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AN INTRODUCTION TO MATHEMATICAL STRUCTURE

A

Introduction

In recent times, there has been considerable emphasis placed on the
concept of mathematical structure. One motivation for this is that it
often happens that two apparently different topics are based on the
same rules. Thus, if we assume that we accept only those consequences
which follow inescapably from the rules, then as soon as two different
"models" obey the same rules it follows that something that is a con-
sequence in one model will be an inescapable consequence in the other
model. In other words, once we have proven a result in one model, the
proof automatically holds in the other. This affords us a remarkable
short cut in studying topics which have the same structure as preci-
ously-studied topics. For this reason alone (although there are
others which we shall see as our course unfolds), it would be worth-
while for us to study mathematical structure.

In case our discussion seems devoid of any practical application, let us
review what we have said in terms of a situation which has occured in
Part 1 of our course. Specifically, let us revisit the study of area.

We mentioned that it was easy to define area, subjectively, as the
amount of space contained in a region. The trouble was that this
definition from a computational point of view, gave us preciously

little with which to work. So we set out to find a more practical

way of computing area by getting a more objective definition which

still agreed with what we believed to be true intuitively (subjectively).
To this end, we essentially imposed three rules on area, rules which
were based on properties that we felt certain applied to area.

(1) The area of a rectangle is the product of its base and height.

(2) 1If one region is contained within another, the area of the con-

tained region cannot exceed that of the containing region.

(3) If a region is subdivided into a union of mutually-exclusive
parts, then the area of the region is equal to the sum of the

areas of the constituent parts.

Once these three rules were imposed, we applied nothing but accepted
principles of mathematics to deduce inescapable conclusions. We not
only relived the ancient Greek experience of computing areas; we also
showed that the acceptance of the three rules led to a truly marvelous
relationship between areas and differential calculus which culminated

in the two fundamental theorems of integral calculus.




But, the real advantage of this structural approach was yet to come!
In particular, when we decided to study volume, we found that with
appropriate changes in vocabulary we could get the same three rules
of area to apply for volume as well. In fact, our only change in the

second and third rules was to replace the word "area" by the word

"volume.," Namely,

(2') 1If one region is contained in another, the volume of the con-
tained region cannot exceed that of the containing region.

(3') If a region is subdivided into a union of mutually-exclusive
parts then the volume of the region is equal to the sum of the volumes
of the constituent parts.

As for our first rule, we not only replace "area" by "volume" but we
also replace "rectangle" by "cylinder." We then obtain

(1') The volume of a cylinder is the product of (the area of) its
base and height.

The key point was then to remember that rules were relationships be-
tween terms and that if the terms changed but the relationships didn't,
the structure was unaltered. We were able to prove many results .
about volume "instantaneously," so to speak, merely by recopying the
corresponding proof for areas. In fact, this is why we referred to

volume in our lecture as "3-dimensional area."

Equally important in this study was the discovery that if the rules
are different, the structures may vary. In this respect, we showed
that we had to be a bit wary when we studied arclength because, in

this case, we could not hand down the same three rules just by re-

placing "area" by "length." In particular, had we tried this with

(2), we would have obtained

(2") If one region is contained within another, the length (perimeter)

of the contained region cannot exceed that of the containing region.

It happens, as we showed, that this need not be true. In many cases,

the region with lesser area may have a greater perimeter.

In terms of a trivial but, hopefully, informative example, had we
agreed to accept (2") as a rule, we should have been forced to accept
such inescapable consegquences as: the circumference of a circle of
radius R is indeterminate in the sense that it can be made to exceed
any given number. Namely, given that number we inscribe a region in
the circle whose perimeter exceeds that number. Since the region is
contained in the circle, (2") forces us to conclude that the length of

the circle (circumference) exceeds the length of the inscribed region!
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More concretely, to "prove" that the circumference of a circle whose
radius is 1 exceeds 10 (and this must be false since we "know" the cir-
cumference is 27 or a little more than 6 but less than 7), we take a
piece of string whose length is, say, 1l inches and curl it around

inside the circle. Pictorially,

11" piece of string is wrapped around inside
a circle whose radius is 1".

Then, from (2"), we conclude that the circumference of the circle
exceeds 11 inches. Notice that while the result is indeed false, it

is still an inescapable consequence of the rules we have accepted.

