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Ladies and gentlemen, welcome to this lecture on nonlinear finite element analysis

of solids and structures.

In the previous lectures, we talked about the basic process of the incremental
solution that is used in finite element analysis. And we talked about quite some
important continuum mechanics variables that we are employing in nonlinear finite
element analysis. This was really preparatory work for the discussion of a general
formulation that is very widely used to analyze nonlinear systems using finite
elements. And this formulation is called the total Lagrangian formulation. This is the

formulation that I'd like to discuss with you now in this lecture.

The total Lagrangian formulation is a formulation that refers the stress and the
strain variables at time t plus delta t to the original configuration at time zero. Total,
in fact, means reference to the original configuration here. And notice we, of course,

encountered this equation already earlier in the early lectures.

We have on the left hand side again the total internal virtual work. And on the right
hand side, the total external virtual work all at time t plus delta t. We have here the
second Piola-Kirchhoff stress tensor. Here we have the Green-Lagrange strain

tensor. And on the right hand side, of course, all the body forces, surface forces et

cetera would enter.

We discussed in a previous lecture how the right hand side is calculated in general
and what it all contains. We also discussed that this equation here is quite

equivalent to this equation. And in this equation, we have the Cauchy stress tensor
operating on the virtual strain tensor, an infinitesimally small strain tensor. And this

product is integrated over the volume at time t plus delta t.



On the right hand side, we have the same quantity as up there. Now notice that we
really want to solve, of course, this equation here in finite element analysis. But we
discussed earlier that in order to do so effectively, we need to introduce a new
stress measure, a new strain measure, and that, of course, brings us then to this

equation up here.

Let us recall briefly some of the important points that we made earlier in the other
lectures. We said that this equation here, applied at time t plus delta t, is an
expression of the equilibrium, compatibility, and the stress-strain law at time t plus
delta t. Let's just look at this equation once more, where these quantities enter.
Well, if equilibrium is satisfied locally everywhere in the continuum, then this
equation must be holding for any virtual displacements that satisfy the displacement

boundary conditions, and corresponding virtual strains.

Notice that the virtual displacements enter on the right hand side, and these here
are the corresponding virtual strains. The compatibility enters in here because we
would, of course, use compatible virtual displacement, and we would calculate also
the stresses from compatible displacements. The stress-strain law enters in the
calculation of the stress here from the strains given. And once again we apply this at

time t plus delta t.

We also noted earlier that we will be using an incremental solution. Namely, that the
solution at time t plus delta t will be calculated from the solution at time t by
incrementing the displacements by ui. Notice that we will assume, of course, that
the tui's are known. That the displacementts at time t are known, and that these are
the unknown quantities that we're looking for. Of course, that gives us then the

unknown quantities that we actually want to solve for.

Our goal is, for the finite element solution to linearize the equation of the principle of
virtual work, so as to obtain a set of equations, finite element equations, that read
as follows. Here we have a stiffness matrix, a tangent stiffness matrix. Here we have

an incremental displacement vector.

And on the right hand side, we have a load vector, a vector of nodal point forces



corresponding to the externally applied loads at time t plus delta t. And here we
have a nodal point force vector that is equivalent to the current element stresses, in
this particular instance at time t, as indicated by the superscript t here. Now this
incremental displacement vector, of course, will be added to the displacement that
we know already, and that correspond to time t. And that will give us then a first

estimate for the solution, displacement solution, at time t plus delta t.

Notice this is also summarized down here. Notice, however, that this vector here is
only an approximation to the actual vector that we're looking for, because of the
linearization process that leads us to this system of equations. The equation tku
equals r minus f is, of course, applicable for a single element as well as a total

assemblage of elements.

In other words, this equation here, tk delta u1 equals t plus delta r minus tf, would
be applicable to an element in which n then would mean just the degrees of
freedom, the number of degrees of freedom of that element. And also for a total
structure in which n then, of course means the total number of structural degrees of
freedom. The tk matrix, the r vector, and the f vector would be constructed using the

direct stiffness method the way we are used to it in the linear elastic analysis.

