
MITOCW | MITRES2_002S10nonlinear_lec02_300k-mp4

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high-quality educational resources

for free. To make a donation or view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: Ladies and gentlemen, welcome to this lecture on non-linear finite element analysis.

The title of this lecture is "Basic Considerations in Non-Linear Analysis." In this

lecture I would like to discuss with you first the application of the principle of virtual

work. We will spend quite a bit of time on the basic principle of virtual work, because

it's such an important ingredient for non-linear finite element analysis. In fact, the

displacement-based finite element method, which is widely used for non-linear

analysis, is based on an application of the principle of virtual work.

I also would like to discuss with you and particularly emphasize some basic

requirements of mechanics. There are a few very important requirements of

mechanics that it is important to always keep in mind, and I'd like to share some

experiences with you regarding these requirements.

And finally, to emphasize all the points that I have tried to make in the lecture, I like

to present and share with you some experiences regarding some actual analyses.

And I've chosen two analyses. First we will look at the analysis of a plate with a hole,

and then we will look at the analysis of a plate with a crack.

Let me now go over to my view graph and start with a discussion of the principle of

virtual work. The principle of virtual work, in essence, says that this integral here on

the left-hand side is equal to what is on the right-hand side. And we should, of

course, discuss now in detail what we have on the left- and on the right-hand side.

On the right-hand side, we have this tR-- this is a script R, an unusual symbol, but

some time ago, some long time ago, I decided to select this symbol for this quantity.

This script t, superscript t R, contains two integrals. The first integral is an integral

over the volume tv. Notice it's the current volume of the body of tfiB, the body forces
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at time t multiplied by the virtual displacement, del ui. This product here is integrated

over the volume at time t. We add to this integral another integral, which is an

integral over the surface area of the body. And here we have surface forces tfiS per

unit area, and these are virtual displacements, delta uiS. We integrate this product

over the total area of the body. So this defines the right-hand side.

On the left-hand side, we have one quantity here, which is t tau ij, t once again

referring, of course, to time. tau is a stress, and ij being the components of the

stress. This stress is called the Cauchy stress. It's a force per unit area at time t.

And on the left-hand side, we have also a quantity which is a virtual strain. Delta

here meaning virtual, teij meaning the strain. And it's defined as shown here.

Now let us look briefly at what these quantities are. We have a partial of del ui with

respect to the current coordinate txj, and we have a partial of del uj with respect to

the current coordinate txi. Here I have prepared a view graph which separates out,

once more, these important quantities. And on the top here in red, we see the

virtual displacement and the virtual strain. Notice that the virtual strain here carries a

subscript t, a left subscript t. This left subscript t means that it's a strain referred to

the current configuration. del always meaning virtual, of course. And it's important to

recognize the following. It's important to recognize that these are the virtual strains

corresponding to these virtual displacements. That's the most important point to

recognize.

In green here, we have some other quantities-- the current volume, the current

surface area of the body. Current meaning always at time t. And here in blue, we

see the externally applied forces. tfiB being the body forces, the volume forces, and

tfiS being the surface forces per unit volume, per unit surface. These are externally

applied forces.

So we have here quite different quantities-- namely, virtual quantities and real

quantities. So let me go back to this view graph to discuss with you in more detail

what the principle really tells us. It tells that the internal virtual work consisting of the

product of the actual stresses-- t tau ij, which in general analysis are, of course,
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unknown-- times the virtual strains, which we impose, this internal virtual work--

there's an integration over the whole volume-- must be equal to the external virtual

work. And the external virtual work, once again, is given here.

This equation must hold-- and this is an important point-- for arbitrary variations in

displacement, or arbitrary virtual displacements that satisfy the geometric boundary

conditions, that satisfy the essential boundary conditions, or you might say, the

displacement boundary conditions. In other words, this is an equation that must hold

for any virtual displacements and corresponding virtual strains. Remember, I just

said that for virtual displacement, we always have corresponding virtual strains. This

equation must always hold, provided the displacements satisfy the displacement

boundary conditions.

Here we have, once again, the unknown forces, or stresses, I should say, forces per

unit area. Notice these are Cauchy stresses. Here we have the word Cauchy. In an

infinitesimal displacement analysis, we really only talk about one kind of stress-- the

engineering stress. In large displacement analysis, large strain analysis, we have

different kind of stress measures.

And the stress that I now talk about here is the Cauchy stress, which is the force per

unit area at time t, which is, in other words, an actual physical stress. Later on, we

will introduce another kind of stress, a very important stress measure, which,

however, is not quite physical. This one here is a physical stress, the force per unit

area. And that is the stress that you, for example, in a computer program, would like

to get printed out. This is the force per unit area that you would design your

structure with.