In any event, this did not mean that we could not study arclength.
Indeed, we went on to study it in rather great detail. What was
important was that whenever there was a property that was true for
either area or volume and which was a consequence of (2) [or (2')]
we had to exercise caution in the study of length since (2") was

not a realistic rule to accept. In an abstract "game" one need not
require that the rules be realistic, but in the "game of life" where
we try to measure and define reality, it is quite natural that we

would insist on "realistic" rules.

This, in turn, leads to the important concept of distinguishing be-
tween truth and validity, where, by validity, we mean that the con-
clusion follows inescapably from the rules, without regard to the truth
(or falsity) of the rules, and this too, will be discussed in much

greater detail later in the chapter.

To conclude our introduction, we must now explain, at least

from a motivational point of view, why we elected to introduce

this material at the present time. The answer is quite simple. 1In
this course, we shall be primarily concerned with the study of func-
tions of several (i.e., more than one) variables. We have already
studied functions of a single (one) variable, and, in the context,

we introduced such terms as absolute value, limits, continuity, de-
rivative, etc. These concepts will also occur (perhaps in an altered
form) in the study of several variables. Our point is that if the

structure (the rules and definitions) are the same for these concepts

1.3




as they were in the study of calculus of a single variable then we may
carry over the previous structure virtually verbatim. In this way, we
not only have a short cut for studying these "new" concepts but we

also have the advantage of seeing more clearly the structure upon which
everything is based.

Before we get on with this idea, it is important that the concept of
structure along with the companion concept of truth and validity be
understood in their own rights. The remainder of this chapter is
devoted to this purpose.

B

The "Game" of Mathematics

In our introduction to mathematical structure, we have employed words
like "definitions and rules" and "inescapable consequences"as though
we were dealing with a "game" rather than a mathematical concept. The
analogy is deliberate. For it is our claim that, not only mathematics,
but any topic in the curriculum can be viewed as a game provided we
define a game in the most general terms.

To see how we should define a game, let us ask ourselves what it is
that all games, no matter how different they may seem to be, have in
common. In other words, how can we abstractly (meaning without refer-
ence to any particular game) define a game so that every game is cover-
ed by our definition? The answer that we shall use, for purposes of
this course, is that a game is any system consisting of definitions,
rules, and objectives, where the objectives are carried out as inescap-

able consequences of the definitions and the rules by means of strategy.
Paraphrasing this in terms of a diagram, we have

strate
Logic) Objectives
Rules
Definitions

The interesting thing from our point of view is that this definition
of a game does indeed make almost any study a game. That is, in any

study, we define certain concepts, impose certain rules (usually

1.4
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dictated by our experience), and the objective is then to see what

conclusions follow inescapably from our rules.

First we define certain terms, but even this is not as easy as it may
sound. For example, in arithmetic, it is clear that the basic "playing
pieceh is a number, but how shall we define a number? Certainly, we

all know what a number is, but any attempt to define a number objective-
ly seems to lead to the circular reasoning property that sooner or

later our best definition of number contains the concept of number in
the definition. This is true everywhere, not just in mathematics.

From a nontechnical point of view, imagine that we are back at the

dawn of consciousness and we are trying to invent our first language.
Clearly the first object that we decide to name cannot be defined in
terms of other named objects because there are none. While we can guib-
ble as to what words will be "undefinable" and what words won't be, the
fact is that certain concepts are too elementary (meaning basic, not
simple) to be defined other than by circular reasoning. These concepts
are called primitives, and in arithmetic, number is a primitive. 1In
geometry, examples of primitives would be point and line.

Once we have our primitives, we may then define other terms in terms

of our primitives. For example isosceles isnot primitive. We call a
triangle isosceles if it has two sides of equal length. Thus, isosceles
can be defined in terms of triangles and lengths. We shall discuss

any additional examples as they may occur in the context of our course.

Next, we invent rules (which for some reason are always referred to

as axioms or postulates) which tell us how the various terms in our

"game" are related. These rules may be motivated by what we believe
to be true in real-life, but even this is not mandatory. -What is
important is that, for example, since number is a primitive concept,
any attempt to define, say, equality of numbers, or the sum of two
numbers, or the product of two numbers, might itself be subjective.

