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PROFESSOR: Ladies and gentlemen, welcome to this lecture on nonlinear finite element analysis

of solids and structures. In the previous lectures, we talked about the general

incremental continuum mechanics equations that we're using in nonlinear finite

element analysis.

In this lecture, I would like, now, to talk about the finite element matrices that we're

using, actually, in static and dynamic analysis. You want to talk about these in quite

general terms. In the next lecture then, we will talk more about the details of these

matrices. You want to formulate these finite element matrices. And we want to talk

about the numerical integration that we use to actually evaluate the matrices.

I've prepared some view graphs regarding this material. And I'd like to share the

information on these view graphs now with you.

The derivation of the finite element matrices, of course, is based on the continuum

mechanics equations that we have developed earlier. And you have seen this

equation earlier when we talked about the total Lagrangian formulation, the T.L.

formulation. We talked about the terms in this equation. We talked about their

meaning, what they stand for. And we have derived certain terms here because

they have been obtained by linearization process.

This was the governing equation for the total Lagrangian formulation. The

governing continuum mechanics equation for the updated Lagrangian formulation is

shown here. Once again, we talked about each of these terms. We talked about

what their meaning is. And, of course, we arrived at this equation by linearization

process.

For the total Lagrangian and the updated Lagrangian formulation, we recognized
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because of the linearization process that was involved, we need to iterate to obtain

an accurate solution to the actual problem of interest. And here on this view graph,

I've summarized the iterative equations that are used in the total Lagrangian

formulation.

We, once again, have seen this equation before. We should recognize, now, these

terms. The iteration count, of course, being k, as shown here on the left-hand side

of the equation. And k minus one on the right-hand side of the equation.

We also recognize this equation here, now. Namely, the equation where we update

the displacements from the k minus first iteration to the k iteration. For this iteration,

of course, we need initial conditions. And those initial conditions we also talked

about earlier.

A similar equation is used in the updated Lagrangian formulation. These are the

terms that we talked about earlier. And, of course, once again, we are iterating with

iteration count of k on the left-hand side, iteration count of k minus one on the right-

hand side of the equation.

The displacements are updated, as shown here in this equation. And for this

iteration, of course, we need initial conditions, which are given here. And all of these

terms, really, we discussed in some detail in the earlier lectures.

Well, assuming that loading is deformation-independent, we also recognize that this

here is the expression for the external virtual work. t plus theta tR, the script R that I

talked about earlier already. And these are the terms that we already defined

earlier. Particularly the body force term, the surface force term. Notice that, so far,

we really talked about static analysis. And I'd like to now, of course, also introduce

the term that we use in dynamic analysis.

This, of course, is the inertia term. And in dynamic analysis, this is the term that is

really contained in this term here as an effect of fV. Of the volume forces, the forces

per unit volume.

Notice that this is really here an integral over the volume at time t plus theta t of the
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mass density at time t plus theta t times the accelerations at time t plus theta t, the

virtual displacements, and, of course, the integrating over the volume at time t plus

[? theta, ?] t plus theta t, as I said already.

This is, of course, an "inconvenient" interval. Inconvenient in quotes because we

don't know this volume. So we cannot really directly evaluate this integral. Instead

we'd rather like to work with the original volume like we do in the total Lagrangian

formulation. And transformation of this integral to an integral over the original

volume is achieved by this equation here, by this term here.

Notice that, of course, 0 rho times 0 dV for a particular set of mass particles must be

equal to t plus theta t rho times t plus theta tdV. And this is the reason why we can

directly write down this equation here.

However, considering this transformation for finite element analysis, it is important

to realize that we assume here that the possibilities of the motion, of the material

particles as contained in the finite element interpolations are the same in this

volume as in that volume. This fortunately, is true in isoparametric finite element

analysis. And therefore, this transformation from the volume t plus theta t to the

volume V 0 is a very convenient transformation to perform for the evaluation of this

term. We use that abundantly in isoparametric finite element analysis.