This here is, once again, the virtual strain. And notice that this strain is referred to

the current geometry, the coordinate at time t. Therefore, stress at time t times

virtual strain at time t-- that's what we're looking at here, and that gives us the total

internal virtual work when we integrate over the original-- over the current volume,

current, I should say, very important-- the current volume of the body. So if we have

a body that moves through space and undergoes large displacements, large
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rotations, large strains, then this here is the quantity of the internal virtual work with

the current stresses at time t in the configuration at time t.

Let us look at a schematic example, because there are so many important

considerations. Here we have, in a three-dimensional Cartesian coordinate frame,

denoted with x1, x2, x3 as coordinate axes, a body in which we are showing two

material particles. Notice one of them in the body itself, in the volume of the body,

rather, and one on the surface. The body is here supported, and this is the

configuration at time 0.

Now this body moves through a certain amount. It undergoes large displacements,

large rotations, large strains, and takes on the red configuration here. Notice that in

that red configuration, we have certain body forces, which we already talked about

earlier, and surface forces, that we also talked about earlier.

Notice that the particles have now moved to new configurations, of course, to new

positions. The surface particle has moved there, and the particle within the volume

has moved there. We denote this as tui, the displacement at time t, or the

displacement from configuration 02, configuration t, for this particular particle.

Similarly, here we denote this displacement as tuiS.

Now the principle of virtual work says that we will be imposing on to this red

configuration the configuration at time t, a variation in displacement, which is the

virtual displacement. And here we see now one such virtual displacement. Notice

that it is shown by the blue line for the whole body, and it's a virtual displacement

from the configuration at time t. Notice that the particle, which was originally here, or

which was at time t here, I should more precisely say, has moved to this point in the

virtual displacement. And similarly, the particle that was here at time t has moved to

this configuration, to this point here.

Now, this is one variation. However, the principle of virtual work, of course, states

that the left-hand side must be equal to the right-hand side-- I think you know now

what I mean by left- and right-hand sides-- for any variation. So we have here

another variation. All such variations, however, must satisfy the displacement
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boundary conditions, and those displacement boundary conditions are given right

down here.

Now notice that the particle, which I looked at earlier already, has now moved to this

configuration, or in this variation of displacement. Similarly, this particle has moved

here. Now the principle of virtual work states once again that for any variation that is

satisfying the displacement boundary conditions, the left-hand side, the internal

virtual work, must be equal to the right-hand side, the external virtual work.

And these are two variations that we looked at. Of course, there are many, many

more. In fact, we could think of millions, billions such variations. And we will, in finite

element analysis, however, discretize the whole structure using finite elements, and

then only allow certain sets of variations. Namely, those contained in the

interpolation functions of the finite elements.

Well, let us now look at one important point. Namely that if we were to integrate the

principle of virtual work by parts, we would obtain the governing differential

equations of motion plus the force or natural boundary conditions, just like an

infinitesimal displacement analysis. However, the difference, of course, is that we

have referred all our static and kinematic variables now to time t, to the current

configuration of the body.

Let's look now at an example. It's a simple example, in some sense, but it still

illustrates many of the basic points that I just mentioned. The example is a truss

stretching under its own weight. Here we have the truss in its original configuration

shown in black. It has an original length L0. It's subjected, of course, to gravity, g. A

typical cross-sectional area is given here, 0A. Notice that this bar, under its own

weight, moves down to the configuration at time t here. tA is this cross-sectional

area now. In other words, this area has now moved to that area. The length of the

truss, of course, has changed, and in fact has changed to tL.

In order to analyze this problem, we have to make certain assumptions. The first

assumption is, plane cross-sections remain plane. Second assumption-- constant

uni-axial stress on each cross-section. And then if we make these two assumptions,

5



then we have a one-dimensional analysis.

Using these assumptions, we then obtain directly, from the general principle of

virtual work, the following. Here we have, on the left-hand side, the general left-

hand side of the principle of virtual work, Cauchy stress, the virtual strains,

integrated over the current volume at time t, which then becomes, on the right-hand

side here, the one stress only, because we have only one stress in this bar, the

vertical stress, times the virtual strain corresponding to that motion of the bar,

namely, vertically downwards. And this product is integrated over the current area at

time t, and of course, the longitudinal coordinate tdx.

Notice that here we are integrating over the current volume, because we have a tA

and a tL here. The right-hand side becomes, in this particular case, an integration

over the current length of the gravity force, which involves the mass density at time

t, in other words, the current mass density. Notice the mass density, of course,

changes as the bar extends. g is the gravity constant. And here we have the virtual

displacement, area at time t, and of course the differential increment tdx. Once

again, we here also integrate over the length Lt at time t. Hence, if we now equate

these two quantities, we directly obtain what's shown here.