To avoid this problem, we agree to use only certain specific "facts"
about these concepts, which we introduce into the game as rules. 1In
this way, we can make an objective study of a subjective concept. If
this seems difficult, notice that we have already done this when we
studied area. The concept of "the amount of space" was subjective,

but the three axioms were quite objective, and these axioms were all

we used in deriving other properties of area.

Our objectives were then inescapable conclusions based on our defini-

tions and rules. Notice that our aim is not to ask whether a conclu-
sion is true but rather whether it is an inescapable consequence of




our definitions and rules. For example, long before the time of
Euclid, practical men knew (and used the fact) that the base angles of
an isosceles triangle were equal. The contribution of Euclid was that
he showed that this result could be deduced from "rules of the game."
That is, in terms of our game idea} a conclusion is only a conjecture
until we show that it is an inescapable consequence of our definitions
and rules. The process by which we decide that the conclusion is in-
escapable is known as a proof (which corresponds to the "strategy"
part of the game). It is this proof together with the conjectured
conclusion that becomes known as a theorem or proposition.

It is of interest to note that the words "axiom," "postulate," "proof,"
and "theorem" inevitably suggest the typical high school geometry
course. And, in fact, the geometry proof is an excellent example of
mathematical structure, clearly seen. What the "new math" in our
schools now emphasizes, however, is that we can make a similar "game"
out of the other mathematical topics. Just as in plane geometry, we

can apply a statement-reason format in any branch of mathematics to
proceed logically to an inescapable conclusion from a collection of
definitions, rules, and hypotheses.*

c

Truth and Validity

Thus far in our discussion of mathematical structure, we have avoided
any discussion of truth and validity. There is an important, if some-

what subtle, difference between these two terms which we shall examine

in this section.

Before we do this, however, perhaps it would be wise to try to describe
the two concepts informally, To begin with, truth involves a subjec-
tive value judgement concerning particular statements. As such, truth
is a rather nebulous thing. It is controversial in the sense that dif-

ferent people will make different judgements (for example, is it true

#The meaning of hypothesis occupiles a special role within the
structure of a game. In every game, when we study strategy we con-
sider what we should do if a particular event occurs, The particular
event need not actually happen; all that we want to be sure of is that
if it does happen, we know what to do. In this context, we refer to
such an event as a hypothesis., For example, when we say '"the base
angles of an isosceles triangle are equal" the fact that the triangle
is isosceles is called the hypothesis, for certainly, given a trian-
gle at random, there is no rule of the game that says it must be isos-
celes, In still other words, if the student asks how we know the tri-
angle is isosceles, we simply tell him that we were told so, or it

was given information, or it was the hypothesis in this example.
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that a particular painting is beautiful?). Moreover, truth is also
subject to change. That is, what is believed to be true at one time

may be believed to be false later.

It is in the latter context that one can begin to sense the idea of
validity. That is, do we change our minds about the truth of a
statement? In many cases it is that someone presents us with evidence
that we hadn't considered before. 1In other words, part of our concept
of truth seems to involve not just the statement involved, but the
reasoning by which we arrived at the statement. In short, we have

certain "evidence" that we believe to be true and we then ask on the
basis of the evidence whether the conclusion is justifiable. In still
other words, we want to know whether the conclusion follows inescapably

from our assumed beliefs.

This is what validity is all about. It is the study of determining
whether a statement follows as an inescapable consequence of other
statements. As far as terminology is concerned, the statement being
tested is called the conclusion, and the assumed statements are called
the premises (or simply the assumptions). The process of testing whether
the conclusion follows inescapably from the premises is called the
argument. In this context, truth is used to describe the premises and
the conclusion, while validity is used to describe the argument. If

the conclusion follows inescapably from the assumptions, the argument

is called valid regardless of the truth of the premises or the conclu-
sion, and if the conclusion doesn't follow inescapably from the premises
then the argument is called invalid, again regardless of the truth of
either the premises or the conclusion.

The main idea is that truth and validity are entirely different concepts,
related, however, by the basic belief that if the premises are true and
the argument is valid than the conclusion must also be true. We must,
however, be careful not to interpret our last statement too liberally.

