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Variables for
General Nonlinear
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CONTINUUM MECHANICS
FORMULATION

For
Large displacements

Large rotations
Large strains

Hence we consider a body subjected to
arbitrary large motions,

We use a Lagrangian description.

~

t+ At t+At t+ At
P(™"xy, X2, X3)

X2 0 o o P(tx1’ tX21 tx3)
P("x1, X2, "Xa)

Configuration

attime 0 configuration

at time t Configuration

at time t+ At

t X1

Xi = OXi + ‘ui

X3 .
H—Atxi — oXi + t+Atui P = 1, 2’ 3

— t+aAt t

Ui Ui — U
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3-4 Lagrangian Continuum Mechanics Variables
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Transparency Regarding the notation we need to
3-3 keep firmly in mind that

— the Cartesian axes are stationary.
— the unit distances along the xj-axes

are the same for %, 'x;, "%
Example:
X2 particle at time O
particle at time t
0X1 tU1 =f

5 X4

—_
N+ e
w4

N

\—

N[

Transparency PRINCIPLE OF VIRTUAL
3-4 WORK

Corresponding to time t+At:
f t+AtTij, 8t+Ateij,t+Ath — t+At%
t+AtV

where

t+ At t+ AtgB t+ At
R = fi 8Ui dVv
t+At
vV

+ f t+AtfiS SUIS t+AtdS
t+AtS

_J
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and

""41; = Cauchy stresses (forces/unit

area at time t+At)

1 / 00U a0u;
Sto miBi = — ¢
t+AtCij = 5 at+Atx} ot By,

= variation in the small strains
referred to the configuration
at time t+ At

N[

We need to rewrite the principle of
virtual work, using new stress and
strain measures:

« We cannot integrate over an
unknown volume.

« We cannot directly work with
increments in the Cauchy stresses.

We introduce:

¢S = 2nd Piola-Kirchhoff stress tensor
0€ = Green-Lagrange strain tensor

J
~
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f

The 2nd Piola-Kirchhoff stress tensor:

0

0
t 0
T txi,m Tmn txj,,n

&Si} = tg

The Green-Lagrange strain tensor:

1

5&} =5 (tUi,; + (;Uj,,i + ok, c§Uk,;)
0 t
0 0" Xi t d Ui
where Xim=—_ , oli} =
tAi,m atxm oui} 50;(;

~

N\ (

Note: We are using the indicial notation
with the summation convention.

For example,

0
t O, tm O
0S11 = %[tx1,1 T11 tX1,1

0, tm O
+ X110 T12 1,2
+ ...

0L te O
+ 1,3 T33 tX1,3]

AN
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~

Using the 2nd Piola-Kirchhoff stress T

. ransparency
and Green-Lagrange strain tensors, 3.9
we have

J;VtTi} Stei}‘dv =LV (;Si} Séeifdv
This relation holds for all times

At, 2At, ..., 1, t+AL, ...

L

To develop the incremental finite
element equations we will use Transparency

3-10
j t+A&Si}8t+A(;8ij,odv — t+Atgt
oy

« We now integrate over a known
volume, °V.
- We can incrementally decompose '*6S;;
and "oy, i.e.
t+A(;Sij, = (;S'J' + oS.*

;= d€j + oy
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~

Transparency
311 Before developing the incremental con-

tinuum mechanics and finite element

equations, we want to discuss

- some important kinematic
relationships used in geometric
nonlinear analysis

- some properties of the 2nd
Piola-Kirchhoff stress and Green-
Lagrange strain tensors

\

N[

Transparency To explain some important properties of

3-12 the 2nd Piola-Kirchhoff stress tensor
and the Green-Lagrange strain tensor,
we consider the

Deformation Gradient Tensor

* This tensor captures the straining and the
rigid body rotations of the material fibers.