Now it's important to recognize that in this equation, these here are the virtual

strains corresponding to these virtual displacements. And once again, we apply the

principle of course, at time t. So stresses at time t, meaning forces per unit area at

time t, area at time t, and so on.

This virtual strain, also used to describe this quantity, is given right here. Notice that

here we have the partial of del u with respect to tx. tx, the coordinate at time t. And

this del u is exactly the del u that we see right there.

Now this principle must hold for any arbitrary variation in displacement, any arbitrary

virtual displacement, that satisfy the displacement boundary conditions. And the

displacement boundary condition here, of course, is simply that the displacement is

0 at the top of the bar.
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If we use, now, integration by parts on this equation that I just discussed with you,

we obtain this equation here. And that equation contains really two terms, two parts

to it. First, an integral that is taken over the length L of the bar, and then a quantity

that corresponds to the length of the position 0 and L, tL. And all of the sum of these

two must be equal to 0.

Since the variation del u is arbitrary, except, as I mentioned, right at the top of the

bar, we directly obtain that this equation must hold, which is really extracting this

term here from the integral. And this, of course, is the governing differential

equation. And also, we must have that at the lower part of the bar, this force or

natural boundary condition must be satisfied.

Therefore, this is an example which shows, really, how the principle of virtual work

contains the basic differential equations of equilibrium. Here it is just one, because

we have only one direction for the motion. And also the stress boundary conditions,

the natural or force stress boundary conditions.

The finite element application of the principle of virtual work proceeds as follows.

Here, once again, virtual strains, virtual displacements in the volume of the body

and on the surface of the body. These are the virtual quantities. The actual applied

forces, externally applied forces, are these blue quantities. We deliberately chose a

different color to emphasize that these are real forces, blue, applied to the body,

and these are virtual displacements and virtual strains. The stresses here at time t,

of course, are unknown, and those we want to calculate.

In the finite element method, what's shown in this big box, we interpolate

displacements, virtual displacements. We calculate from those interpolations,

strains, real strains, virtual strains. Via the stress-strain law, we got stresses, and we

will see in the later lectures that in fact, what we are arriving at is a force vector tF

and an external load vector.

Now, this tF here, shown in green, is a result of this stress t tau ij. And it's really the

nodal point force vector that corresponds to these internal element stresses, t tau ij.

This R here is a nodal point force vector that corresponds to these externally
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applied forces. This del UT, on left-hand side and on the right-hand side, is a vector

of virtual displacements, nodal point displacements, and which, in the finite element

analysis, we then set equal to the identity matrix, invoking the principle of virtual

work in turn for each degree of freedom, just like we do in linear elastic analysis.

This becomes the identity matrix, that becomes the identity matrix, and the result is,

of course, simply that tF must be equal to tR.

The procedure that we are following in this box, of course, is of much interest in

non-linear analysis. And what's happening in this box here, we will be talking about

in some considerable detail in the later lectures.

But for the moment, let's now assume that the solution at time t is known. Hence the

stress at time t, the volume at time t, et cetera, are known, and we want to obtain

the solution at time t plus delta t. In other words, we want to move ahead 1

increment in time delta t and establish the solution at that time. The principle of

virtual work applied now at time t plus delta t in exactly the same way as we just

applied it at time t results in this set of equations. A vector of nodal point forces that

is equivalent to the current internal element stresses at time t plus delta t now. And

these are the nodal point externally applied forces at time t plus delta t.

Well, of course, we don't know t plus delta tF, and for the solution, we now say that t

plus delta tF is equal to tF, which we do know, plus a matrix tK-- we call this as

tangent stiffness matrix-- times del U. If we set this left-hand side equal to t plus

delta tR, the externally applied loads, we directly obtain this equation. We are

putting the unknowns on the left-hand side, and the unknowns, of course, are the

incremental displacements. The tangent stiffness matrix is known. It's the matrix

corresponding to the configuration at time t. The load vector is known, and tF is

assumed to be known.

Now, this is here an out-of-balance load vector, and this set of equations then result

into the solution of an increment in nodal point displacements delta U. This

increment in nodal point displacement is added to the displacement at time t to

obtain the displacement at time t plus delta t.
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But-- and here is the big but-- by writing this equation up here, we had to linearize

the problem. You see, we are dealing with a large amount of non-linearity that can

come from the kinematics, from the material relationships and so on. And we had to

linearize. We linearized here about the configuration at time t to obtain this term,

and this means that down here in this equation, we only can have an approximation

sign. In other words, what we have calculated are not the exact increments in nodal

point displacement, but an approximation to it.

