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DERIVATION OF ELEMENT
MATRICES

The governing continuum mechanics
equation for the total Lagrangian (T.L.)
formulation is

0 t 0
fOVoC@rsoers Soei}, dVv +J0Vosi} 80’!];} dVv

= t+At% —f &S'J' Boei}OdV
Ov

The governing continuum mechanics
equation for the updated Lagrangian
(U.L.) formulation is

t
ﬁv tCi}rs t€rs Btei} dVv +ﬁvt’7i} Smi} av

= tratgp _JtVtTiJ" 8tei}‘dv
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For the T.L. formulation, the modified
Newton iteration procedure is

(fork=1,23,..)

f oCiys Aoels Soey °dV + f ¢Sy SAom{? °dV
oy Oy

= t+Al% _f t+A('§Si(j',(_1) 8t+At8(k 1) Odv
Oy
where we use
t+Atui(k) _ t+Atui(k—1) + Aui(k)
with initial conditions
t+AtuI(0) _ tui, t+AtS(O) - tslp t+A(§8(O) _ 08.,
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For the U. L. formulation, the modified

Newton iteration procedure is
(ffork=1,2 3, ..)

ﬁ tCurs Aters ateu, th +f tTu, SA{T](k)t

— t+Atg{ _ t+AtTi(}k_1) 8t+Atei(jl.(_1) t+AldV

t+Atys(k—1)
where we use
trat ) trat k1) AUi(k)

with initial conditions

t+at 0) . t+AtT§0) =7, t+Atei(,°) = &

VAN
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Assuming that the loading is
deformation-independent,

HA‘Q{ =f t+A(;fiB 8Ui Odv +I t+A(;fiS 8u|S OdS
0

Y 0g

For a dynamic analysis, the inertia
force loading term is

f t+Atp t+Atui SUi t+AldV =J' 0p t+Atl-:|i aui Odv
l+AtV OV

ma'y be evaluated at time 0

\

If the external loads are deformation-
dependent,

J. t+AtfiB BU| t+Ath e t+AtfiB(k—1) SUi t+AldV
(+A(V H'A!V(k—”

and

I t+AlfiS SUIS l+AtdS = t+AtfiS(k—1) auls t+AtdS
t+atg 1+atgk-1)

NS
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Materially-nonlinear-only analysis:

fCIFS Aers ael} dV — t+Al% It+At (k—1) ael} dV

This equation is obtained from the
governing T.L. and U.L. equations by
realizing that, neglecting geometric
nonlinearities,

t+At — t+At — t+At
physical stress

\

N\

Dynamic analysis:

Implicit time integration:

t+At t+ At 0 _ t+At.
R = QRexternal J U| 8U|
loads

Explicit time integration:

T.L. J‘;V (;Sw 868.*°dV ='q
U.L. | Jt VtTij. Stei} 'qv = '@

M.N.O. f '3 de3dV = 'R
v
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The finite element equations corresponding
Transg;rency to the continuum mechanics equations are

Materially-nonlinear-only analysis:

Static analysis:
tK A!(i) - t+AtB _ t+AtE(i—1) (6.55)

Dynamic analysis, implicit time integration:
M t+AtU(i) + tK Au(l) — t+AtR _ t+AtF(i—1) (6.56)

Dynamic analysis, explicit time integration:
M'U="R-'F (6.57)

\—

N

Total Lagrangian formulation:

Transparency
-10 . .
61 Static analysis:

(KL + aKni) AUD = tratg _ t+atpi=1)

Dynamic analysis, implicit time integration:

M t+AtQ(i) + (5KL + &KNL) AU_(D
= THAIR _ t+AtEi-1)

Dynamic analysis, explicit time integration:
MU ="R~-dF

_J
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Updated Lagrangian formulation:

Static analysis:
(KL + K AU = AR — At

Dynamic analysis, implicit time integration:

M09 4+ (KL + K AUY

_ t+At t+At=(i—1
- B — t+A F )

Dynamic analysis, explicit time integration:

M'U="R-F

\_

The above expressions are valid for

« a single finite element
(U contains the element nodal
point displacements)

« an assemblage of elements
(U contains all nodal point
displacements)

In practice, element matrices are
calculated and then assembled into the
global matrices using the direct
stiffness method.

Transparency
6-11

Transparency
6-12



610 Formulation of Finite Element Matrices

Transparency
6-13

Transparency
6-14

Considering an assemblage of
elements, we will see that different
formulations may be used in the same
analysis:

THE FORMULATION
USED FOR EACH
ELEMENT IS
GIVEN BY

ITS ABBREVIATION

N

We now concentrate on a single element.

