurs because vectors and numbers obey
the same rules or properties (i.e., they have the same structure)
with respect to the given operations. 1In still other words, notice
that while we may have used a picture to help us visualize what

was happening, we could have, once again, proceeded in a purely
algebraic statement-reason format to deduce our result without

reference to any geometry.

Here, for the first time, we come to grips with the role of a
specific coordinate system. That is, it is reasonable for

us to assume that while the sum of two vectors depends only

on the vectors and not on the coordinate system being employed,
the actual arithmetic computations may very well depend on the

coordinate system.

The beauty of Cartesian coordinates is that the arithmetic is
done in a particularly convenient way. In particular if A is the
point given in Cartesian coordinates by (al,az) and B by

(bl,sz then the vector AB is simply

(bl—al)I + (by-a,) ]

That is, we vectorize the line segment from A to B, in Cartesian

coordinates, by substracting the coordinates of A from those
*
of B to obtain the components of AB. The proof of this fact

This is a generalization of our approach to the arithmetic of

the x-axis. For example, if P and Q denoted numbers on the

x-axis we saw that Q-P was the directed length of the line which
went from P to Q. At that time we were not (at least consciously)
thinking about vectors, but in effect we were forming the vector
PQ by subtracting P from Q.

§51:256
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Block 1: Vector Arithmetic
Unit 2: The Structure of Vector Arithmetic

1.2.2 continued

may be obtained by observing that, in terms of i and f components,
the vector alI + a2§ and the point (al,az) are related by the fact
that if aII + a2§ originates at (0,0) then it terminates at

*

(a;,a,) . Pictorially,

o
=
1
o
0+
+
el

= dc + Ob
=al+a,
Then,
AB = AD + OB
= -OA + OB
= OB - OA (3)

Now, by our previous observation, if O is the origin, then since
B = (bl,bz), B = bII + bzf. In a similar way,'ah = aII + azf.

*

Recall that our definition of equality for vectors allows us to
assume that we may place a vector at the origin without changing
it provided that we do not change either its magnitude, direction,

or sense.

81257
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Block 1l: Vector Arithmetic
Unit 2: The Structure of Vector Arithmetic

1.2.2 continued

Accordingly,
0B - A = (b1 + byJ) - (a;1 + a,9) (4)
Combining (3) and (4) we see that

AB = (bl':f + bzg) - (all’ + azﬁ) (5)

Since vector addition and scalar multiplication have the same
structure as for ordinary arithmetic, we may manipulate (5) in
the "usual" way to obtain

== _ -+ _ + *
AB = (bl al}l - (b2 az)j

Thus, for example, (where we are using Cartesian coordinates)

if A = (2,5) and B = (3,1) then AB = (3-2, 1-5) = (1,-4) = 1 - 43.

That this is not true for other coordinate systems may be seen
as follows. Let us invent a type of "radar-coordinates" (later

to be called polar coordinates) in the nautical tradition of

giving the range-and-bearing of an object. Specifically, we pick

a point 0, called our origin or pole. Then given a point P we
let r denote the distance between 0 and P and we let 6 denote the

angle OP makes with the positive x-axis. Pictorially,

Since the vector xi + y? terminates at (x,y) if it originates
at (0,0) it is customary to abbreviate xi + yj by (x,y),
leaving it to context to determine whether (x,y) means a vector

or a point. In this context, one might write AB as (b -a), bz—az).

We shall do this on some occasions but not on others; Sométimes
because one notation is more convenient than the other, and
sometimes only to help you get used to either notation.

S.1.2.8
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Block 1: Vector Arithmetic
uUnit 2: The Structure of Vector Arithmetic

1.2.2 continued

Thus while P is the same point regardless of whether we denote
it by Cartesian or polar coordinates, it would be labeled (x,y)

in Cartesian coordinates but as (r,6) in polar coordinates. In

terms of a more concrete application, (v3, 1) labels the same

*
point in Cartesian coordinates that (2,30°) labels in polar

coordinates. Again, pictorially,

In any event consider the following situation (merely as a
typical example). Let A and B be denoted in polar coordinates

by (v/3, 0°) and (2, 30°) respectively. To be sure we could guite

mechanically form the difference

(2 - ¥3, 30° - 0°) = (2 - V/3, 30°)

but this would not represent the vector AB. More specifically,

5
Since we are specifically dealing with angular measure here,

degrees are as permissible as radians. If we so wished, however,

we could have written

(2, % radians).

§.1.2.9
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1.2.2 continued

B
1
> -
1]
V3 A
AB = OB - OA (This is true independent of any coordinate system).

If we now place AB so that it originates at 0, it will terminate

at (0,1) in Cartesian coordinates or (1, 90°) in polar coordinates.

Obviously (1, 90°) # (2 - V3, 30°).

