
Contents:

Textbook:

Topic 6

Formulation of
Finite Element
Matrices

• Summary of principle of virtual work equations in total
and updated Lagrangian formulations

• Deformation-independent and deformation-dependent
loading

• Materially-nonlinear-only analysis

• Dynamic analysis, implicit and explicit time integration

• Derivations of finite element matrices for total and
updated Lagrangian formulations, materially-nonlinear­
only analysis

• Displacement and strain-displacement interpolation
matrices

• Stress matrices

• Numerical integration and application of Gauss and
Newton-Cotes formulas

• Example analysis: Elasto-plastic beam in bending

• Example analysis: A numerical experiment to test for
correct element rigid body behavior

Sections 6.3, 6.5.4
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6-4 Formulation of Finite Element Matrices
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DERIVATION OF ELEMENT
MATRICES
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The governing continuum mechanics
equation for the total Lagrangian (T.L.)
formulation is

r oC~rs oers ooe~ °dV + r JSi} OOTJi} °dVJov Jov

= t+~t0l - r JSi} oOei} °dVJov

The governing continuum mechanics
equation for the updated Lagrangian
(U.L.) formulation is

Iv tCijrS ters Otei} tdV + Ivt'T i} Offl i} tdV

= t+~t0l_ Jvt'Ti}Otei}tdv



For the T.L. formulation, the modified
Newton iteration procedure is
(for k = 1,2,3, ... )

f oCijrS ~Oe~~) 80et °dV + f JSt 8~oTl~) °dVJoV Jov

= t+a~ _ f t+aJS~-1) 8t+aJE~k-1) 0dV
Jov

where we use

t+atufk) = t+atufk- 1) + ~Ufk)

with initial conditions

t+atu~o) - tu. t+ats~o) - tS.. t+atE(o) - tEI - II o~-o" ou.-ou.

For the U. L. formulation, the modified
Newton iteration procedure is
(for k = 1, 2, 3, ...)

lv tCijrS ~te~~) 8teu. tdV +lv t7 U. 8~tTl~k) tdV

= t+a~ _ f t+at7 fk- 1) 8t+atefk- 1) t+atdV
Jl+l1tV(k-l) t t

where we use

t+atufk) = t+atufk- 1) + dufk)

with initial conditions

t+atufo) = tUi, t+at7~o) = t7ij, t+ate~O) = teit
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6-6 Formulation of Finite Element Matrices
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Assuming that the loading is
deformation-independent,

For a dynamic analysis, the inertia
force loading term is

r Hl1tp Hl1tOi 8Ui Hl1tdV = r0p Hl1tOi 8Ui °dV
JI+~IV Jov

''r.---...... ...J

may be evaluated at time 0

If the external loads are deformation­
dependent,

and



Materially-nonlinear-only analysis:

This equation is obtained from the
governing T.L. and U.L. equations by
realizing that, neglecting geometric
nonlinearities,

H.:1
0
tS.. = t+.:1tT .. = t+.:1t(J..

y.- y.-, It
•

physical stress

Dynamic analysis:

Implicit time integration:

H.:1trill - H.:1trill -f, 0p H.:1tU··· ~u· °dVO'l{' - O'l{,external I 0 I

loads °v

Explicit time integration:

T.L. f.v JSy. 8JEi} °dV = tr;A,

U.L. JvtT y. 8tei} tdV = tr;A,

M.N.O. Ivt
(Jy.8ei}dV = tffi
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6-8 Formulation of Finite Element Matrices
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The finite element equations corresponding
to the continuum mechanics equations are

Materially-nonlinear-only analysis:

Static analysis:
tK AU(i) = HatR - HatF(i-1) (6.55)

Dynamic analysis, implicit time integration:
M HatO(i) + tK AU(i) = HatR - HatF(i-1) (6.56)

Dynamic analysis, explicit time integration:

M to = tR - tF (6.57)

Total Lagrangian formulation:

Static analysis:

( tK + tK ) AU(i) - HatR HatF(i-1)O_L O_NL L.l_ - _ - 0_

Dynamic analysis, implicit time integration:
M HatO(i) + (dKL + dKNd AU(i)

= HatR _ HadF(i-1)

Dynamic analysis, explicit time integration:

M to = tR - dF



Updated Lagrangian formulation:

Static analysis:
aKL + ~KNd LlU(i) = t+atR - ~~~~F(i-1)

Dynamic analysis, implicit time integration:

M t+atQ(i) + (~KL + ~KNd LlU(i)

_ t+atR _ t+ atF(i -1)
- _ t+at_

Dynamic analysis, explicit time integration:

M to = tR - ~F

The above expressions are valid for

• a single finite element
(U contains the element nodal
point displacements)

• an assemblage of elements
(U contains all nodal point
displacements)

In practice, element matrices are
calculated and then assembled into the
global matrices using the direct
stiffness method.
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6-10 Formulation of Finite Element Matrices
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Considering an assemblage of
elements, we will see that different
formulations may be used in the same
analysis:

THE FORMULATION
USED FOR EACH
ELEMENT IS
GIVEN BY
ITS ABBREVIATION

We now concentrate on a single element.
The vector ~ contains the element incremental
nodal point displacements

Example:

X2



We may write the displacements at any point in the
element in terms of the element nodal displacements:

Example:

X2

Finite element discretization of governing
continuum mechanics equations:

For all analysis types:

where we used

displacements at a point within the element
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6-12 Formulation of Finite Element Matrices
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Materially-nonlinear-only analysis:

Considering an incremental displacement Uj I

IvCiirs ers BetdV -+ B.QT(IvJ;![ Q J;!L dV) .Q

tK

where

~ = BdJ.
a vector containing
components of eii-

Example: Two-dimensional
plane stress element:



and

Ivt<Ti} 8e~ dV~ 8.Q.T (Iv~L t~ dV)

tF

where t± is a vector containing
components of tal

Example: Two-dimensional plane stress
element:

'i = ~~~l
~~1~

Total Lagrangian formulation:

Considering an incremental displacement Ui,

Lv oCijrs Oers 8oeij- °dV~ 8!!T (Lvdal oC dBl OdV) !!
. ,

where

ts ..oe = 0 LU
~ --

a vector containing
components of Oeij
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6·14 Formulation of Finite Element Matrices
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Js is a matrix
containing components
of JSij- _

and

JBNL.Q contains
components of
OU· .1,1'

Lv JSiJ- 8oeiJ- °dV~ 8.0.T (Lv Jal Js °dV)
• y

where Js is a vector containing
components of JS~.



Updated Lagrangian formulation:

Considering an incremental displacement Uj,

Iv tC~rs ters 8te ij. tdV~ 8.Q.T (Iv l~I tC ~BL tdV) .Q.
• i '

~~L

where

ts Ate=t LU
~ --

a vector containing
components of tev-

lvt-r V- 8t'Tlij. tdV~ 8.Q.T (lv ~~~L ~ ~~NL tdV) .Q.

~~NL

where
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tT is a matrix
containing components
of tTv-

~BNL.Q. contains
components of
tUi.J.



6-16 Formulation of Finite Element Matrices
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where tf is a vector containing
components of t'T i}
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• The finite element stiffness and mass
matrices and force vectors are
evaluated using numerical integration
(as in linear analysis).

• In isoparametric finite element
analysis we have, schematically, in
2-D analysis

K = J_~1 J_~1 ~TQ ~ det J dr ds

~G



M ..:. "'" "'" (1" G..- ~ ~ 11'_11'
I I'

And similarly

f
+1 f+1

F = -1 -1 ,eT 1: det 4,dr ds
'~

G
F ..:. "'" "'" (1" G.. -- ~ ~ 11'_11'

I I'

f
+1 f+1

M = -1 -1 ,Pj:{ ti det 4/dr ds
•

~G

Frequently used is Gauss integration:

Example: 2-D analysis

r, s values:
±0.7745...

0.0

All integration points are in the interior
of the element.
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6-18 Formulation of Finite Element Matrices
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Also used is Newton-Cotes integration:

Example: shell element

5-point Newton-Cotes
integration in s-direction

Integration points are on the boundary
and the interior of the element.

Gauss versus Newton-Cotes Integration:

• Use of n Gauss points integrates
a polynomial of order 2n-1 exactly,
whereas use of n Newton-Cotes
points integrates only a polynomial
of n-1 exactly.
Hence, for analysis of solids we
generally use Gauss integration.

• Newton-Cotes integration involves
points on the boundaries.
Hence, Newton-Cotes integration may
be effective for structural elements.



In principle, the integration schemes
are employed as in linear analysis:

• The integration order must be high enough
not to have spurious zero energy modes in
the elements.

• The appropriate integration order may, in
nonlinear analysis, be higher than in linear
analysis (for example, to model more
accurately the spread of plasticity). On the
other hand, too high an order of integration is
also not effective; instead, more elements
should be used.

Exam~le: Test of effect of integration order

Finite element model considered:
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10em

Thickness = 0.1 cm

\

10 em

P

P

E = 6 X 105 N/em2

ET = 0.0
v = 0.0
<Ty = 6 X 102 N/em2

M = 10P N-em



6-20 Formulation of Finite Element Matrices
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Calculated response:
M
My
2.0

4x4
Limit load ,----------- ----

1.5f----===~L--~~====----

My, <py are moment and rotation at
first yield, respectively

Gauss integration
_._--- 2 x 2
_ .. _ .. - 3x3
------4x4
--- Beam theory

1.0

0.5

2 3 4
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Problem: Design numerical experiments
which test the ability of a
finite element to correctly
model large rigid body
translations and large rigid
body rotations.

Consider a single two­
dimensional square 4­
node finite element:

~ plane stress
or plane strain
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Numerical experiment to test whether a
4-node element can model a large rigid
body translation:

Transparency
6-35

stress­
free

R

R

two equ~
M.N.O.
trusses \

This result will be obtained if any of
the finite element formulations
discussed (T.L., U.L., M.N.O. or linear)
is used.

Numerical experiment to test whether a
4-node element can model a large rigid
body rotation:

I"
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R

M.N.O. truss



6·22 Formulation of Finite Element Matrices
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When the load is applied, the element
should rotate as a rigid body. The
load should be transmitted entirely
through the truss.

element is stress-free

1force in spring

Note that, because the spring is
modeled using an M.N.O. truss
element, the force transmitted by
the truss is always vertical.

applied load

r originalI ~element

!~force resisted
by spring

After the load is applied, the element
should look as shown in the following
picture.

element-s--­
remains

stress-free
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This result will be obtained if the T.L.
or U.L. formulations are used to model
the 2-D element.
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