It is possible that an argument can be valid and the conclusion be

true, even though the premises are false (this is why no number of ex-
periments ever prove a theory to be correct; the correct results could
be occurring despite wrong assumptions). By way of an example, the

true statement all bears are animals follows inescapably from the assump-
tions that all bears are trees and all trees are animals; yet each of
the assumptions is false. Again, emphasizing the correct connection
between truth and validity in a valid argument we cannot obtain a false

conclusion from true premises.

Hopefully, the next diagram summarizes the two concepts succinctly.




Premises
which may
consist of
definitions,
rules, and
hypotheses.

T
Truth Validity TrEth

argument Conclusion

The point is that we can have many combinations involving truth and
validity. In fact, in a valid argument we can have any combination
of truth and falsity for the assumptions and the conclusions, except
as we have mentioned, in a valid argument the conslusion must be true
as soon as the assumptions are.

Rather than continue in this expository tone, perhaps it would be bet-
ter at this time to illustrate these ideas in terms of some actual ex-
amples. To this end, we have:

(1) All Bostonians are New Yorkers.

All New Yorkers are Texans.
All Bostonians are Texans.

In this case, our argument is called valid since the conclusion does
follow inescapably from the assumptions, even though the conclusion is
false. (To think of this from another point of view, imagine a game
wherein there are three types of "pieces" called Bostonians, New Yorkers,
and Texans. If we impose as rules of our game that in this game, all
Bostonians are New Yorkers, and that all New Yorkers are Texans, then

it is an inescapable conclusion in this game that all Bostonians are

Texans.)

(2) All Frenchmen are European.

All Germans are European.

All Frenchmen are Germans.

In this case our conclusion is false and the argument is invalid (i.e.,

not valid) since it does not follow inescapably from our assumptions.

(3) All Parisians are Europeans.

All Frenchmen are European.

All Parisians are Frenchmen.
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In this case the assumptions and the conclusion are all true, yet the
argument is invalid since the truth of the conclusion does not follow
merely from the truth of the assumptions. 1In fact, structurally, (2)
and (3) have the same form. Namely, the first set is a subset of the
second set, the third set is also ‘a subset of the second set - from
which it need not be true that the first set is a subset of the third
set. Pictorially,

(D)

A C

All A's are B's

; ; 1 '
A1l ©%8  ave BYS }- but it is false that all A's are C's.

The fact that the conclusion may be true is not as important as that
it need not be true. Mathematically speaking, our aim is to draw ines-
capable conclusions, and in such a quest we must demand that our rules

of logic be restricted to those which are always true.

(4) All Parisians are Frenchmen.
All Frenchmen are Europeans.

All Parisians are Europeans.

In this case our conclusion is true and the argument is valid. 1In terms
of a more symbolic approach, both (1) and (4) have the form: All A's
are B's, All B's are C's. Hence all A's are C's. Again, in terms of a

picture,

B

@

By this time it should begin to appear obvious that the distinction
between truth and validity is of paramount importance in any scientific
investigation (social science as well as physical science). To make
sure that you have adequate opportunity to understand this distinction,
we have supplied some exercises in order that you may practice. Other

than this, we shall not explore further, in this course, the philosophical

159




implications of what is meant by truth, nor shall we introduce an
in-depth course in logic so that we may better understand the full
meaning of inescapable (that is, as simple as it might seem, the
concept of "inescapable" is quite sophisticated, for we must come
to grips with that subtle distinction between that which is truly
inescapable and that which is not inescapable but we don't know how
to avoid the conclusion). These topics are indeed important, but
for the purposes of this course we shall assume that our previous
remarks are sufficient.

We would, however, like to close this section with one more observa-

tion; an observation which is particularly pertinent to the idea of
structure.

Looking at mathematics in the light of what we have said about truth
and validity, we can now make a distinction between "pure" and "applied"
mathematics. If the axioms and postulates happen to be based on what
we believe to be reality, the resulting structure is referred to as
applied (i.e., practical) mathematics. If the rules are merely con-
sistent but do not correspond to reality, then we say that the struc-
ture is pure (or abstract) mathematics.