In other words, there is nothing new here to be discussed really, as far as a
construction of these matrices go, when we talk about a total element assemblage
from the individual element matrices. However, an important point is that we cannot
simply linearize the principle of virtual work when it is written in this form here. And
the reason was, of course, that we cannot integrate over an unknown volume. The
volume t plus delta t is unknown, or the volume at time t plus delta t is unknown, and
we cannot directly increment the Cauchy stresses the way we discussed it already

earlier.

To linearize then, we need to choose a known reference configuration. And one
known reference configuration that is a very natural one to use really, is the one
corresponding to time zero. In this case, if we use that reference configuration, we

talk about the total Lagrangian formulation. If we use as a reference configuration



the configuration corresponding to time t, then we talk about the updated

Lagrangian formulation.

I'd like to make one point here. Namely, that of course we have calculated already
from all the configurations from time zero to time t. So you may ask yourself, why is
he not choosing as a reference configuration, for example, the configuration t minus
delta t? In other words, one configuration prior to time t as a possibility. Well, it
would be a possibility, but if you choose to do so, you would lose the advantages
that you have in the updated Lagrangian formulation, and the advantages that you

would have in the total Lagrangian formulation.

Of course, there are differences here and we will talk about the advantages and
disadvantages of either of these formulations. And you would be left with that choice
of t minus delta t reference configuration, with basically all the disadvantages only.
And therefore, we generally want to choose either this one or that one as the

reference configuration.

Let us now discusses the total Lagrangian formulation. In the total Lagrangian
formulation, we use the reference configuration zero, and therefore we talk about
this stress. We use this stress and that strain, this was a second Piola-Kirchhoff
stress referred to the configuration at time zero. This is the Green-Lagrange strain

referred to the configuration at time zero.

The principle of virtual work once again, originally in this form, is now written in this
form. We have had that already before on viewgraphs, and | don't think | need to go
through those details again. But the important point is that this is the starting point of

the total Lagrangian formulation.

The formulation proceeds as follows. We know the solution at time t, therefore this
stress, this displacement derivative, all the static and kinematic variables in fact, are
known corresponding to the configuration at time t. And we can now decompose the
stress corresponding to time t plus delta t into one known value and one unknown

value.



Similarly we proceed with the strain measures. The strain measures, the Green-
Lagrange strain at time t plus delta t is decomposed into one value that we know
already, and an increment. And, of course, remember these two increments are
unknown. They are unknown, whereas these are known because we have

calculated already the configuration corresponding to time t.

In terms of displacements, we can directly develop that the Green-Lagrange strain
at time t is written as shown here. We went over these different components already
earlier. Notice once again that we have a product of displacement derivatives here,

that this is, of course, a nonlinear term.

And once again, as | pointed out in an earlier lecture, we have nothing neglected
here. You see only quadratic terms. There are no cubic terms or higher-order
terms. We have nothing neglected. This is a strain measure that holds for any

amount of deformation, any amount of strain.

Then we can also write this same strain, Green-Lagrange strain, corresponding to
time t plus delta t, and this would be the result. Notice whatever we had here as t
superscript has now become at plus delta t superscript. That's in fact the only
difference. If you subtract from this strain, that strain, we get the increment, and that

increment is written out right here.

Now, there are some interesting points regarding this incremental strain. This here
is an increment in the strain that is linear in the displacement components. Similarly
this one. Notice this one here, is, of course a product, product and may look, at first
sight, as a nonlinear term. When you see products of displacements, you think of a
nonlinearity. However, if you look closer, you find that there is a t here. Therefore,

this part is known.

Since this part is known, and this part is unknown, this total term is really linear in
the incremental displacement. In fact, the incremental displacements don't even go
in here, because we're differentiating here the displacements at time t with respect

to the original coordinates.



Therefore, this total term here is really still linear in ui. Linear in the incremental
displacements. We call this part here, as given here, the initial displacement effect.
The initial displacement effect because the initial displacements go into these
derivatives here. We are differentiating the displacement at time t with respect to the

original coordinates.

This term, on the other hand here, is nonlinear in ui. It is nonlinear because here
we're taking one term that depends on ui, and we multiply it by another term that
depends on ui. Notice this a differentiation of uk, the incremental displacement, into
the k direction with respect to the original coordinates. Coordinate axis xj here

particular.