More generally, then, we repeat that process. We apply the same process in an

iterative way to obtain a very accurate solution. And this is done in the following

way. On the right-hand side now, we have a load vector, the one that we discussed

already before, minus the nodal point forces corresponding to time t plus delta t in

iteration i minus 1. I should say at the beginning of iteration i, or end of iteration i

minus 1. This gives us an out-of-balance load vector. We're calculating an

increment in displacements, delta Ui. And that increment in displacement is added

to the displacements which were known already. At the end of iteration i minus 1

corresponding to time t plus delta t, we knew these displacements. We add the

increment that we calculated, and we obtain a better guess, so to say, for the

current displacement at time t plus delta t.

Now of course in this iteration here, we need some initial conditions, and the initial

conditions are given down here. The t plus delta t F 0, in other words, when i is

equal to 1, then we need t plus delta t F 0 is given by tF. The displacement t plus

delta t U0, when i is equal to 1, is given by tU. These initial conditions are used in

the iteration here, and we notice that this set of equations in the first iteration, when

i is equal to 1, reduces to the equations that I already discussed with you with the

previous view graph.

Well, if we look at this set of equations, we recognize the following. Nodal point

equilibrium is satisfied when the equation t plus delta tR minus t plus delta tF, i

minus 1, is equal to 0. When the externally applied loads are equal to the nodal

point forces corresponding to the stresses at time t plus delta t, when these two

vectors are equal, or rather, when R minus F is equal to 0, then of course we have
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nodal point equilibrium. Compatibility is satisfied provided a compatible element

mesh is used. The stress-strain law enters in the calculation of the tangent stiffness

matrix and the nodal point force vector F, which corresponds to the current stresses

at time t plus delta t, iteration i minus 1.

Well, we will get back to these considerations just now. But most important is to

recognize that we have to calculate F t plus delta ti minus 1 very accurately from the

displacements t plus delta t Ui minus 1. The general procedure is depicted on this

view graph. Here we have the displacement at time t plus delta t ui minus 1, which

give us strains. We can directly, via differentiations of the displacements, get strains,

which gives us stresses if we enter here with the appropriate constitutive relation. Of

course, we have to use the constitutive relation corresponding to the problem that

we want to solve. We get stresses, and the stresses, then, give us this nodal point

force vector that I talked about.

Notice that in this relationship here, we have to perform an integration, and that

integration is expressed here, where we obtain the stresses at time t plus delta t in

iteration i minus 1 by taking the stresses at time t and integrating the stress-strain

law times the incremental strains from time t to time t plus delta t, where we use, of

course, the strains at time t, and the strains at time t plus delta t corresponding to

that iteration. This step is most important, because you have to calculate the F

vector correctly so that when you say that this equation is satisfied, that indeed you

have obtained the right configuration for the finite element mesh that you're

considering. So it is most important to calculate the F correctly. Of course, the

tangent stiffness matrix should also be calculated appropriately, and we will talk

about that as well later on.

In all this discussion, I should point out we assumed that the nodal point loads are

independent of the structural deformations. In other words, they vary only as a

function of time. Here's a small problem that schematically shows what we mean.

The load R is always acting vertically, never mind how much this beam has

displaced. And that load variation is shown here on the graph as a function of time.
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We satisfy the basic requirements of mechanics if we perform this finite element

analysis appropriately. We satisfy the stress-strain law because we are evaluating

the stresses correctly corresponding from the given strains. We also satisfy the

compatibility requirements provided we use compatible elements, and of course we

satisfy the displacement boundary conditions.

Equilibrium we also satisfy corresponding to the finite element nodal point degrees

of freedom. But there is one important point. This means that we only satisfy global

equilibrium in general. We satisfy equilibrium locally only if we use a fine enough

finite element mesh.

In other words, I'd like to distinguish now between satisfying global equilibrium and

local equilibrium. Local equilibrium means that we want to satisfy the differential

equations of equilibrium at every point in the mesh. And that is only achieved if we

have a large enough finite elements for the given problem-- in other words, if our

discretization is fine enough.

A check on whether we are satisfying local equilibrium well enough is to look at the

stresses along the boundary and see whether the stress boundary conditions are

satisfied. That is one check. Another check is to test whether along boundaries of

the elements, there are small stress jumps only. In other words, whether the

stresses from one element to another element do not jump too much.

We call that the stress jumping because as we will just talk further, when we

calculate the stress at a node for an element, we get, of course, one value. And if at

that same node, the stresses are calculated using another element, you would get,

in general, another value. This stress difference should not be very large, and of

course, if we have a homogeneous material, if we have other conditions satisfied as

well, in other words, if typically the exact solution would have a continuous stress

variation, then the stress jump should be very small for an accurate solution. And

this is a good check, an indication of whether we indeed have obtained a valid

solution.

Well, I like to now demonstrate to you some of these considerations by showing you
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the results of two example analyses. But it is best if we show these examples on a

different reel, on a second reel of this lecture. Thank you very much.

