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* FIMTE ELEMENTS € AN

IN GENERAL RE CATE-
GORIZED AS

- CONTINUUM ELEMENTS
(soLip)

- STRUCTURAL ELEMENTS

IN THIS LECTURE

*WE COoNSIDER THE
2-D CONTINKWUM
)S 0 PARAMETRIC
ELEMENTS

*THESE ELEMENTS
ARE USED VERY
WIDELY

- THE ELEMENTS ARE

- WE ALSo POINT ouT

VERY CENERAL ELE-
MENTS FoR Gecop-
METRIC AND MATERIAL

NONLINEAR CONDITIONS

How GENERAL
3-D ELEHENTS ARE
CALCULATED USING
THE SAME PRoOCE-
DURES
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TWO- AND THREE-DIMENSIONAL
SOLID ELEMENTS

» Two-dimensional elements comprise
— plane stress and plane strain elements
— axisymmetric elements

* The derivations used for the two-
dimensional elements can be easily
extended to the derivation of three-
dimensional elements.

Hence we concentrate our discussion
now first on the two-dimensional
elements.

N\

X2

TWO-DIMENSIONAL
AXISYMMETRIC, PLANE
STRAIN AND PLANE STRESS
ELEMENTS
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Because the elements
isoparametric,
0 N 0.k 0
X1 = 2 h°xf , %

and

are

where the h¢’s are the isoparametric

interpolation functions.

y

-

X2

time t

Example: A four-node element
S

r
4
where
_1
h1—4
_1
h2—4
_1
h3—4
_1
h4—4

4
t t k
Xi = 2 hi "Xi
K=1
o 2 0k
Xi:k2_:1 hk “X;

1+ +s)
(1-n(1+s)
(1-n(1 —-s)

(1+n(1 -5s)

\
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Example: Motion of a material particle

Consider the material

particle at r = 0.5, s = 0.5:

Important: The isoparametric coordinates of
a material particle never change

\%imet

S

x4

~

A major advantage of the isoparametric
finite element discretization is that we
may directly write
t A t k t t Kk
U1=2hku1 ,UZZEhkUZ
k=1 K
and

N
k k
U1=k§_:1 hk U7 ; U2:k2 hi uz

L
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This is easily shown: for example,
A k
= 2 hi 'x
k=1
N
= > he Ot
k=1

Subtracting the second equation from
the first equation gives

Xi — XI Ehk(x.—ox!‘)

“——ﬂ——‘b—ﬁ——‘

Ui Wk

\—

~

The element matrices require the following

derivatives:

)
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These derivatives are evaluated using a

Jacobian transformation (the chain rule):
dhe [ ah | 8% | ahe | 8%
o |30 |30

ar Jd Xq| or Jd X2 or

ahi |l | 8%, | ok | %%

=lo| =+ | o
s |[0Xq| OS dXz2| 08
B = 7
1 I
In matrix form, s
e
o | _ 8% %] | ahe
ar ar or | [8%:
a_hk %% 8%z ohk
9s s 8s | [
e
°J

\

The required derivatives are computed
using a matrix inversion:

ahy | B
)] Nk
X1 _ OJ_ ] oar
LU
a°x2 0s
L _— L —

The entries in °J are computed using

the interpolation functions. For example,

i ahko

0 Xq _
or K=1

AN
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The derivatives taken with respect to
the configuration at time t can also be

evaluated using a Jacobian transformation.

o
ar
o
Js

atX1
h
(")tX2

3%
ar
3%
0S

dxe | | dh
ar 0'X4
o | dhw
0S 0'X2

. ahi ¢k
ah | e
t -1

\_

We can now compute the required
element matrices for the total
Lagrangian formulation:

Element Matrix

Matrices Required

t

OKL

t
OKNL

of

oC , dBL
S , Ba
S , ¢BL

_/
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We define oC so that

0S11 0€11

0522 ~ C 0€22 analogous to
0S12 *~ 120812 0S5 = oCi}rs 0€rs
0333 0€33

For example, we may choose

(axisymmetric analysis), — 1 v 0 v ]
1-v 1-v
1% v
C = E(1 —v) 1—v 1 0 1-v
T -2 0 0o 1-2v
2(1 —v)
14 12
1-v 1-v 0 1 _J

\—

\

We note that, in two-dimensional
analysis,

t t
0€11 = oU1,1 T oU1,1 oUr1 + oU21 ol21

t t
0€22 = glU22 +|oU1,2 oU12 + oUz2 oz,

2 0€12 = (oU1,2 + oU2.1) +|(<§U1,1 oUiq 2

t t t
+ oUz2.1 oU2,2 + oU1,2 oU1,1 + oU2,2 oU2,1)

t
U Ui\ Uy
oo = g + (oot oo
X1 \"xq/ %%q

=

INITIAL DISPLACEMENT
EFFECT
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and

oM

\_

0oM11

- % ((ou1.1)* + (oU2.1)°)

—h

omz2 = 5 ((ou1.2)® + (oUz2.2)?)

_ 1
2= oM21 = 5 (oU1,1 oU1,2 + oUz,1 oU2,2)

3(8)
oMs3 5 0}:

e

)
N

X1

rivation of ¢€s33, omaa:
X2
| ¢ time0 _time t+At
axis of
revolution
N
We see that
t+atyg t+AtdS t+ At
0 = 70
ds X
\°ds 1
X2

X1

N
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Hence t+Ac§$33 =

'uq 1 ('up \2
o, t 5 le
X1 2 X1 .
0€a3
t 2
us Uiy Uy 1 /uy
+ (o * (o) 3 + 3 (o)
% ' \%) %, " 2 \%,

0€33 oMa3

. J

o€a3

\

We construct ¢B. so that

0€11

022 .
2,812 | = 08 = (0Bio + dBu1) @
T o | \_|

0€33 .
oBL \‘\

contains initial
displacement effect

0€33 is only included
for axisymmetric analysis

VAN
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Entries in ¢Bro:

node k
Ul‘f | UE
_ I 1.7
ohk1 | 0 -
I oh uf 1

0 | k2 e -=3- node k
ohk2 | ok Uz |
hk/oX1 ! 0 :

included only for
axisymmetric analysis

This is similar in form to the B matrix used in
linear analysis.

~

\—

N

Entries in ¢By1:

node k
uf | us
i 5U1,1 ohk,1 I 3U2,1 ohk,1 ]
_ oU1,2 ohik.2 l oUz,2 ohi.2
oU110hk2 | oUz1 ohka2
+ oU1,2 ohi,1 l + duz,2 ohi,1
tU1 hi : 0
% %% |
The initial displacement effect for axsymmetic
analysis

is contained in the terms oui;, o -
1
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s

We construct ¢Ba. and ¢S so that

80" oBRL 0S 0BnL O = 0Sj domj

Transparency
7-21

Entries in ¢S:

_8811 0S12 0 0
0S21 0522 0 O
0 0 0S11 ¢Sz
0 0 ¢St 0S22
0 0 0 0 [0Ss| included only

for axisymmetric
analysis

o O o

o

-

~

Entries in oBn:

Transparency node k
7-22

ohks || {—=—1 node k

/ h'x41 0

included only for
axisymmetric
analysis

U\
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¢S is constructed so that
SQT C;EE (;_S_ = tS.* 8090‘,

Entries in ¢S:

t

0511

t

0922

t

cSi2 _

3833 _s—included only for
|| axisymmetric analysis

N\ (

Example: Calculation of ¢By, oBnL

0.1 , 0.2 |
‘ ‘ Plane strain
2 1 conditions
0.1
X2
t T2 1 [ ——timet
0.2 time 0
3 4
% 0.2 4
(0.1, 0.1) X

AN
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Example: Calculation of oBy, oBn.