So this is here, clearly a nonlinear term in ui. A quadratic term, as a matter of fact.
We will look at this strain, of course, a little bit more just now. But keep in mind that
there is one linear term that contains an initial displacement effect and a nonlinear
term. | might add here that, of course, this initial displacement effect is zero if the

initial displacements are zero.

In other words, in our incremental solution, for example, if we are just starting the

solution process, then the initial displacements are still zero. This term drops out.

We note now regarding the formulation that the variation on the total Green-
Lagrange strain tensor corresponding to time t plus delta t, is really equal to the
variation in the increment of the Green-Lagrange strain tensor, from time t to time t

plus delta t. In this picture we show what we mean by that.

Here on the left hand side in black, you have the body in its original configuration. It
moves to a configuration at time t. And then to a configuration, here shown in green,
that corresponds to time t plus delta t. Notice here we have the displacement
corresponding to time t, and then the displacement corresponding from time t to
time t plus delta t. The total displacement, of course, here is the displacement from

time zero to time t plus delta t.

What we are doing, of course in the principle of virtual work, is to impose a variation

6



in displacements about the configuration at time t plus delta t. And that variation is
here indicated by the blue line. And if we impose this variation here, since the
displacements at time t are constant, surely whatever these displacements were

should not matter. And that is, in fact, expressed by this relationship here.

If we vary here, since the displacements to ui are constant, they do not affect the
variation on the strains. And therefore, we can simply vary the incremental strain,
and we find that variation is indeed equal to the variation of the total strain. Of
course, you can also prove that to yourself mathematically by just going through the
arithmetic. In other words, applying the variation to this quantity, and then applying
the variation to that quantity, which I've given you on the previous viewgraph, and

you would find that indeed you get identically the same expressions.

We can define a linear strain term, linear strain increment, as 0 €ij, and the
nonlinear strain increment as 0 eta ij. Notice that once again, here we have the
quadratic terms. And, of course, when we add these two terms together, we get
back our total strain increment from time t to time t plus delta t. If we take a variation
on that increment, that is equivalent to taking a variation on the linear term and the

nonlinear term.

Notice that so far we have only talked about continuum mechanics. Of course we
want to use the continuum mechanics principles that we discussed so far in the
finite element discretization. But notice that these strain terms here that we talked

about, are really continuum mechanics variables.

There is an interesting observation. Namely, if we talk about this strain measure and
that strain measure, rather the linear incremental strains and the nonlinear
incremental strains, linear and nonlinear in ui, then if we apply these in finite
element analysis, we have to remember that the displacements are interpolated in
terms of nodal point variables. And what we're really looking for in finite element
analysis are the nodal points variables. In isoparametric finite element analysis,
which is the final element procedure that we will be using extensively, we interpolate

the internal element displacements, tui, in terms of the nodal point displacements.



Let me define a little bit more what this is here. This is, of course, the displacement
from time zero to time t into the i's direction. We are summing here over all the finite
element nodal points, the N nodal points. We have interpolation functions, hk, that
we will talk more about later on. And we have here the nodal point displacement at
time t into the i direction of the nodal point k. This k goes with that k. And we're

summing over all the nodal points.

Now notice that this is the linear relationship in isoparametric finite element analysis
of solids, | should say. This is a linear relationship. And therefore, our linear strain
terms that we talked earlier about, being linear in the incremental continuum
mechanics displacements, are also linear in the incremental nodal point

displacements.

Similarly, this term here, which was nonlinear in the increments of displacements
within the domain, from a continuum mechanics point of view, will also be nonlinear
in the nodal point displacement increments. However, in the formulation of structural
elements, with the incremental displacements, in fact also the total displacements, |

interpolated using nodal point displacements and nodal point rotations.

In other words, we also deal with nodal point rotations in order to calculate the total
displacements of the element. And in that case, we have to recognize that the exact
linear strain increment, the way we have defined it earlier linear in the incremental
displacements, is still properly given as a linear strain increment in the nodal point

variables.

However, the term that we defined earlier as a nonlinear strain increment, this one,
is not the full story of all the nonlinear strain increments. Because the rotations will
put additional nonlinear strain increments into this term here. The reason being, that
for large rotations, of course, we have cosine sine terms in these rotations and
when we evaluate the total nonlinear strain term, we find that there are additional

terms coming up here.