In making this distinction, however, we should remember that, struc-
turally, pure and applied mathematics are identical. And, in fact,
a model that seemingly bears no relationship to the real world at
present may turn out to be a "realistic" model in the future. A
classical example of this is Lobachevsky's geometry which was pure
math from its invention in 1829 until 1915 at which time Einstein
noticed that it served as a realistic model for his theory of
relativity.

D

Algebra Revisited

Surprising as it may seem, the traditional sequence of high school
algebra courses may be viewed as a very elegant example of the game

idea. Indeed, algebra may justifiably be called the game of arithmetic.

To begin this game of arithmetic, let us assume that we are familiar
with the real number system wherein we will take as our primitives
equality, addition, and multiplication (omitting subtraction and
division which are not primitive since they can be defined as the

inverses of addition and multiplication respectively).

As we mentioned in Section B, to keep our game objective, we do not

give specific verbal definitions of these primitive concepts but
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rather list the rules which we will use to relate these concepts so

that we have an objective starting point from which to deduce conclu-
sions. In somewhat oversimplified form, the idea is that we make up the
rules and the other "players" agree to accept them. Once they agree to
this, we are not allowed to invoke any "facts” in the game other than
those which follow inescapably from the accepted definitions and rules.

Thus, our game of arithmetic might begin with the following five rules*

which we hope will give the necessary degree of objectivity.
E-1l: For any number b, b = b. (The Reflexive Rule)

E-2: For any numbers a and b, if a = b then b = a. (The Symmetry Rule)

E-3: Given any three numbers a, b, and ¢, if a = b and b = ¢, then
a = c. (The Transitive Rule)

Let us pause briefly to make a few remarks about our first three rules
concerning équality. Equality is a relation just as "is the brother
of," "is less than," etc. are also relations. Not every relation is
reflexive. Stated in abstract terms: if we write aRb to abbreviate

"a is related to b by the relation R," reflexive means that aRa is a

true statement. If we let R denote "is the brother of," then aRa need not
be true since a person is not his own brother, or if we let R denote "isg

less than" then for any number b, bRb is false, since no number is less
than itself.

In a similar way, not every relation is symmetric. Again if R denotes
the relation "is the brother of," if aRb is true it need not follow that
bRa is true. For example, if it is true that John is the brother of
Mary, this does not imply (we hope) that Mary is the brother of John! If
R denotes "is less than," notice that as soon as aRb is true, bRa is
false (since if the first is less than the second, the second is greater

than the first).

Finally, not every relation is transitive. For example, if R denotes "is

the father of" then if both aRb and bRc are true, aRc must be false.

Namely, if a is the father of b and b is the father of c, then a is the

grandfather of c,not the father of c.

It should be observed that, for a given relation, the properties of being

reflexive, symmetric, and transitive are indevendent.

*Some texts refer to "properties" rather than "rules." OQur interpretation
will be that in the context of a game, we shall use the term "rules." If
we then find the "real-life" model which obeys our rules of the game,

then in referring to the model we will call our rules properties of the
model. S "

VR 8




That is, a given relation might have none, any one, any two, or all

three of the properties. For example, "is less than" is neither reflex-

ive nor symmetric but it is transitive (i.e., if the first is less than
the second and the second is less than the third, then the first is
less than the third).

Any relation that is reflexive, transitive, and symmetric is called

an equivalence relation. Thus, equality is an equivalence relation.
Other examples of equivalence relations are "is the same height as"
and, in geometry, "is congruent to." In terms of the structure of

our game, then, if we use "=" to denote any equivalence relation, then
E-1, E-2, and E-3 are properties for that model.

The key point of interest about equivalence relations is that the
usual rule of substitution as learned in high school algebra applies.
Namely, in its most abstract form, if R is an equivalence relation

and aRb is true then we may replace a by b and vice versa with respect
to R. For example, if R denotes "is the same height as" and if aRb

is true then a and b are equivalent (may be substituted for one another)
as far as height is concerned. Of course a and b might not be equi-
valent with respect to other relations, such as "has the same color

' For example, a and b could have the same height but different
color hair.

hair.'