If the external loads are deformation-dependent, then we have to recognize that

these forces here are deformation-dependent, and therefore, we have to evaluate

them in the iteration. And that is being shown here in this equation. That we are

always evaluating this term new, depending on the iteration k minus 1, we integrate

this product here over the volume at time t plus theta t in iteration k minus 1.

Similarly, we update, also, the surface forces. Since the surface area changes of the

body during the last information process, we evaluate this part here as shown here.

Of course, there is an approximation involved. But if we keep on it iterating t plus

theta tVk minus one, we'll take on the volume t plus theta tV. And of course then, we

really include here the term that we want to include, namely that one in the analysis.
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Similarly here. The surface area, in iteration k minus 1, as k goes larger and larger.

If we converge, we'll actually be equal to that surface area, meaning that this

expression is equal to that expression, which of course we want to include. It's this

expression that we want to include in the force vector.

We, in one of the very early lectures, talked about the materially-nonlinear-only

analysis. And the equation that is used, the continuum mechanics equation that is

used in the materially-nonlinear-only analysis is given here. Notice, here we have a

stress strain law tensor, an incremental strain tensor, the virtual strain.

The incremental strain tensor is the real strain tensor here. All the components of

that tensor have a superscript k. The external virtual work. And here, we have the

stress tensor, components of the stress tensor. At time t plus theta t in iteration k

minus 1. And the virtual strains again.

Notice here now, we do not have anymore subscripts, 0 or t, on these components

because in materially-nonlinear-only analysis, we assume that the deformations are

very small. The displacements are infinitesimal. And the stress, the second Piola-

Kirchhoff stress, which we defined in an earlier lecture is actually equal to the

Cauchy stress under those conditions and is equal to the physical stress that we are

talking about here in the materially-nonlinear-only analysis.

In other words, both those stress measures are equal to the physical stress that

appears here, which is, of course, the force per unit area. The one that we are so

familiar with in infinitesimal displacement analysis.

Let us look further at dynamic analysis. Dynamic analysis is generally performed in

nonlinear analysis, using an implicit time integration scheme or an explicit time

integration scheme. And in a later lecture, we will discuss such time integration

schemes.

In implicit time integration, we look at the equilibrium equation at time t plus theta t

to obtain the solution at time t plus theta t. And this means that we will have to

evaluate this left-hand side written here as given on the right-hand side.
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This part here, this external virtual work, comes from the external loads that are not

the mass of the inertia forces. The inertia forces are taken care of via this part, via

this integral here, which I discussed already a bit earlier.

In explicit time integration, we are evaluating or we're looking at the equilibrium

equation at time t to obtain the solution at time t plus theta t. Quite different from

implicit time integration. And the governing equations are in the total Lagrangian

formulation right here, in the U.L., the updated Lagrangian formulation given here,

and in the materially-nonlinear-only analysis as given here.

Notice, of course, that R will involve the inertia forces evaluated at time t now. And

that will, of course, enable us to march forward with a solution as we will discuss

later on in another lecture.

The finite element equations corresponding to these continuum mechanics

equations look as follows. In materially-nonlinear-only analysis, let's look first at

static analysis. We have this basic equation.

Notice a tension stiffness matrix that does not carry any subscript 0 or t because we

are talking about the original volume, the displacements being infinitesimally small,

the physical stress, no Cauchy stress really, no second Piola-Kirchhoff stress needs

to be introduced. We just talk about the physical stress that we are so familiar with

in infinitesimal displacement analysis. And that, of course, goes into the evaluation

of the K matrix because the material law will appear in here, the incremental

displacement vector, and on the right-hand side, the load vector, and the nodal

point forces that are equivalent in the sense of the principle of virtual work to the

current element stresses. By current, I mean F time t plus theta t at the end of

iteration i minus 1.