Well, what is the effect of these two statements? It means that the right hand side

force vector, or rather the vector t 0 f, the vector of nodal point forces corresponding
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to the internal elements stresses, is always correctly calculated. However, the
stiffness matrix, t 0 k, for the formulation is only approximated because some of the

nonlinear terms here have been dropped in the case of structural elements.

Of course, you can also include the nonlinear terms. Then you would have to add
these terms to this expression here, and then you would get a true tangent stiffness
matrix. This means, of course, for an actual analysis, that when you form the
equations, we have on the left hand side-- let me just put all of it in here-- for the
first iteration, we talked about the fact that we have a stiffness matrix times an
increment in displacements. | already put a 1 there because it will be only an

approximation to the total incremental displacement vector.

Well, we notice then that this matrix here is approximated if you were to drop these
additional terms. But the right hand side vector f here is properly calculated.
Therefore if you iterate, you always get the exact solution, the correct solution. But
the convergence in the iteration might be a bit slower than what you could have

obtained if you had included these additional terms here that | referred to.

Let us now continue with the continuum mechanics formulation. The equation of the
principle of virtual work becomes, if we substitute the quantities that I defined
earlier, directly this equation. Notice here we have now the increment in stress times
the variation of the incremental Green-Lagrange strain, from time t to t plus delta t.

Of course, it's integrated over the original volume plus this integral here.

Here we have the total stress, second Piola-Kirchhoff stress, corresponding to time t
operating on the nonlinear strain increment of the total Green-Lagrange strain
increment. And once again, we are integrating over the total volume corresponding
to time zero. And on the right hand side, we have the external virtual work minus the
stress at time t, operating on the linear strain increment corresponding to the total

Green-Lagrange strain increment.

We have so far made no approximations, and this is a relationship that has to hold
for any arbitrary variation in displacements which go in here, or any arbitrary virtual

displacement that go in here. And of course, corresponding strains that appear



here. In essence, what we have been doing is that we have established a variation
on the configuration at time t plus delta t. We have looked at the principle of virtual
work corresponding to time t plus delta t, but we have introduced this increment in

displacement.

Notice that this increment in displacement is measured from the displacement at
time t. All we have done therefore, is to rewrite the principle of virtual work in terms
of tu and u instead of dealing with t plus delta tu. No approximation being done yet
so far. Of course, we really haven't been talking about finite elements either yet,

when we just look at this basic equation of principle of virtual work.

It is this principle or the equation that we are dealing with, is in general, a very
complicated function of the unknown displacement increment. We obtain an
approximate relationship in finite element analysis, by linearizing the governing
equation, and, of course, then in the finite element sense cast it into this set of linear
equations. The process of linearizing is a very important process, interesting

process for us to study, and that's what | want to do now.

We begin to look, in this linearization at all the individual terms that appear in the
integral. And let us look first at this term here. This term is actually already linear in
ui. So there is nothing much to linearize. t 0 sij does not contain ui. It's a known
quantity. It's a known stress value. And notice that when we take the variation on
this nonlinear strain increment, we directly get this expression, where this part here
is a variation on the displacement increment. Similarly here. And of course, these

are going to be constants.

Therefore, this term here is linear in the incremental displacements. Linear in ui. So
nothing to linearize there. The term on this viewgraph here, contains an incremental
stress and an incremental strain. Notice this incremental strain contains the linear
and the nonlinear term. And this, of course, this product is a linear functional off ui,
sorry it contains linear terms, nonlinear terms as well. This stress here is, in general,

a nonlinear function of 0 epsilon ij.

The variation that we are taking here means we are taking a variation on the linear
10



part and the nonlinear part. We will see actually that this one here is constant. But
this one carries also terms of ui, so this total expression is linear in ui. And if we
multiply these terms here, we want to end up in just one expression that has

neglected all higher-order terms in ui, but just contains ui. Well, let us do so.