* |t is a very fundamental quantity used in
continuum mechanics.
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The deformation gradient is defined as

_atX1 6‘X1 0 X4
x= | B Bl glgre
- 0X1 0X2 09Xz system

9%s 0'Xa X3

Using indicial notation,

3%
t —_ I —_— t ..
oXj = % X, = oXijj

~

N

Another way to write the deformation
gradient:

X = (0¥ X")T

where
T
Oy — gox_ , tKT — [tX1 tx2 tX3]
;
the_/ 5
gradient
operator aﬁX2
d
|07 X3

\
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The deformation gradient describes the
deformations (rotations and stretches)
of material fibers:

% The vectors d% and
- dx represent the
d°x orientation and length

of a material fiber at
times 0 and t. They

x; are related by
/ g\ dx = X d%
X3

N\

Example: One-dimensional deformation
time 0 timet
-, //
K [ | |
I+

— ———

ANDNAN

2 | - Al
-t —| -y

1.0 0.5

/

Deformation field: ' = %%; + 0.5(%)?

t
t d X4 0
X11=pg— =1+ "X
okt = 2o 1

J
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Consider a material particle initially at
X1 = 0.8:

/] X4

/1 %, = 0.800
% = 1.120

N\

Consider an adjacent material particle:

|
[ ] [ ]
| N

%; = 0.850
%y = 1.211

Compute ¢X11:
A%y 1.211 - 1.120
A%, .850 — .800
8X11|Ox1= = 180

0.8

= 1.82 « Estimate
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Example: Two-dimensional deformation

X2

/ /

X4

time t

N

481 .667
(°%1, %%2) = (%1, X2): 0X = [—.385 .667]
Considering d°x,
X2
dOX/ dtl
o
X4
dx = X dX

[.75] :[ 481 .667][.866]
0 —.385 .667]|.5

AN
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/

Considering d°%,

X2

|

d'X/

d'g = oX d’%

[]- [ e

The mass densities %p and 'p may be
related using the deformation gradient:

infinitesimal volumes
time 0 time t

X3

”

Xy \Y\dt&

Three material fibers describe each volume.

)
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For an infinitesimal volume, we note
that mass is conserved:

' 'a¥ = % %V
volume at volume at
time t/ \\time 0
However, we can show that

'dV = det X °dV

Hence
% ="p det X

N

Proof that 'dV = det ¢X °dV:

[ 1] 0
d°51 =10 |dsy ; do_)$2= 1 |ds2
| 0] 0
0
d053= 0 |dss
1

Hence °dV = ds; ds. dss.

AN
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But d'xi = X d% ;i=1, 2, 3

and 'dV = (d'xs x d'xz) - d'Xa
= det ¢X ds1 ds> dss
= det ¢X °dV

\—

\

Example: One-dimensional stretching

time 0

X4 .
4tlme t

uniform stretching
plane strain conditions

1.0 .25

|
Deformation field: x, = %; + 0.25%

gradient: X =| 0 1 O
0 0 1

Deformation 125 0 O
— detoX = 1.25

Hence % = 1.25% (‘p < % makes physical sense)

~N
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~

Transparency We also use the inverse deformation
radient:
d’ = X d'x

Mathematically, %X = (¢X)~*

=1d%

MATERIAL FIBER MATERIAL FIBER
AT TIME 0 AT TIME t

Proof: d° = 9X (¢X d°)
= (WX ¢X) d%

~

Transparency An important point is:
3-28

oX = oR oU

above form.

Polar decomposition of ¢X:

¢R = orthogonal (rotation) matrix
dU = symmetric (stretch) matrix

We can always decompose oX in the
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Example: Uniform stretch and rotation

time t

time O

X o0
2
5 o0
!
a0 ',

oX = R .
1.164 -O.750]=[0.866 —0.500] [1.333 0 ]
0667 1.209 0.500 0.868 0 1500

\—

\

Using the deformation gradient, we can
describe the (right) Cauchy-Green
deformation tensor ‘

oC = oX oX

This tensor depends only on the stretch
tensor oU:

oC = (U 6R") (6R oV)
= (gU)? (since oR is orthogonal)

Hence ¢C is invariant under a rigid
body rotation.