In general, if A = (rl,el) and B = (rz,ez), in polar coordinates,

the length of AB is not simply r,-r,. Rather, we must use the
law of cosines to obtain:

B(rz,ez)

2
r,” + r,” - 2r1r2 cos[81-82}

Again, it is crucial to note that, once the points A and B are
specified, the vector AB is uniquely determined. Only the
arithmetic is affected by the coordinate system. Thus, to find
|AB| from A = (r;,6,) and B = (r,,8,) we would have to compute

S.1.:2:10
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Block 1l: Vector Arithmetic
Unit 2: The Structure of Vector Arithmetic

1.2.2 continued

J;Iz + rz2 - 2r,r, cos(6,-6,) while if we had A = (xl,yl} and

B = (x2,y2} then

In either case the numerical value of |§§l is the same regardless

of the formula employed.

with this lengthly aside in mind, we handle (b) as follows:

From (a) we have

+ -+ m -+

n
OC = oo 9A *+ o B
Therefore,
R, T 1 m 1 y 1
ocC = e {all + a2]) + — (bll + b23)

~ na; : mbl + . na, ) mb2 %
“ \ m*n m+n m+n m+n J

na, + mb na., + mb
i 1 1 7 2 2 T
_( m+n ) i o ( m+n ) J

Finally, since O denotes the origin and we are dealing with

Cartesian coordinates, the vector OC terminates at the point
-

C where the coordinates of C equal the components of OC. 1In

other words:

c =

na, + mb1 na, + mb2
m+n ! m+n

s.1.2.11
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1.2.2 continued

c. This is a "concrete" application of tb). We have:

.

o
()
Il
St

+

]

Il
S

3 >
+5AB

(1,2) + §(3—1, 5-2) (where we are using (a,b) to denote
+ +
ai + bj)

Il

3
(1,2) + 2(2,3)

(1,2) + (5, B

6 9
(1L + 5 2 + 5}

(11 19
= 1;}

This, in turn, tells us that C, in Cartesian coordinates, is given
11 19

by (& . -

As a check, we observe that the answer to (b) applies with

a,=1,a,=2,b =3,by=5 m=3and n=2 (since 3 implies
3:2). Then:

nay @by . BB 3@ . 1
m+n 3+2 5
maFEh, 2@ a3fm) . 19
m+n B 3+2 5

Notice once again that we have "vectorized" a non-vector problem.
That is, we have used vector methods to solve a problem which can
be formulated without reference to vectors.

§.1.2.12
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1523

This is another version of Exercise 1.2.2(L). Notice in that

exercise we showed that

¥ n > m ==
Oop = o oA + Ty OB

. _ m : _ _ -_m _ n .
Letting t = o it follows that 1 t 1 = = G |

whence

-+

OP = (1-t) OA + t OB

Bl N B oy B Ol .

Had we wished to show this result directly without reference to
Exercise 1.2.2(L), we might have proceeded as follows:

|l N .
>

o]

Assume P is on AB.

*
Then since AP and AB have the same direction it follows that
AP = t AB where t is a scalar which depends on the position of P.

*
In our diagram it appears tha AP has the same sense as Kﬁ since

that is how we drew the picture. Actually, the line determined
by A apd B has infinite extent and we could have chosen P so
that AP and AB had different sense. For example P

B
Since t is any scalar, not necessarily positive, R} =t ﬁ% takes
care of either possibility. '
Sl 2513
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1.2.3 continued

Then:
OP = OA + AP
= OA + t AB
=
= OA + t(ADO + OB)
= OA + t(oB - 0a)
=OA+ t OB -t OA

(1-t)OA + t OB

Conversely, if all we know is that

-+

OP = (1-t) OA + t OB,

it follows that

OP = OA- t OA + t OB
= OA + t(OB - OA)
Therefore,

-

OP - OA = t(OB - OA)
NOW.

+ & -+ 5>
OP - OA = OP + RO

AO + OP

while

(1)

(2)

S.1.2,14
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1.2.3 continued

-3

OB - OA = AO + OB = AB (3)

Putting (2) and (3) into (1) yields

AP = t AB (4)
Equation (4) says that AP || AB, or that P is on the line
determined by A and B.

As a final note, when O denotes the origin, it is customary to
abbreviate db by 6 where Q is any point in the plane. 1In this
form, the equation of the line determined by A and B in vector

form is

P=Q-t)A + t B

where t tells us where on AB the point P is located.