This equation, of course, looks very much alike of what we have seen in the

updated Lagrangian formulation and in the total Lagrangian formulation. In dynamic

analysis using implicit time integration, this will be the governing equation. Now, the

mass matrix, the acceleration vector with an iteration [? count of ?] i because we are

marching forward to a situation, to a configuration which is still unknown, a tangent
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stiffness matrix, the same tangent stiffness matrix that we see here, by the way, the

incremental displacement vector, and on the right-hand side, the same quantities

that we have here.

In dynamic analysis using explicit time integration, we have the mass matrix, the

same mass matrix, generally, that we have here. Although in implicit time

integration, we will sometimes use a lump mass matrix, sometimes a banded mass

matrix, a consistent mass matrix. With an explicit time integration, we generally use

only the lump mass matrix.

But otherwise, the same kind of matrix here. The acceleration vector. The force

vector or the nodal point forces, corresponding to time t that are externally applied

to the structure. And the tF vector, which is the force vector corresponding to the

stresses in the elements at time t.

Notice, we are looking here at equilibrium at time t to obtain the solution at time t

plus theta t. We are looking here at equilibrium, or I should say, we're iterating for

equilibrium at time t plus theta t. And thus, we will obtain the solution for time t plus

theta t.

In the total Lagrangian formulation, we have very similar equations. In static

analysis, a tangent stiffness matrix, and otherwise, the same kind of vectors that I

talked about earlier already. Notice now, of course, we have the subscript 0. Notice

also that the total tangent stiffness matrix is made up of a part that we might call a

linear strain stiffness matrix and a part that we may call nonlinear strain stiffness

matrix. This is also called the geometric stiffness matrix.

We will talk about how we construct these matrices just now. In dynamic analysis,

we proceed as in the material-nonlinear-only formulation, of course. And in all the

other formulations, if we use implicit time integration, we apply the equilibrium

equation. We look for the equilibrium at time t plus theta t, as expressed here. And

we have vectors, matrices very similar to what we have in the material-nonlinear-

only formulation except that once again, of course, we have now introduced here

the geometric stiffening affect, the nonlinear strain stiffness matrix.

6



In dynamic analysis using explicit time integration, we don't use any K matrix. We

will discuss that also much more later on. And this is the governing equation. Very

much the same as in the material-nonlinear-only formulation.

Finally, in the updated Lagrangian formulation, we also obtain similar equations and

static analysis. These are the equations that we want to solve. Notice also, the

nonlinear strain to them there or the nonlinear strain stiffness matrix.

Otherwise, the matrices and vectors are very much alike what we have seen before.

Dynamic analysis implicit time integration and in dynamic analysis using explicit time

integration. Notice that in each of these, we are always cutting out the subscript t or

t plus theta t the way I have been talking about earlier already.

We have seen this equation, of course, before in our earlier lectures. What we now

do is we introduce the mass terms. And we are talking about implicit time integration

and explicit time integration. We should note that these equations are valid for

single finite element as well as for an assemblage of finite elements.

If we have a large number of elements, then, of course, we would assemble these

as we do it in linear elastic analysis using the direct stiffness method. Considering

an assemblage of elements, we will see that different formulations may be used in

different regions of the structure. In other words, schematically here we may have

some elements that are governed by the T.L., the total Lagrangian formulation,

some others by the updated Lagrangian formulation, and some others by the

material-nonlinear-only formulation.

Notice that compatibility between these elements is, of course, perfectly preserved if

these are compatible elements as shown here. Then, there is nothing wrong with

using the U.L. formulation for certain elements that are bordering elements with

another formulation such as this.

It is not true, for example, that due to the fact that you're using here different kinds

of formulations, you are getting an incompatibility introduced here. I've heard that

sometimes. That is certainly not my understanding of the subject matter. It does not
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sometimes. That is certainly not my understanding of the subject matter. It does not

matter whether you have the same kind of formulations or two different kind of

formulations. That will not effect the compatibility between two elements.

Let us now concentrate on the derivation or on the formulation of a single element

matrix. To obtain a single element matrices, we have to introduce, of course, an

interpolation matrix. And this matrix interpolates the internal element displacements

via the nodal point displacements.