The vector & contains the element incremental
nodal point displacements

] lc I===| 1
R el i

'ﬂ::lcdnc

VAN
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We may write the displacements at any point in the

element in terms of the element nodal displacements:

Example:
X2

\

N

Finite element discretization of governing
continuum mechanics equations:

For all analysis types:

f °p t+mui Su; °dV—> SQT (opJ; ﬂT H °dv)t+AtQ
v vV

M

where we used U4
uz| =H

Us

=

displacements at a point within the element
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and

traigy = f v 24P Su; °dv + f A4S SuP °dS
oy 0
}
da" < f HT ™48 %V + f HST*44S °dS)
\Jov - - 0g - |

t+AtR
where Uy
Uz ||= H% 0
Us
on S

N\ (

Materially-nonlinear-only analysis:

Considering an incremental displacement u;,

f Ciyrs €rs dedV — 30" ( LEI CB. dV) ]
\Y

'K
where : ,
A Example: Two-dimensional
e =B plane stress element:

N’

a vector containing €11
components of e} | g = [ ezz:l
2

€12

J




Topic Six 6-13

and
f ‘o dedV — 80" ( f BLS dv)
\") \'
'

where 'S is a vector containing
components of ‘o

Example: Two-dimensional plane stress
element:

t

o t0’11

Z= 22
t
g12

~

N\

Total Lagrangian formulation:
Considering an incremental displacement u;,

Lv OCijrs 0€rs Soeij, OdV - S_QT ( J; (}B__I OQ (;QL odv) _Q
Vv

oKL
where

o€ =¢BL 0

a vector containing
components of oej

ANG
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-~
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6-21 [, d5480my°av > 8" (| dh. 45 8B, °av) @
A" v
oKnL
where
JS is a matrix ¢Bnw O contains
containing components components of
of (;Si} ) oUij
Transparency
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J , oSk 3oy °dV — 30" ( L oBl ¢S °dV>
0 ) \V]

’

oF
where ¢S is a vector containing
components of ¢S

_/
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Updated Lagrangian formulation:

Considering an incremental displacement u;,

j {Cijrs t€rs Stei}tdv — 30" ( J' y 1Bl «C 1BL th) a
ty t

o
Ke

where

e = }EL a

a vector containing
components of e;

~

N\

[ myomyiav— 80" ([ 18T 'T B 'av) 0
tV tv

Knw
where
'T is a matrix 'BnL 0 contains
containing components | components of
of t'Tij, tUij

~
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and

J:vtTi} Stei} v — BQTU:V }EE ti th)

F

where 'T is a vector containing
components of tTi}

« The finite element stiffness and mass
matrices and force vectors are
evaluated using numerical integration
(as in linear analysis).

* In isoparametric finite element
analysis we have, schematically, in
2-D analysis

+1 (+1
5=f_1 L B' CBdetJdrds

\\G
K —"-Z % oy G B

J
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s

And similarly

+1 +1
F f BTTdetJdrds

\\G
EiEﬁE_aa;gi} -

+1
f [ PHTHdetJdrds

M = 2 % ai}gi} \\G

ﬁ

Frequently used is Gauss integration:

Example: 2-D analysis

r, s values:
+(.7745...
0.0

All integration points are in the interior
of the element.

J L
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~

Transparency Also used is Newton-Cotes integration:
6-29

Example: shell element

5-point Newton-Cotes
integration in s-direction

Integration points are on the boundary
and the interior of the element.

Gauss versus Newton-Cotes Integration:
Transparency

6-30 « Use of n Gauss points integrates
a polynomial of order 2n-1 exactly,
whereas use of n Newton-Cotes
points integrates only a polynomial
of n-1 exactly.

Hence, for analysis of solids we
generally use Gauss integration.

» Newton-Cotes integration involves
points on the boundaries.
Hence, Newton-Cotes integration may
be effective for structural elements.

_J
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In principle, the integration schemes
are employed as in linear analysis:

¢ The integration order must be high enough
not to have spurious zero energy modes in
the elements.

¢ The appropriate integration order may, in
nonlinear analysis, be higher than in linear
analysis (for example, to model more
accurately the spread of plasticity). On the
other hand, too high an order of integration is
also not effective; instead, more elements
should be used.

~

Example: Test of effect of integration order

Finite element model considered:

Thickness = 0.1 cm

E =6 x 10° N/cm?
Er=0.0

v=0.0
b o) ¢ o, =6 x 10° Nem?

10.cm M = 10P N-cm

10 cm ‘

J
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Calculated response:
M
My
20}
2x2
- ./_ 4x4
Limitload ———————— e ——
1.5 ;i —
3x 3/ 7
1.0 Gauss integration
—_— 2x2
—_————.—3X3
—————— 4x4
05F —  — Beam theory
My, ¢y are moment and rotation at
first yield, respectively
0.0 L I 1 1 |
0 1 2 3 4 5 ¢
by

~
/

Problem: Design numerical experiments
. which test the ability of a
finite element to correctly
model large rigid body
translations and large rigid
body rotations.

— Consider a single two-
dimensional square 4-
node finite element:

__s— plane stress
or plane strain
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Numerical experiment to test whether a
4-node element can model a large rigid
body translation:

f kb P

two equy 7
M.N.O. >

trusses

I

This result will be obtained if any of
the finite element formulations
discussed (T.L., U.L., M.N.O. or linear)
is used.

~

\

Numerical experiment to test whether a
4-node element can model a large rigid
body rotation:

1

1

R

? M.N.O. truss

VAN

Transparency
6-36

Transparency
6-36



6-22 Formulation of Finite Element Matrices

_ When the load is applied, the element
Tmnzp;;e“cy should rotate as a rigid body. The

) load should be transmitted entirely
through the truss.

element is stress-free

\ applied load

[ force in spring

Note that, because the spring is
modeled using an M.N.O. truss
element, the force transmitted by
the truss is always vertical.

/

\

After the load is applied, the element

T should look as shown in the following
ransparency .

6-38 picture. _
applied load

original

element S— [ —-| __s—element

remains

stress-free [ ——s—force resisted

by spring

_

This result will be obtained if the T.L.
or U.L. formulations are used to model
the 2-D element.

J L
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