.28
Letting A = (1,2) and B = (3,5), we have that OA = (1,2) = 1+2J
and OB = (3,5) = 31 + 53.
Hence,
(1-t)OA + t OB = [{1-t)I + 2(1-t)3 ]+ 3t + 5t3

= (1+28)1 + (2+3t)7F (1)
Letting P = (x,y), OP = x1 + y3 (2)
Since we already know that 0P = (1-t)OA + t OB, we may combine
(1) and (2) to obtain:
X1+ y3 = (1 +26)1 + (2 + 3t)3 (3)

5.1.2.15
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1.2.4 continued

In Cartesian coordinates, for two vectors to be equal they
must be equal component by component. Hence, from (3) we
obtain:

x 1 + 2t

(4)

y 2+ 3t

In (4) if we solve for x and y in terms of t we obtain:

(5)

2.

and from (5) it follows that

x1-¥2 or3x-2y+1=0

Without using vectors, we have that

-2 _ . _ 5-2
or

-2 _ 3

x— z

or

which agrees with the vector result.

S.1.2.16

Al I A S BE B EE e

Al Il BN E . s

i3 £1 K1



Gl N oW E TE =a

E Bl =

f & A o & A % N e

Solutions
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1255
B
D
c
A
0
a. OM = OA + AM (1)
=0+A4_~§-A'b
=5A+§._(A+B+1§'D}
=5A+§-(£B+%—B+C) (2)

(Up to this point, our main aim was to express oM in terms of
0, A, B, and C, since these are the only points mentioned in the

answer.)
> >

We now recall that AB = AO + OB = -OA + OB and BC = BO+OC = -OB+OC.

Putting these results into (2) yields

0'?-1-—-0+A+§-([*B—6'A] +é—[+c-é’al)
.- 2 ~ S . 2T % >
= Ga + 5 (OB 0A)+§[§(0c OB)]
2
3

S.1.2.17




Solutions
Block 1l: Vector Arithmetic
Unit 2: The Structure of Vector Arithmetic

1.2.5 continued

(Notice that there are several alternative approaches. For
Example: OM = OB + BM etc.)

b. We now apply the result of (a) to Cartesian coordinates where
*
A= {al,az), B = (bl,bz}, C = (cl,cz) and 0 = (0,0). Then,

OA = aII + 323
db = b 1 + b,3
oc = cli ¥ €53
Therefore,

- > > > -
OA + OB + OC = (a1 + bl = 01]1 + (a2 + b2 + czjj

Therefore,

a. + b + C a~. + b + C
o"ﬁ=( 1 31 1); +( 2 32 2)3?

i
But the components of OM are the coordinates of M. Consequently,

" —(ﬁl + by + €, .a, + by, +c, )
= 5 ’ 5

c. Merely applying (b) we have that the medians of the triangle
meet at

L.+ 3+ 4 2+5+ 9 _ 8 16
3 " 3 = L

*Here, again, we see how we manipulate according to what best suits
our purpose. Notice that in the statement of part (a) of this exer-
cise, 0 is any point in the plane. By specifying 0 as the origin,
the vectors 0OA, 0B, and OC may be identified with (al,az), (bl’b2)’

- e
(cl,cz). I.e., OA = a i + azf etc. Had 0 been another point

1
(dl,dz), then OA = (al—dl)T + (az-dz)T etc., and the arithmetic may

have been "nastier."

s.1.2.18
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1.2.5 continued

(Again, notice how we vectorize a problem in order to apply
vector techniques to a non-vector problem.)

1.2.6
= x2 i i dy .
a. The slope of y = x~ at (3,9) is 6 since = = 2x. In terms of
{ ana 3 components the slope of a vector is the quotient of the
-

-+ -+ -+
j-component divided by the i-component. Hence, the vector i + 63,
originating at (3,9) is a vector tangent to y = x2 at (3,9). sSince
its magnitude is

12 465 = I3 ‘
1 > 6 ¥ 1 > +
—_— 1+ — 3j = (V37 1 + 6/37 3)
/37 /3T &

is a unit tangent vector to the curve y = xz

at (3,9). If we
reverse the sense of this vector it is still a unit tangent vector.

Hence
-%(mimmiy

is also a correct answer.

-+

b. To be perpendicular to 1 + 63 (whose slope is 6), a vector must

+

have slope - é. Hence, 61 - 3 is one such vector. Thus, all
unit normal vectors to y = x2 at (3,9) are given by

Ll el -D
/37

5.1.2.19




Solutions
Block 1l: Vector Arithmetic
Unit 2: The Structure of Vector Arithmetic

1.2.7(L)

The vector AC + AB is a diagonal of the parallelogram determined
by AB and AC. Such a diagonal need not bisect ¥ BAC. However,
it will bisect the angle if AB and AC have equal magnitudes.