The objective is expressed once more here, and we recognize that, of course, the
variation on 0 epsilon ij contains only constant and linear terms in ui, the way | just
expressed it. 0 sij can be written as a Taylor series expansion in 0 epsilon ij. This is
the general expression. Here we take the partial of the stress at time t, with respect
to the Green-Lagrange strain at time t, here we are having this bar with the t that
denotes that we are actually doing this evaluation at time t. And here we have an

increment in this strain, and of course, there are higher-order terms.

These higher-order terms we will neglect, and therefore we get directly for this
stress here, this expression. Notice we already have substituted for 0 epsilon rs,
these two quantities. This one here is quadratic in ui, this one is linear in ui. And if

we linearize this term, we get directly this one here.

Notice that this is the appropriate stress-strain law that has to be used

corresponding to this stress measure. And we will later on talk more about how we
evaluate this stress-strain law. As an example, we may look here at this schematic
solution, computed solution, over a number of time steps. We're going time 1, 2, 3,

4,5, up to t minus delta t and then to t.

The stress-strain law relates basically the stress increment here to the strain
increment. And notice it represents a tangent to this this curve. This green line here
is a tangent to the red or the blue curve, the blue one now overlapping the red
curve right there. So we have here the tangent, or the slope of this tangent is giving
us the material tensor Oc. Of course, here we're talking just about one element. In
general we have many elements corresponding to the strain and stress measures

that we are dealing with.

If we now substitute the result that we just looked at into the general equation--

sorry to take this one down-- into the general equation here, we see directly that this
11



part here, of course, is the stress. And this part here gives us that part. We simply
multiply out and look at the individual terms. We notice that this one does not

contain ui. We notice that this one is linear in ui.

So since this one is already linear in ui, this term will be quadratic in ui. We will have
to drop it. This term here is linear in ui, but this one is constant, so this total term is
linear in ui. And this is the one we keep, and which is then the linearized result. In
other words, in summary once more, this total term here linearized is obtained via

this expression here.

The final linearized equation that we are then dealing with, now that we're
substituting all these results into the original equation that we have developed, is as
follows. Here we have one term that comes from the incremental stress times the
variation on the total incremental Green-Lagrange strain. That all has reduced to
this term. Here we did not have to linearize at all. We kept what we already had.
And on the right hand side, did not linearize either, because this was a term that we

had already there, and of course this is the external virtual work.

Now it's interesting to note that these two terms here result into this expression,
where this is the tangent stiffness matrix. Notice that tangent stiffness matrix
contains the material tensor, as well as the current stresses. This incremental
displacement here, vector, comes from this strain part and that strain part. Notice
that this virtual displacement vector here comes from that strain part and also from

that one here.

Below here we have, of course, that the external virtual work results into a vector of
nodal point forces times these virtual displacements. And this one here results into

the force vector corresponding to the internal element stresses.

And this is, of course, a very important quantity that we have to calculate accurately,
as | pointed out earlier. Because we want ultimately in the iteration that this vector is
equilibriating that vector, and if we do make a mistake in calculating this vector, then
we might have converged, but we have converged to the wrong solution. So it's very

important to recognize that this vector must be accurately calculated, by all means.
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However, the k matrix here, if we go back once more to the discussion of this
matrix, the k matrix here is a tangent stiffness matrix. And this tangent stiffness
matrix is selected such as to obtain, of course, in the incremental solution, an
appropriate incremental displacement. We will see later on that this matrix is
updated in the iteration. It depends on what kind of intuitive scheme we are using,

depending on that scheme we are updating this matrix differently.

In any case, it's a matrix that we will in quotes, "play around with", in order to
accelerate the convergence. Therefore there is no unique matrix that can be used
here, that should be used here. There are different possibilities that we will discuss
in later lectures. But on the right hand side once again, this F vector is the F vector
obtained from the current stresses, and that one has to be calculated uniquely in

the correct way.

Well, an important point is that this relationship here on the left hand side, is equal
to the relationship given here on the right hand side. And this holds because this
term here is equal to that term. We interpret, in fact, this right hand side as an out of

balance virtual work term.

Let's look once why this holds, because this might be a bit of a surprise. The
mathematical explanation is given on this viewgraph. We had earlier already that
the variation on the total Green-Lagrange strain is nothing else than the variation on
the incremental total Green-Lagrange strain. Now if we look down here, we
recognize that this variation here at ui equal to 0, is nothing else than the variation
on the Green-Lagrange strain at time t. If ui is zero, then this term here is nothing

else than the Green-Lagrange strain at time t.