Here, I'm showing a full node element with these nodal point displacements. Notice

these are measured in the Cartesian coordinate directions. Notice however, that

these nodal point displacements are measured into a skewed direction, an a b

coordinate system.

There's nothing wrong with introducing different systems because this is Q system

at the different nodal points. The nodal point vector, the vector of nodal point

degrees of freedom is listed here. Notice that vector carries a hat to denote the fact

that it contains this great nodal point displacements.

Notice also, that the subscripts 1, 2 refer to the Cartesian coordinate directions for

the superscripts referred to the nodal point. Here 1, 2 again. 3 denoting the nodal

point.

Notice up here, a b, of course refer to the skewed directions. And the 1 refers to the

nodal point 1. We want to interpolate the internal displacements in terms of the

nodal point displacements.

And that is being achieved by this relationship here. U, the internal particle

displacements are given via H, the displacement interpolation matrix times U hat. U

hat being this vector, the one we just discussed. U being a vector of these two

displacements. Now, notice that these two displacements, of course, depend on

which particle you are looking at.

Here, a particular particle. This would be the displacement you want. That's the

displacement U2. And these displacements vary over the element, which would be
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expressed by this H matrix. These are the nodal point displacements.

These are the varying, continuously varying displacements of the particles within the

element. We will, of course, use this kind of relationship now quite extensively. We

have, of course, also already encountered this relationship in linear elastic analysis.

Let us now see how we are formulating the different matrices. For all analysis types,

in which we want to include inertia forces, we evaluate this integral as shown here.

Notice the displacements and accelerations are interpolated via this relationship

here.

For the accelerations, of course, we would have dots here, dots there denoting

second time derivatives. And we would have t plus theta t as a superscript on each

of these variables. Notice that we also use this interpolation here for the virtual

displacements. And the result is given right here just like in linear elastic analysis.

The right inside load vector as evaluated is shown here. Once again, we introduce

interpolation for U or for the virtual displacements and the virtual surface

displacements. This interpolation here gives us this H matrix, H transpose matrix.

This here interpolated gives us the HST matrix.

Notice that HS is the interpolation matrix for the surface displacements as a function

of-- or rather it gives the surface displacements I should say as a function of the

nodal point displacements. So HS is really evaluated by using H, the H matrix I just

talked about, and evaluating that H matrix on the surface of the element. That is

how you get HS.

And all of this expression together gives us the load vector. As a matter of fact it is

really the same process followed that we are using in linear infinitesimally

displacement analysis. In material-nonlinear-only analysis, considering an

incremental displacement UI, we evaluate this integral here as shown here. Notice

here the virtual displacements that are coming in because we have the virtual

strains there.

Notice here the real displacements, which are coming in from these real strains. Of
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course, these are strain increments and, correspondingly, displacement increments.

Nodal point displacement increments always. These B matrices, BL matrices, are

obtained by evaluating the strains from the nodal point displacements.

And, of course, the interpolation that is used for the element goes in here. The B

matrix, of course, contains derivatives of the elements of the H matrix. A vector

containing components of eIj is this one here.

For example, in two dimensional plane stress analysis, the entries in this vector are

listed right here. Notice that there is a 2 here because e12 is equal to e21. And the

sum of these two, of course, gives us a total sheer strain. And therefore, we simply

put a 2 times e12 here.

This evaluation is performed much in the same way as in linear infinitesimal

displacement analysis. Except that we have to remember this stress tensor, this

stress strain tensor, this considerative tensor varies in the incremental solution

because we have materially nonlinear conditions. So the K matrix here will change.

And that is indicated, of course, by the t up there.

Notice the B matrix, in this incremental analysis, using the material-nonlinear-only

formulations is constant. For the material-nonlinear-only formulation, we also want

to evaluate the F vector. And that F vector is a result of this integral here.

We take this integral, interpolate the virtual strains. And that is this part here, in

terms of the virtual nodal point displacements. And we assemble in this vector here

capital sigma at time t, the stresses t sigma ij. We assemble those in this vector.