We just discussed some issues regarding how equilibrium is satisfied in a

displacement-based finite element analysis. We discussed briefly that global

equilibrium is always satisfied for any finite element mesh that you have selected.

By global equilibrium, we mean equilibrium at the nodal points of the finite element

mesh. However, locally, equilibrium is only satisfied if the mesh is fine enough. And

an indication to see whether a mesh is fine enough is given, for example, by

whether these stressed boundary conditions are well satisfied, and whether there

are no stress jumps between elements.

I would like now to share with you experiences relating to two problems. These are

actually linear elastic analysis problems that exemplify how we are looking at stress

jumps in order to choose an appropriate finite element mesh. The first problem is

the analysis of a plate with a whole. The plate has certain geometric dimensions, of

course, and it has also material data. The material data are given right there. Notice

that we also give material data for an elastoplastic analysis. We will not perform now

the elastoplastic analysis. We will consider it later. For the moment, we just need

these two material data. The| geometric data for the plate are given here.

Now, this plate with a hole has a doubly symmetric structure. In other words, there

are two symmetry lines, as shown here. So we only need to look at 1/4 of the plate

in the analysis. Notice that the plate is subjected to a pulling force up here and

similarly down here.

The purpose of the analysis is to accurately determine the stresses in the plate, and

of course, once again, assuming that the loads are small enough to warrant a linear

elastic analysis. The considerations that are valid in linear elastic analysis regarding

the choice of a mesh are of course also valid in a non-linear analysis, and we more

easily can discuss them now, just using a linear elastic analysis as an example.

Using symmetry, as I pointed out already, we can just focus our attention on 1/4 of

the plate. Here is that quarter of the plate. Here is the hole. Notice we have roller

12



boundary conditions here, roller boundary conditions there, and the load is applied

up there.

Accuracy considerations in displacement-based finite element analysis are that first

of all, of course, compatibility must be satisfied. And that is achieved by using a

compatible finite element mesh. The material law must also be satisfied, and that is

achieved by just using the appropriate material data. Of course, in non-linear

analysis, this item needs a lot more attention, but we are performing now a linear

elastic analysis, so this is a very simple condition, and it's satisfied by simply

selecting the proper Young's modulus, Poisson's ratio for the model. Equilibrium,

once again, is locally only satisfied if we choose a fine enough mesh. Otherwise we

only approximate equilibrium locally. And as I pointed out earlier, we can observe

the equilibrium error by plotting stress discontinuities.

Here we have the results of a two-element mesh for this problem. Notice this

quarter of the plate, idealized using just two 8-node elements. This is the line z

equal to 0, and we will later on look at stresses along this line. This is a line y equal

to z. We will also look at stresses along this line.

But we will plot the stresses along this line here as a function of y. You should keep

that in mind. In other words, the first stress quality that we will see will actually start

somewhere here, because we are plotting this stress as a function of y.

The displacements, somewhat amplified after load application, are shown here.

Notice the maximum displacement here, uz, is 0.0285 millimeters. The maximum

stress is at this point here, 281 MPa, megapascal.

Well, if we plot the stresses along the line z equal to 0, and we're evaluating the

stresses, I should also say, at the nodal points of the elements, then we obtain

these values here. One value there, one value there, one value there. And once

again, we are plotting the stresses along the y-axis, measured along here, distance,

and the stress magnitude is measured along here. Tau zz. These are nodal point

stresses. And we simply have drawn a smooth curve through these nodal point

stresses. The applied stress, far away from the hole, is 100 MPa.
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If we plot the stresses along the line y equals z, along this line here, we notice that

we have a choice of choosing either the nodal point stresses from the element

below it or from the element above it. Well, the nodal point stresses from the

element below it are given by the crosses here. The nodal point stresses from the

element above it-- and notice, these are the nodal point stresses at these nodes

here are given by this point.

I should say, actually, that we are plotting here the principal stress, the maximum

principal stress. We only look at one stress. Of course, you could plot such curves

for all three stress components, but here we're looking just at sigma 1 being the

maximum principal stress.

Now there we can see the stress discontinuity. We see a stress discontinuity right at

that point. Let's see once, what does this stress continuity result from? Notice that

there is a node here-- and I just like to put it in one color-- there's a node here

coming from this element. And there's another node coming in from that element.

Of course, this red point corresponds to this mark here. So this node here gives us

a stress in the stress graph given by that symbol. This blue point there is a node

corresponding to the element with the cross, and there we get also a stress value,

and that stress value corresponds to the cross mark on the graph.

So let's go back to the graph once more. Once again, same location, because this

blue node lies really on top of the red node. They are put together. And yet although

we're looking at the same material particle, we have this stress discontinuity. And

this stress discontinuity tells us that the mesh is really not fine enough.