At any rate, since equality is an equivalence relation, we add to our
list of rules

E-4: If a = b, then we may interchange a and b at will in any
relation involving equality*. (The Substitution Rule)

Finally, to exclude any "middle grcund" (in fact, in logic we refer to
this as the rule of the excluded middle), we introduce

E-5: Exactly one of the following statements must be true (1) a = b,
(2) It is false that a = b. If (2) is true then we write a # b.
(The Rule of Dichotomy)

All we ask now is that each player agree to accept these fiyve rules
governing equality. Aside from this, we ask him to accept no further
assumptions, nor do we ask him why he accepts our rules. On the other

*For example, when we say 3 + 2 = 5, we certainly do not mean that the
symbols 3 + 2 = 5 look alike, Rather, what we mean is that any problem
to which the number represented by the symbol 3 + 2 is the correct
answer, also has the number represented by 5 as the right answer.
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hand, during the playing of our game, we must never invoke any
properties of eguality other than those stated in our rules unless
they can be shown to follow inescanably from these rules.

Let us now proceed to impose a few rules of the game on addition.
First of all, we know that the sum of two numbers is a number, so per-

haps a good rule to invoke is
A-1l: If and b are numbers so also is a + b (The Rule of Closure)

A-2: 1If a and b are numbers a + b = b + a. (The Cummutative Rule for
Addition)

A-3: If a, b, and c are numbers then a + (b + ¢) = (a + b) + c. (The
Associative Rule for Addition)

Again, before going further with our rules, let's make sure that we
understand the impact of the first three rules. To begin with, in
mathematical structure we often assume that when we combine "like"
things we get "like" things. The point is that this is not always
true. For example, if we are dealing with the set of odd numbers, we
must observe that the sum of two such numbers is not a member of the
set. Namely, the sum of any pair of odd numbers is always an even
number. In other words, the rule of closure states that when elements
of a set are "combined" by the given operation, the resulting element
is again a member of the same set. Notice that closure depends both
on the set and the operation. For example, the set odd numbers is
not closed with respect to addition but it is closed with respect to
multiplication, since the product of two odd numbers is always an odd
number.

In any event, if we have a rule which tells us how to combine two
elements of S so as always to obtain an element of S, we call such

a rule a binary operation on S. Thus, addition is a binary operation
on the set of real numbers.* In still other words, the Rule of

Closure is associated with the concept of a binary operation.*¥*

As for A-2, notice how this differs from E-2. In particular, from
A-1, both a + b and b + a are numbers. All A-2 states is that these

two numbers are equal.

*Notice how this differs from a relation which compares two 'elements
rather than combines them to form another element,

**That is, merely combining elements of S to form an element isn't
called a binary operation unless that element also always belongs to S.
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From another point of view, all E-2 states is that if a + b =Db + a then
b+a=a+b. Itdoes not state that a + b and b + a must be equal.
Indeed, commutivity is not a property shared by every binary operation.
Quite in general, order does make a difference. Thus, while it is

true that a + b = b + a for all numbers a and b, it is not true, for
example, that a - b = b - a.

As for A-3, in more "plain English," this merely says that the pinary
operation called addition does not depend on voice inflection, so to

speak. For example, an expression such as 2 x 3 + 4 is ambiguous as
it stands. On the one hand, it can be read as (2 x 3) + 4 which is
10; and on the other hand, it can be read as 2 x (3 + 4) which is 14.
In a similar way, 9 - 3 - 1 can be thought of as equalling either 5
or 7 depending on whether we "pronounce" it "(9 - 3) - 1" or

"9 - (3 - 1)." What associativity implies is that we do not need to
use parentheses, braces, brackets, etc. to distinguish between various
voice inflections. That is, a + b + ¢ yields the same answer whether
we read it as (a + b) + cor as a + (b + c).

So far, our rules do not mention a single number by name. We now
single out a rather special number from the point of view of addition.
Namely,

A-4: There exists a number denotedby 0 such that a + 0 = a for all
numbers, a. (The Rule of Additive Identity)

Zero is called the additive identity since, with respect to addition,
the addition of 0 does not change the "identity" of a number. In a
similar way, 1 would be called the multiplicative identity since mul-
tiplying by 1 does not cnange the value. We shall say more about this
a bit later.