So we're looking here at the variation of the Green-Lagrange at time, t if | put ui
equal to 0. Now let's look at these expressions here. If | evaluate this term here, at
ui equal to 0, we find that this term here, being a constant, is recovered. But notice

that this term here, with ui equal to 0, simply turns out to be 0.

Therefore, this term is equal to that term. And this means, therefore, that the
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variation on t zero epsilon ij is equal to the variation on 0 eij, which we wanted to
prove, of course. So this is the reason why this term here is equal to that term, as

we have used it on the previous viewgraph.

This result also makes physical sense, because if we look at the governing
equation, we find that this term here, replaced, is nothing else than tr. Should be tr.
And of course, the script r the external virtual work at time t. And this, of course, is
here the out of balance load term. Now if, for example, the material is elastic, and
the external virtual work has not changed, then clearly the displacements would not

change.

In other words, t plus delta tui would be equal to tui, and the incremental
displacements would be 0. Therefore, equilibrium would be satisfied. Hence, this
term, which we have here, must actually be equal to t 0 sij times variation t 0 epsilon

ij, the way we discussed it just now.

We may rewrite the linearized governing equation as given on this viewgraph. And |
am rewriting it in this form because we anticipate that we need an iteration. We
simply introduce here, an iteration counter 1, with the delta in front of the
incremental strain value. And similarly we introduce a delta here, and an iteration
counter 1 there. And on the right hand side, we introduce also an iteration counter,

but one lower.

In other words, 0 here, whereas we have a 1 there. Notice 0 here, a 1 here. And
notice furthermore, that this term is nothing else than that term, and this term here

is nothing else than the variation on t 0 epsilon ij.

This would be the equation that we have developed already, just having introduced
now a different notation which leads us towards what we want to deal with in the
iteration. The governing equations from a finite element point of view, then would be

as shown here.

Notice tangent stiffness matrix, del ui, iteration counter, the external loads, which

we still assume to be constant, by the way. We still assume deformation
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independent loading if we have deformation dependent loading, these would also
change in the iteration. And here we have the vector corresponding to the internal
element stresses at time t. We write that vector as t plus delta t 0, 0 there. And that

means that we are really talking, at this point, about this vector.

We calculate this incremental displacement vector and add it to the previous
displacements, which, of course, in this particular instance, in the first iteration, are
nothing else than tu. We add those, and obtain our first estimates of displacements,

namely the estimate at the end of iteration 1.

Having obtained now this estimate on displacements, we can repeat the process.
And that is shown here on the next viewgraph. Notice that now | am talking about
the right hand side, about the Green-Lagrange strains corresponding to time t plus
delta t, and the first iteration. In other words, these are the Green-Lagrange strains
corresponding to the end of the first iteration. They include now the incremental

displacements that we just calculated.

Similarly, these are the stresses corresponding to the end of the first iteration. And
this is an out of balance virtual work term. If that is non-zero, we will have further
increment in displacements. And that increment results, of course, into an increment
of strains. Namely, the second increment. Here is the 2 that denotes the increment.

Here is the 2 that denotes the increment.

The finite element equations then would look as shown here. Same equation as
before, but now with a 1 here and a 2 there. We calculate the incremental
displacements, we add them to what we had already and get a better approximation
to the displacements corresponding to time t plus delta t. This process, of course,
can now be repeated, and on this viewgraph we show how it's being done for every

iteration k.

In a particular iteration, we have now on the right hand side the external virtual work
corresponding to time t plus delta t, the stresses corresponding to time t plus delta t
and iteration k minus 1. At the end of iteration k minus 1, the strains corresponding
to time t plus delta t, and at the end of iteration k minus 1. This is the out of balance
15



virtual work term, and on the left hand side we have the same quantities as before,

but now with the iteration counter k.

When discretized, we obtain these equations here. Delta uk, the increment in the
iteration k of displacements, r minus f, computed, of course, from the current
displacements. From the current displacements we calculate that vector here.
Notice this vector is obtained from this integral here. We repeat this process for
iteration k 1, 2, 3 et cetera until convergence. We will have to talk about how we

measure convergence and so on.