So we go to a finer mesh. And here now we have selected a 64-element mesh.

Once again, 8-node elements, as shown here, for that quarter of the plate with the

hole. Here is the typical 8-node element. This is the undeformed mesh, and when

we apply the loads, we obtain this deformed shape. The maximum stress is now

345 MPa, and the displacement right at that point here is 0.0296 millimeter.

Well, we can now once again plot stresses. We can plot stresses along this line-- or
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I should rather show it here, along this line, and along that line, same way as we

have done before. And let's look at the stresses along the line z equal to 0. Of

course, y is the coordinate along which we are plotting the stresses, and you can

see now here a stress jump, a stress discontinuity. This is where two elements

adjoin each other at one node. Otherwise, we see very little stress discontinuity. In

fact, too small to be visible by eye.

If we plot stresses along the line y equal to z-- and here I should be more specific.

In fact, we only plot, once again, the maximum principal stress. We find that we get

these curves here. Now notice that at that location, we get four distinct stress

values. The reason being that at this node, four elements couple into that node, and

that gives us four stress values at that node.

If you go further away, we find that there are very few or very small stress

discontinuities. So however, since we have still one stress discontinuity there at that

one location that I pointed out, we went ahead and analyzed an even finer mesh,

288-element mesh. This mesh is shown now here, 8-node elements, once again, in

the undeformed shape, and here in the deformed shape. Notice that the maximum

stress is now 337 megapascals and the maximum displacement here is 0.0296

millimeters.

We can again plot stresses along this line and along that diagonal line as a function

of y. And if we do so, we find that along the line z equal to 0, we find for tau zz

virtually no more stress discontinuity. A nice, smooth stress curve. And along the

line y equal to z, for the maximum principal stress, also almost no discontinuity. You

can see here a slight discontinuity, but that is really a very small one that in

engineering analysis, we generally can live with.

Of course, these stress jump plots are very useful and very helpful in identifying

whether a mesh is actually a good mesh. However, we should realize that in order

to identify whether a mesh is really good, we would have to plot stress jumps along

many lines in the mesh, and that can, of course, provide quite some cost. It also

means that we have to interpret a lot of data.
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And one perhaps more convenient way to look at whether a mesh is a good mesh is

to plot pressure bands. We have been lately using this procedure to identify whether

meshes are good, and I'd like to just share that latest experience with you. You plot

bands of constant pressure, where the pressure is defined by taking the mean of

the stresses tau xx, tau yy, and tau zz. Of course, pressure meaning a negative sign

in front here.

The two-element mesh gives us this pressure band plot. Notice that these are

bands of 5 MPa difference. In other words, here you have a jump from this point to

that point of 5 MPa, and once again, from here to there again. 5 MPa. These are

the pressure band plots for the two-element mesh. Here we have it as the same

kind of plot for the 64-element mesh.

Let's look at this pressure band plot a little bit more carefully. Here we have, as you

can see, again, differences of 5 MPa. This is a non-dark area, unshaded area,

provides a band of 5 MPa. That shaded area provides a band of 5 MPa.

Now, if we have a good mesh, then the pressure band should be continuous. In

other words, this band here should be continuous, and there should be no pressure

band break. Let's look at this one here. It's nice and continuous, however, there's a

break. And so there is no continuity in stresses here, which is quite simply displayed

by the pressure band picture shown here.

For a continuous stress field, we would have no breaks in the pressure bands. We

have selected here 5 MPa. Of course, you could also select 1 MPa, and that would

be then a much tighter criteria. You could also select 10 MPa. Of course, then that

would be a very loose criterion, and 5 MPa for this particular problem, since you can

see, we're getting quite a number of bands along here, is a reasonable way to

proceed.

If you go to the 288-element mesh, the pressure band plots look like this. Beautifully

smooth. You can see here the smoothness in the pressure bands, no discontinuity

at all. And this shows really that this mesh certainly satisfies the criterion of smooth

pressure bands, smooth pressure variations, over the whole mesh. And that is a
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strong indication that the stresses are smooth, and therefore that the mesh is really

an acceptable mesh.

We see, therefore, that stress discontinuities are represented by breaks in the

pressure bands. As the mesh is refined, of course, these breaks in the pressure

bands disappear, or certainly become smoother until finally they disappear. The

stress state everywhere in the mesh is represented by one picture, and that is, of

course, the beauty of this whole procedure. If you plot stress jumps, stress

component jumps, then you have to plot for each component along all the lines

where elements join each other, these components of stresses. And there is a

voluminous amount of information that is being generated.

Here we have just one picture that basically gives us a lot of information about the

smoothness of the stress situation. Of course, the pressure band is plotted, maybe

plotted by a computer program. Actual magnitudes of pressure are not given, but

we are not really interested in seeing those from these pictures. What we would like

to see are simply whether the pressure bands are smooth, and whether, therefore,

the mesh is an acceptable mesh.