Obviously, this need not be the case. However, since changing
only the magnitude of AB and AC will not change ¥ BAC, we may
(scalar) multiply AB by the magnitude of AC and AC by the
magnitude of AB. That is, we replace AB by AD = |AC| AB and AC
by AE = |AB| AC. This makes AD and AE equal in magnitude, and,
accordingly, AF = AD + AE is an angle bisector of ¥ DAE and
hence also of ¥ BAC. Pictorially,

e = e o o e OF
B - ’
> N
e i |Zb| = |AE|
/!
F Therefore, AF bisects
/’ ¥ DAE which equals ¥ BAC
/
/
/ N "
A 24 E

5.,1.2.20
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Solutions
Block 1l: Vector Arithmetic
Unit 2: The Structure of Vector Arithmetic

1.2.7(L) continued

Notice, of course, that there are other ways of "scaling" the
lengths of AB and AC to make them equal. For example, we could

have scaled them to unit vectors by replacing AB by -%—T AB
| AB
and AC by-ré—r AC. In this case a bisecting vector would be
AC
-+
2 AB + 4 AC
|AB| |ac|

1 + 1 —+
——— AB + AC
| AB | | Ac|
and

|ac| AB + |AB| AC

are scalar multiples of one another. Indeed:

|xal|gc|(1_fa P S ) - |Rc|ab + |&B|Ec

| 2B | &c]

In fact, there are infinitely many bisecting vectors, each a
scalar multiple of |AC|AB +|AB|AC. (Geometrically, all we are

saying is that once we find one angle bisector we may obtain

any other one simply by altering the length of the given one.)

I

b. Since A = (1,1), B = (4,5), and € (6,13), we have that

-+

i = 37 + 43, Ac = 51 + 12§, |&8] = 32442 = 5, |Ac| = V5%+12% = 13

Therefore, applying the theory of part (a), we have that

SLks2,21
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1.2.7(L) continued
-+ > P
13AB + 5AC bisects ¥ BAC. Now,

132B + 5AC = 13(37 + 43) + 5(57 + 127)

397 + 523 + 257 + 603

641 + 1123

In other words, the vector 641 + 1123 bisects ¥ BAC if its tail
is placed at A.

Of course any scalar multiple of 641 + 112} would do as well.
Hence since 6431 + 1123 = 16 (41 + 73); we have that

41 + 7

is also a bisecting vector.

Here we merely apply vector techniques to a geometry problem
again. To find the equation of a line we already know it is
sufficient to know a point on the line and the slope of the line.
Since 41 + 73 is an angle bisector and its slope is %, the slope
of the required line is %. Moreover since the line passes
through A, (1,1) is on the line. Hence its equation is:

i R
x-1 4

or

7x = 4y = 3
1.2.8(L)

In a manner of speaking, it is not clear whether this problem is
sufficiently difficult to deserve the designation of a learning
exercise since we have solved a similar problem in the previous

B Le2in 22
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1.2.8(L) continued

unit. We wish, however, to take this opportunity to once again
stress the concept of structure of vector arithmetic.

Notice that when we proved that for any number a, a0 = 0, the
properties of numbers that we needed for this proof were also
"rules of the game" for vector arithmetic. Hence, the proof in
the last unit should carry through verbatim, once we make the
appropriate changes of notation. To this end, we rewrite the
proof of the previous unit, making only the appropriate
language changes. Thus,

a(a + 3) = ab + a0 {t1)
and
a(d + 8) = ab (2)

Comparing (1) and (2) shows us that
al = ab + al (3)

-
since al is a vector, let us denote it by b.

Then (3) becomes

b=0b+b (4)
Since b = B + 5, (4) becomes
b+0=0+5 (5)

Finally, since the cancellation law for vector addition holds
(we proved this in the supplementary notes), we may deduce from
(5) that b= 0, as asserted.

The main point we are trying to make is that while we quite possibly
do not feel as at home with vector arithmetic as we do with
"ordinary" arithmetic, their structures are remarkably alike in
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1.2.8(L) continued

many respects. When this happens the recipes and their
applications are precisely the same in both situations. The
object of this entire section is to make you more at home with
vector arithmetic in particular and the arithmetic of abstract
systems in general.

1.2.9

Again, we mimic a previous procedure (although in all fairness we
should point out that we could proceed from scratch without
reference to a previous proof).

In either event, let us suppose that a # 0; we will prove that
v =0. Now, if a # 0 then a T(av) = a '0. 1In the previous
exercise, however, we proved that a-lﬁ = 0 (since, in particular
a™! is a number if a # 0). Thus, we may conclude that

al@v) =8 (1)
But by our rules for scalar multiplication

-1 -+

al@av) = (ata)v = 1v = ¥ (2)

Substituting (2) into (1) yields

v=_~0

We have, therefore, shown that if av = 0 and a is not 0, then
=

v is §. 1In other words:

If av = 3, then either (meaning, at least one) a = 0 or 3 = 6.
(Notice the notation of distinguishing between 0 and 6. con-
ceptually, a denotes a number; hence, a = 0 refers to the number
0. v denotes a vector; hence, v = 0 refers to the vector 6.}
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