Notice, in two dimensions analysis, this vector is given down here as these

components. By the way, no two here. You should think about that. There should be

no two here.

Total Lagrangian formulation. We have similarly an integral as in the material-

nonlinear-only formulation. We interpolate, once again, these real incremental

strains, the virtual strains. And the result is directly given here. With the B matrix,

now, defined via this equation down here. And, of course, this vector here contains
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the components of the incremental strain tensor.

However, in the total Lagrangian formulation, we know also have an additional

integral. And that integral is coming in because of the geometric stiffening effect of

the nonlinear strain term effect. Here we have the integral. And the discretization is

given on the right-hand side here.

Notice this is a BNL matrix, nonlinear strain matrix, we call it. This here is a matrix of

the second Piola-Kirchhoff stresses at time t. And here we have, again, the BNL

matrix. This product together gives us the KNL matrix.

One might ask how do you get these quantities? Well, actually we construct this S

matrix and the BNL matrix such that when you take the product of this whole right-

hand side, you get that. So these matrices are really constructed such as to obtain

what we need to get. And that is this part here. I will show you later on specific

examples in another lecture.

Here we have the S matrix containing components as I've mentioned. And this

matrix here times this vector contains the components of this displacement

derivative.

The right-hand side, of course, for the total Lagrangian formulation has the

evaluation of the F vector. And that one is obtained from this integral. Notice we go

over. We evaluate this integral by this relationship here. The linear strain

displacement matrix goes in here. And a vector of the second Piola-Kirchhoff

stresses goes in here. Once again, this vector is constructed in such a way that this

right-hand side here is equal to that integral.

In the updated Lagrangian formulation, we proceed much in the same way.

Considering incremental displacement UI, we have this integral to evaluate. We

interpolate the strains via the strain-displacement [? interpolation ?] matrix, and the

result is this here. This is here the linear strain stiffness matrix. Here we have a

relation very much alike of what we have in the total Lagrangian formulation for the

incremental strains.
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The nonlinear strain stiffness matrix in the updated Lagrangian formulation is also

very much evaluated like in the total Lagrangian formulation. It is this integral that

we now have to capture. And we do so by constructing a BNL matrix, a tall matrix,

such that this total product here is equal to this integral. And what's underlined here

in blue is the matrix that we're looking for.

We should, of course, also evaluate in the updated Lagrangian formulation the F

vector. And that F vector, which appears on the right-hand side of the equation in

the updated Lagrangian formulation, is evaluated by calculating this integral. Notice

that this is obtained by this right-hand side. The BL, of course, is the linear strain

displacement matrix. And here we have a vector, tall hat, which contains the

stresses, Cauchy the stresses at time t. It's constructed such that this integral here,

with this part in front of it, gives us exactly that integral. And what is underlined here

in blue is the actual F vector that we're looking for.

So what we have seen then, is that the finite element matrices for the material-

nonlinear-only, the total Lagrangian, and the updated Lagrangian formulation are

formulated by looking at the individual volume integrals in these continuum

mechanics formulations. And by interpolating the displacements and strains much in

the same way as we are used to in linear analysis.

Once we have formulated these matrices, we, of course, have to evaluate them.

And that is done using numerical integration, once again, just very similar to what

we're doing in linear analysis. We're using, primarily, Gauss integration or Newton-

Cotes integration. Schematically, in two-dimensional analysis, the K matrix would be

evaluated as shown here.

Notice that in isoparametric finite element analysis, we are integrating from minus 1

to plus 1 over the domain. Two-dimensional analysis, of course, two integrations

involved. That we have a B matrix transposed, C matrix, B here, a determinant of a

Jacobian matrix, which comes in because we are transforming from the x1, x2

space to the RS space. And we call that the G matrix's total product. And the

numerical integrations then really involves nothing else but summing a product of
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alpha ij, Gij over all numerical integration points. Notice the ij here now refers to the

ij's integration point.