Our final rule for addition is the one which makes the concept of sub-
traction available to us. Namely,

A-5: For each number a, there exists a number b such that a + b = 0.
We usually denote b by -a. That is, a + (-a) = 0. (The Rule
of Additive Inverse)

In other words, A-5 tells us that we can "undo" addition. A-5 allows
us to talk about subtraction now in the following way. Given two num-
bers a and b, by A-5, a number (-b) exists. We then agree to abbrevi-
ate a + (-b) (which we know is a number by A-1l) by a - b.

Before continuing, it is crucial that we understand that, while the
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ten rules listed thus far were motivated by our thinking of the real
numbers as a model, once the rules are listed, we need no longer think
of the model which motivated the rules. In other words, once the
rules are accepted, we merely study the inescapable conseguences of
these rules. For example, let us show that the "cancellation law"
(i.e., if a + b = a + ¢ then b = ¢) follows inescapably from our rules.
First of all, A-5 tells us the existence of the number (-a). Then
since we are given that a + b is equal to a + ¢ we may replace (a + b)
by (a + c¢), which by A-1l are numbers, to obtain

-a+ (a+b) =-a+ (a+c). (1)

Equation (1) is obtained from E-4.

By A-3 we know that =-a + (a + b) = (-a + a) + b while -a + (a + c) =
(-a + a) + c. Again, by E-4, we substitute these equalities into (1)

and obtain
(-a + a) + b= (-a+ a) + c. (2)

From A-5 we know that a + (=-a) = 0, and from A-2 we know that
a + (-a) = (-a) + a. Hence, by E~4 we may conclude that -a + a is
also equal to 0. Substituting this result into (2), yields

0+ b=0+c. (3)

Since 0 + b = b + 0 (by A-2) and b + 0 = b (by A-4), we have by sub-
stitution (E-4) that 0 + b = b. Similarly, 0 + ¢ = c. Using E-4

now, equation (3) becomes
b =c (4)

and equation (4) is the desired result.

Let us point out that, to the uninitiated, the above proof might seem
difficult, obscure, or unnecessary. A few clarifying remarks might

be in order. First of all, as in most complex games, the strategy
required to play the game of mathematics is complicated and will be
mastered to different degrees by different players. For our immediate
purposes, it is sufficient that the "player" appreciate the fact that
the strategy used in our proof did show that the conclusion followed
inescapably from the ten rules even if the player might not have been
able to invent the strategy himself. (This is not too surprising.




After all, think of the other games wherein it is not uncommon for a
player to be able to appreciate and comprehend the strategy of the
master even though the player might not have been able to invent the
strategy himself. In many cases, this difference is the difference
between being "another player" and being a "pro.")

While there may be "intuitive" ways of visualizing the same result

as we obtained, if the technique wuitilizes properties of numbers
other than those specified in our ten rules, then the result need not
be true in models which obey only the ten rules. In other words, our
approach guarantees that our conclusion is true in any model that has
properties the ten rules specified in our game.

We would also like to point out that while our demonstration might
not have made it that clear, our proof was modeled precisely after
the statement-reason format of plane geometry. Had we wished to be
more formal we could have written

Statement Reason

(1) There exists a number -a (1) A-5

(2) =-a + (a + b)

i

-a + (a + c) |[(2) E-4 (replacing a + b by a + c)

(3) =-a + (a + b)
-a + (a + ¢)

(=a + a) + b [(3) &A-3
(-a + a) + ¢

(4) Substituting (E-4) (3) into (2)
(4) (-a +a) +b

(-a + a) + c

(5) A=2
(5) =a * .4 =a ¥ (=a)
(6) A-5
(6) a + (-a) =0
(7) Substituting (E-4) (5) into (6)
(7) =a+a=20
(8) Substituting (E-4) (7) into (4)
(8) 0 +b=20+c
(9) A-2
(9) b+ 0=0+5b
c+0=0+c (10) Aa-4
(10) b + 0 =Db (11) Substituting (E-4) (9) into (10)
c#* 0 =g
(12) Substituting (11) into (8)
(11) 0+ b =5>b
0+c=c g.e.d.
(12) b =c¢

Usually, we are much less formal and write:

a+tb=a+c+-a+ (a+b)=-a+ (at+c)+>(-a+a) +b=(-a+a) +c+0+b=0+c+b=c.
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The important point is that, one way or another, we must show that our
conclusions follow inescapably from our assumptions. Other examples
are left to the exercises.
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