But in this iteration we're adding up the total incremental displacements to obtain
always a better estimate for the displacements corresponding to time t plus delta t,
and here, of course, iteration k. Notice that the counter here goes from j equals 1 to
k, that is this j and this k, of course, is nothing else than the k that we have on the

left hand side here.

Notice once again that the first iteration, when k is equal to 1, it amounts to nothing
else than what we discussed already at the very beginning a little earlier in the
lecture. We simply generalized that discussion now to an equation in which we
iterate and always try to calculate another increment in displacements until the right

hand side is 0.

Notice when the right hand side is 0, the external virtual work is equilibrated by the
internal virtual work, and of course, that is what we want to reach. That is what our
criterion is for the analysis. The external virtual work must be equilibrated by the

internal virtual work.

In the finite element discretization, the whole process is as summarized on this
viewgraph. Initially, we are given tu, the displacements corresponding to time t, and
the externally applied loads corresponding to time t plus delta t. We compute the
stiffness matrix, the tangent stiffness matrix corresponding to time t. We calculate

this vector, the nodal point forces corresponding to the stresses at time t.

Notice this 0 here refers always to the total Lagrangian formulation. Notice that this
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vector here is really the initial condition for the iteration. Similar, the displacements
at time t are the initial conditions for the iteration for the displacements. Zero here.
Zero there, meaning the initial conditions for our iteration. We set the iteration

counter, k equal to 1, and we now go into the following loop.

Notice on the right hand side, an out of balance load vector is calculated. And that
out of balance load vector gives us an incremental displacement vector. Of course,
the tangent stiffness matrix is involved in that calculation. Notice that this
incremental displacement vector is added to the displacements that we had
previously calculated, to obtain a new estimate on the displacements. And like that,
we have now obtained a displacement vector that, of course, hopefully is closer to

satisfying certain convergence criteria.

We will have to talk about these convergence criteria later on. Basically, we check
whether equilibrium is satisfied within a certain tolerance. If the equilibrium is not
satisfied, we go here. We use these displacements that we just have calculated to

compute a new vector of nodal point forces corresponding to the element stresses.

Notice this vector now contains the information that we have just calculated in
solving this equation here. This was information that we obtained. And that
information is contained in this vector, and that vector is used right here to calculate

this nodal point force vector.

Having calculated that, we increase our iteration counter, come back here and like
that we continue the iteration, looping around through here as | have just described.
Notice at convergence once again, we want, of course, that r is equal to f, meaning
that the external loads are equilibrated by the nodal point forces corresponding to

the internal element stresses.

Well, this brings us to the end of this lecture. You might recognize that this last
viewgraph really contains a lot of information that, of course, we discussed in this

lecture, but that also | referred to already in the first lecture.

At that time, | tried to introduce you to this iteration process using rather physical
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concepts, not going through a lengthy mathematical derivation. We did not talk
about continuum mechanics variables. We did not talk about total Lagrangian

formulation, second Piola-Kirchhoff stresses, Green-Lagrange strains and so on.

| hoped at that time to give you just a physical feel of how we are iterating. The
same kind of equations, the same equations we looked at at that time, now | hope

with this lecture, | have given you the mathematical basis of these equations.

| hope you have learned how to derive these equations, how to work with these
equations a little bit. And in some of the next lectures, we will look at how actually
we do construct this k matrix for different elements. That is, of course, a very
important consideration. How do we calculate this k matrix for 1D, 2D, 3D elements,
shell elements, beam elements? How do we calculate this force vector for these

different elements? We will have to discuss that as well.

Notice that in this k matrix goes the material law. Whether we are dealing with an
elasto-plastic material, rubber type material, all that will affect the actual ingredients,
the actual elements here in that k matrix. We we also have to discuss how we can
possibly make this convergence that I'm talking about fast. In other words, how can

we accelerate the convergence of these iterations?

So in essence, | like to just convey to you that what you see here you will see a
number of times again. We will talk about the different parts that you have been

looking at here already briefly once again in the upcoming lectures.

Thank you very much for your attention.
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