This is what we are doing also in linear analysis and in nonlinear analysis as well.

Similarly, we would evaluate the F vector, which, of course, we have in the material-

nonlinear-only, total Lagrangian, or updated Lagrangian formulation as shown here.

Notice, once again, integration from minus 1 to plus 1. And this part here is what we

might call G again. F then, is obtained as shown here.

Of course these are the integration point weights that are given to us, which we

simply use in the finite element solution. The mass matrix is evaluated as shown

here. Mass density goes in there. H transpose H. H, of course, being the

displacement interpolation matrix. And this is our G here. With that G, we should put

a bar under that G here because it's a matrix. You put it in. And if we use that G

here in this formula, we get the M matrix.

So the numerical integration is really performed much in the way as we're doing it in

linear analysis. Frequently, we use Gauss integration, as I mentioned earlier. And,

as a typical example, 3x3 into Gauss integration is schematically shown here. Here

is our element. Here is the R coordinate axes. Here is the s coordinate axes.

This would be the integration point stations that we are using for 3x3 integration.

The r and s values are given as shown here. Same r and s values as in linear

analysis. And we notice that these integration point stations are all within the

element. That is, of course, one feature off the Gauss integration.

As I mentioned earlier they use also Newton-Cotes integration, for example for the

integration through the shell's thickness. Here is the r direction, which is a

coordinate axis in the mid-surface of the shell. And s goes through the thickness.

Notice here we have five point Newton-Cotes integration. And that some integration

points, as a matter of fact two here, are actually on the surface of the element.

Because we are including the surface of the element, we use Newton-Cotes

integration quite frequently in nonlinear analysis. The reason being that if we do an
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elasto-plastic analysis, we find that the larger stresses, of course, are generally

generated on the surfaces of the element.

And these are then also the areas where plasticity sets in earliest, which means that

we want to pick up this elasto-plastic response as quickly as possible. And

integration point stations on the surface of the element can be of benefit.

If you compare Gauss with Newton-Cotes integration, we recognize that with n

Gauss points, we integrate a polynomial of order 2n minus 1 exactly, meaning, for

example, with two Gauss points, you integrate a cubic exactly and everything below

it, of course. Whereas with n Newton-Cotes points, we integrate only a polynomial of

n minus 1 exactly. So we need really many more Newton-Cotes integration points to

pick up the same accuracy in the integration as you do with the Gauss point

integration.

For this reason, we use, primarily really, the Gauss integration, particularly in the

analysis of solids. Maybe a big, chunky bodies where there is no need, really, to

pick up the plastic response say on the surface directly of the solid.

Newton-Cotes integration involves points on the boundaries. I mentioned that

already. And therefore, this integration scheme is effective for structural elements

for the reasons that I just gave.

In principle, the integration schemes I employed as in linear analysis. The

integration order must be high enough not to have any spurious energy modes in

the elements. We will get back to that in later lectures, particularly when we talk

about structural elements, beam elements, and shell elements. This is a very

important point.

The appropriate integration order in nonlinear analysis can sometimes be higher

than in linear analysis, for example, to model the plasticity accurately, once again, in

a shell solution or such type of analysis. On the other hand, a too high integration

order is also not of value because remember, that the maximum displacement

variation, therefore, the maximum strain variation you can pick up, is of course,
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given by the interpolation you're using.

So it doesn't make much sense to go up in very high integration order in order to try

to pick up a high variation in strains, plastic strains, and the corresponding stresses,

of course. It doesn't make sense to do that when you are limited by the actual strain

variation anyway due to the interpolations on the displacements that you're using.

Let me show you an example here that demonstrates some of the points that I'm

trying to make. Here we have an eight node element that models the response of a

cantilever and the bending moment. We measure the rotation phi here. We have

here the material data. Notice we are talking about an elasto-plastic material with

yield stress. And we apply a bending moment as shown here.