Let's summarize the results. Here we now performed three analyses of this plate.

One two-element mesh was used, a 64-element mesh was used, and a 288-

element mesh was used. The number of degrees of freedom are given here. Notice

that the number of degrees of freedom goes up very rapidly as the number of

elements goes up. The relative cost is given in this column, and you can see here

that we have normalized the cost to the cost of the analysis using the 64-element

mesh. So the two-element mesh is very cheap, 8% of the cost, and the 288-element

mesh solution is quite expensive.

The displacement at the top of the plate is given in this column, and we notice that

with a 64-element mesh, we really obtain a very good displacement prediction. In

fact, there is no change going to a larger number of elements. And the stress

concentration factor, interestingly enough, increases first and then slightly

decreases. Notice this is not an infinite plate-- it's a finite plate, and therefore you do
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not get the value of three, for example, that you would see in an infinite plate, for a

hole in an infinite plate.

So the two-element mesh cannot be used for stress predictions is certainly a

conclusion. It's not accurate enough. The 64-element mesh gives reasonable

results for stresses, and certainly very accurate results for the displacements. The

288-element mesh is probably overrefined for linear elastic stress analysis.

However, for other types of analysis, for example, an elastoplastic analysis, if you

want to have very accurate results, we might want to use, actually, this fineness of

mesh.

One question that one, of course might have is, why did he not use 9-node

elements? We used 8-node elements. Here we show now a mesh of 9-node

elements. Notice each of these elements now is a 9-node element. Would the

solution significantly improve if we had used 9-node elements? In other words, one

9-node element for each 8-node element that was used before?

Well, the answer is no. The solution does not improve very much. If you look at this

column here, let's look at the 64 8-node elements solution, in which case we had

416 degrees of freedom. With a 9-node element, we will have 544 degrees of

freedom. The displacements at the top are unchanged between the 8-node and 9-

node element results. The stress concentration factor is very little effected here.

Only in the fourth digit, as a matter of fact. And the stress jump and pressure band

plot do not change significantly, either.

Well, the second example that I'd then like to discuss with you is the analysis of a

plate with a crack. We will once again look at different meshes for this problem, and

we will also discuss one additional aspect-- namely that for certain types of answers

that you're looking for, you actually can use sometimes very coarse meshes.

Whereas if you're looking for the answer of a much more difficult question, of course

you will have to use a much finer mesh.

Here we have a plate with a crack. Notice the plate is subjected to a pull of 100 MPa

right, and at the left-hand side, same pull. The crack is lying right there. Notice it's
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not a a symmetric crack. This is a crack tip A, that's the crack tip B. To model this

plate, we have to really model half of it. We have to model half of it, because the

crack is not a symmetric crack.

The material data for this problem are given down here. E, Young's modulus, nu,

Poisson's ratio, Kc is the fracture toughness. And here we have the fact that the

thickness of the plate shall be just 1 centimeter. It's a plane stress condition that

we're looking at.

And the question that we want to address here is, will the crack propagate? Well, let

us look at some background information. Since we want to perform a linear elastic

analysis and we want to apply linear elastic fracture mechanic theory when

considering whether the crack will propagate in the plate, we calculate a stress

intensity factor, and we have a mode 1 stress condition, so we calculate K1. K1

determines the strength of the 1 over square root r stress singularity at the crack tip,

r of course being the radius from the crack tip. And as very well established in linear

elastic fracture mechanics, when K1 is greater than Kc, the crack will propagate. Kc

is a property of the material.

The computation of K1 is performed by this here. It's equal to the square root out of

E times G. G is obtained as the partial differentiation of pi with respect to a, where pi

is a total potential energy of the structure, and a is the area of the crack surface. G

is known as the energy release rate for the crack.

This is quite well established, and what we want to do, of course, in the finite

element analysis, is to calculate this G value. The question is, how do we do that?

Well, in this finite element analysis, each crack is represented by a node. And if you

look at a cut through the plate where this is here the crack, we have this here as the

node at the crack tip. This node in the finite element analysis is, so to say, moved

forward a differential amount, so that the change in crack area is given via this little

bit here. Now that the original crack tip location is here, the new crack tip location is

right there.

Then we can, in this process, evaluate del pi over del a as del pi del l times 1/t,
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where t is a thickness of that plate. Of course, this here is only conceptually being

done, that we're actually moving the crack. What we're really doing is the

differentiation of del pi with respect to l, where l is the length of the crack and del l is

the differentiation of l into this direction here.

The quantities del pi del l may be efficiently calculated by an algorithm that we have

just recently been publishing. Of course, there are different algorithms available as

well, but we would like to use this procedure to calculate data pi over l. And you can

look up how it's being done in this particular paper.