_/
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Example: Two-dimensional motion

time t+ At
X2 /
time\Ko rigid body motion,
ol rotation of 90°
time t
- X1
ty — |19 .2 t+Aty _ 5 —1
°X_[ 5 1] °5‘[15 2]
t~_ 2.5 8 t+at~ _ | 2.5 8
=25 10 ic- %3 164)

N\ (

The Green-Lagrange strain tensor
measures the stretching deformations. It
can be written in several equivalent
forms:

1
1) 6§=‘2—(5Q_D

From this,
* € is symmetric.

« For a rigid body motion between
times t and t+At, *4e = ¢&.

» For a rigid body motion between
times 0 and t, o€ = 0.

AN
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* !g is symmetric because \C is
symmetric
o€ = %( C =)
e For arigid body motion from t to
t+ At, we have
f+A;x = B ;x
"oC = oL W o =8
¢ For a rigid body motion
C=1c8=0

N

1
2) o€ = 5 (Ui + dUsi + JUk,i oUky)

LINEAR IN NONLINEAR IN
DISPLACEMENTS  DISPLACEMENTS

where Jui _ou
O™k BOX",

Important point: This strain tensor is exact and
holds for any amount of
stretching.

VAN
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Example: Uniaxial strain

'L

‘A1 ('A)2
e =g + 5 (o)

engineering strain

g

1.0°L

N\ (

Example: Biaxial straining and rotation

rigid body motion,
rotation of 45°

N

X2
—
time 0; timet/
w _[15 o]
oX = | 0 5
i~ [2.25 0]
oC = L0 .25
e _[625 O ]
=1 0 -.375

X4

time t+At—

aty _ [1.06 —.354]
71106 354

ot~ | 2.25 o]
oC = . 0 .25

tatg _ [.625 0 ]
=" o -.375

ANE
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Example: Simple shear

X2

| ‘A 10 |
| |
| w _ |10 ‘A]
1.0 °5_[ 0 1.0
‘C=[1'° ‘A ]
T A 1.0+ ()2
h——J te _ 0 tA/Z]
1.0 0§ - [tA/z (tA)2/2

X4
For small displacements, J€ is
approximately equal to the small strain
tensor.

N

The 2nd Piola-Kirchhoff stress tensor
and the Green-Lagrange strain tensor
are energetically conjugate:

tTi} 8tei} = Virtual work at time t per unit
current volume

0S;;80€y, = Virtual work at time t per unit
original volume

where ¢S; is the 2nd Piola-Kirchhoff
stress tensor.

AN
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The 2nd Piola-Kirchhoff stress tensor:

0
'S, = P

Oy, tm O
Xim Tmn tXjn — INDICIAL NOTATION

oS =

e OnT
X '7 X" — maTRIX NOTATION

'0"1130

Solving for the Cauchy stresses gives
'p
tTij, = o—‘; 0Xi.m 0Smn (}Xj,n — INDICIAL NOTATION

~-

T = 0% X &S ¢XT — maTRIX NOTATION

N\

Properties of the 2nd Piola-Kirchhoff stress
tensor:

« &S is symmetric.

« ¢S is invariant under a rigid-body
motion (translation and/or rotation).

Hence ¢S changes only when the
material is deformed.

« ¢S has no direct physical
interpretation.

y
~
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Example: Two-dimensional motion

J

N

time t time t+At
X2 timeO
_
Y
rigid body
motion, rotation
Cauchy stresses of 60 Cauchy stresses
attime t at time t+ At
X4
At time t, At time t+ At,
tv |1 2 traty _ | D —1.20
OX"[O 15] OX'_‘;866 .923]
o [ 0 1000] trat _ [ 634 ~137o]
T~ 1000 2000 I=1-1370 1370

g — [—346 733
0271 733 1330

|

tralg _ [—346 733]
733 1330

~
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