In linear elastic analysis, you would get the exact response to this problem using

one eight node element. You might have tried it already. You may know that. The

reason, of course, being that this element contains a parabolic displacement

interpolation, which is the analytical solution to this problem. And therefore, you get

the exact solution.

In elasto-plastic analysis, however, the solution depends on the integration order we

are using. And this is demonstrated on this view graph. Here we show on the

vertical axis, the moment normalized to the moment at first yield. And on the

horizontal axis, the rotation of the beam normalized to the rotation at first yield,

respectively.

Now, notice that the linear elastic response, of course, would be simply this line

here going up vertically. In elasto-plastic analysis, however, the element starts

yielding. And the yield is picked up, depending on the integration order you're using.

With 2 by 2 integration, we get this solution here. And this would be the limit load.

With 3 by 3 integration, we get this solution for the limit load. And with 4 by 4

integration, we get this solution as a limit load.

So this solution very much depends on the integration order that you're using. And it

shows here that we need enough integration point stations through the thickness of
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the beam in order to approximate, appropriately, the limit load that we want to

calculate.

Let me show you another problem. And this is an interesting problem in which we

want to design a numerical experiment to test whether an element can undergo

properly large, rigid body motions. Here we consider a single two-dimensional four

node element. It could be plain stress or plain strain. And we want to test by a

numerical experiment that you can perform on a computer program, whether this

element can actually perform large, rigid body motions, of course, properly. And by

properly, I mean there should be no stresses generated in the element when it is

subjected to these rigid body motions.

Well, there are for this element three rigid body motions of interest. Two translations

and one rotation. It's a two-dimensional element, so these two translations, of

course, refer to the horizontal translation and the vertical translation. The rotation,

of course, refers to the rotation in the two-dimensional plane.

To test whether the element can undergo properly the horizontal rigid body motion,

we designed this numerical experiment. We put here to truss elements. We call

them M.N.O. trusses because they do not include then any geometric

nonlinearalities. They are really just springs. And we put this element on a roller

here. Keep it otherwise free. And we put onto this degree of freedom a load, R. And

on that degree of freedom a load, R, as well.

The load is very large. So the element should move over stress free by a very large

amount. This is one rigid body movement that the fall out element must, of course,

be able to undergo. And this test is passed for the T.L., U.L., and the M.N.O, or

linear analysis, of course.

Similarly, we could perform this test for the vertical direction. And we would find that,

once again, the T.L., U.L. formulation, and M.N.O. formulation will pass a test for

the vertical direction as well.

The interesting test is the one for the rotation. Here we have our fall out element
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supported at the left-hand side by a pin, and on the right-hand side by an M.N.O.

truss. Once again, a truss element that does not model any geometric

nonlinearalities. We are applying to this node here a force, R, that would, of course,

make this element here go through the rotation.

Since the force should be taken in the spring, the element should rotate stress free.

Note that because this spring is and M.N.O. spring, the force acting onto this node

here must always work vertically only. After the load is applied, the element,

originally here, must have rotated by a very large amount. The area must have not

changed. In other words, the element size must remain constant. And the element

must be stress free.

This test is passed by the by the U.L., and the T.L., the total Lagrangian

formulations, by the updated Lagrangian, and the total Lagrangian formations

properly. But if you were to use the material-nonlinear-only formulation, you would

see that this element does not remain or keep its original size. The reason being

that this node here will move up on this side here because of the M.N.O. truss

there. We move up here. And all of the element remain stress free, the element

actually grows in size.

It's an interesting test that you can actually perform on a computer program. Once

again, the total Lagrangian and the updated Lagrangian formulations, which, of

course, are designed to more large quotations and large strains pass this test

properly, whereas the M.N.O. Formulation, which is not designed to model large

quotations, would not pass this test property.

Well, in this lecture, I've been trying to give you an overview of the general element

matrices that we need in the U.L., T.L., and M.N.O. formulations. In the next

lectures, we will derive these element matrices in detail for different types of

elements. Thank you very much for your attention.
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