Let's look at the results. Finite element analyses have been performed using a 17-

element mesh, and this is the mesh here. We call this a coarse mesh. Notice the

crack is right there. Notice that we have only two elements above the crack, to the

boundary of the plate, and we have here once again also only two elements below

it.

Notice that these nodes around the crack tip B have been moved to the quarter

point. And similarly, they've been moved here to the quarter point, meaning that this

node is not at the midpoint of this element side, but at the quarter point of that

element side. And similarly for the other nodes around the crack tips.

If we look at the results, the stress results, maybe plus the stresses on the line of

symmetry, we find that tau yy varies as shown here, then of course increases very

rapidly near the crack. This is where the crack is. Increases very rapidly, then drops

down to very close to 0. Of course, it should be 0 right in here. And here we have,

coming from the other side to crack tip A, this very rapid variation in stresses.

These are the stresses tau yy. If you look at the pressure band plot-- I introduced

you to those kinds of plots in the earlier example-- we find that the pressure jumps

are really larger than five MPa. For example, you can see it right here, you can see

it right there, you can see it right there.

So it's a coarse mesh, and certainly the stresses are not very well represented, not

very well picked up with this mesh. However, if we look at the stress intensity factors
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that we wanted to estimate in this analysis, because they will tell us whether the

crack will propagate or not, we find that for the stress intensity factors, for example,

KA, we get an excellent solution. For KB, the solution is not as good, but perhaps

still acceptable.

We now go to a finer mesh, a much finer mesh. 128 elements are used in this

mesh. And we can see once again here, 1/2 the plate. Here is point A, crack tip A.

Here is point B, crack tip B. Notice the crack lies in between. And we will be plotting

stresses along this line. This is a line of symmetry here, and we will plot tau yy,

which is the stress across here, as a function of z.

But let's first look a little bit closer at the mesh. If we look at one detail closer to the

crack tip A, we see this is the mesh that we use, and we can go still further and

show the elements just around the crack tip, right A. Here is A. Notice that we use

triangular elements, these are isoparametric degenerate elements, and that we

have moved, once again, the nodal points from the midpoint to the quarter point.

Because we know that if we do so, we are generating in the finite element the 1

over square root r singularity that we would like to have in the analysis, because we

know that the stresses vary as a function of 1 over square root r. So it's of benefit to

shift the nodes to the quarter points, as was done in this example.

Now we look here at the stresses. Stresses tau yy, as I pointed out, is a function of

z. And you can see here a stress that very rapidly grows, then on the other side

comes down to practically 0 in the cracked area, and on the other side, coming

again now from the right here, a stress that varies very rapidly up close to tip A.

We also can see here that the stress variations are nice and smooth. Of course,

that indicates to us that the mesh is really a good mesh, but we can also look at our

pressure bands again. We find that the pressure jumps are quite small if we go not

too close to the crack tip. In other words, here we have some pressure band

variation, some pressure band breaks, but we have still quite smooth bands that tell

us that the mesh is quite fine.

If we go very close to the crack tip A, then we find that the pressure jumps are, of
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course, large right here. You can see here breaks in the pressure bend. Right here,

for example, a typical example, if you look very closely here, there's a black band

coming into a white band. So there's clearly a break in the pressure band.

So here, then, in this area, the stresses are not continuous, and would also not be

very accurately predicted. However, we know that our scheme of calculating the

stress intensity factor works for even a coarser mesh, and for this fine mesh, we've

got indeed excellent results, as you can see for KA and for KB. Both are very well

predicted.

The point of this analysis is really that the degree off refinement needed in a mesh

depends on what kind of question you have, what kind of problem you're solving,

and what kind of question you're asking. If you're only interested in predicting

displacements accurately, a coarse mesh may do. If you want to calculate stress

intensity factors, also a coarse mesh may do. If you want to calculate lowest natural

frequencies, associate mode shapes in a dynamic analysis, once again, a coarse

mesh might very well do.

However, if you want to calculate stresses very accurately, then you may need a

fine mesh. And in general non-linear analysis, we need accurate stresses, because

the stresses influence the material relationship that has to be used as we go

through the incremental solution. And therefore, frequently we need, in non-linear

analysis, a finer mesh than what would do well in a linear analysis. So we should

keep that in mind, that in fact what might be a sufficiently fine mesh in linear elastic

analysis may not be sufficiently fine in a non-linear elastoplastic geometrically non-

linear analysis.

Of course, how fine the mesh has to be in a general non-linear analysis depends

very much on many criteria, criteria that we will still discuss in the next lectures of

this course. But I hope this gave you a bit of an overview of what are some

important considerations in linear as well as non-linear analysis. Thank you for your

attention.
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