X2

l Plane strain

0.1
/2
0.1
T T2/ 1
/
0.2 /
/
V&I )

g5

1 conditions

 <—timet

time 0

(0.1, 0.1)

X4

\-
-

Example: Calculation of ¢B, ¢Bne

X2

0.1

0.2

‘ Plane strain

0.2

[2

1/ conditions

% 0.2

maternial fibers
have only transiated
rigidly

(0.1, 0.1)

X4

J
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Example: Calculation of ¢By, 0B

0.1 | 0.2 ,
‘ \ Plane strain
2 1 conditions
0.1
X2
T 2/ 1 [ <—time't
0.2 time O
3 4
% 0.2
(0.1, 0.1) X

-

Example: Calculation of ¢B., 0B

X2

01, 02 |

|

’ Plane strain

0.1

0.2

1 conditions

B 2// [ —time t

timeO
material fibers have

stretched and rotated

%L—(,TA

7(0.1,0.1) X1
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Example: Calculation of ¢By, 0B

0.1 0.2 |
I Plane_ §train
2 1 conditions
0.1 s
X2
- .
2 1 [ <—timet

0.2 time 0
3 f
% 0.2

"(0.1,0.1) x1 At time O,

N

We can now perform a Jacobian
transformation between the ﬂ,
coordinate system and the ("x1,
coordinate system:

. . 6°X1_ d X2 _
By inspection, 7—0.1, or =0
60X1 ix_z__
Bs 0 g =0
0 _ 01 0 0 -
Henc g—[o 0_1] |°J] = 0.01
T B N
%y ar ’ 3s

J
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Now we use the interpolation functions
to compute gu1,1, ou1.2:

node| e | ey e | 9he o
k %% %2 % %z
1| 25(1 +s)| 2501 +n{0.1] 0.25(1 + s)| 0.25(1 + r)
2 [-25(1 +s)| 2501 —n|0.1]-0.25(1 + s)| 0.25(1 — 1)
3 [-2.5(1 — s)|—2.5(1 — n|0.0 0 0
4 | 251 —s)|-25(1 + )] 0.0 0 0
Sum: 0.0 05
N N’
t t
oU1,1 oU1,2

~

\

~

For this simple problem, we can
compute the displacement derivatives
by inspection:

From the given dimensions,

Hence

t

oﬁ =
t
oU1,1
t
oU1,2
t
oUz2,1

t _
oUz2 =

[1 .0
0.0

0.5]
1.5

=(;X11 -1 =0
=3X12

1
= OX21

= 0.5
=0

(}Xzz - 1 = 05
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We can now construct the columns in
oBL that correspond to node 3:

[ | —25(1—5)] 0 )
0 } _2_5(1 — r) (;QLO
|| 2801 -1 -25(1 -s)|

0 | 0 T
| =1.25(1 =) | =1.25(1 = 1) || 3By
—1.25(1 — ) | ~1.25(1 — g)

N\ (

Similarly, we construct the columns in
oBnwL that correspond to node 3:

 |-251-81 0 i
—251-1! 0
0 | -25(1-5)
] 0 1-2s1-9|

J
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Consider next the element matrices

required for the
formulation:

Element Matrix

updated Lagrangian

Matrices Required

t

KL

t
tKNL

F

C , B
‘T, Bam
ti ’ :QL

-

We define C so that

1511 €11
S22 _ €22
S12| € (2 €12
Saa t€33

analogous to
tS“. = tCij.rs ters

For example, we may choose

(axisymmetric analysis),

E{(1 —v)

C=marni-)

14 14
Vo= 0 7=
v v

=y | 0 3=
1-2v

0 0y O

v v 0 1
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We note that the incremental strain
components are, in two-dimensional
analysis,

e =00 _

€11 = T = tU1,1
atX1

€22 = U2,2

2 €12 = tUq,2 + 1U2;1
t
t€33 = U1/ X1

~

and

M1 = % ((u1,1)% + (u2,1)?)

M2z = % ((1,2)° + (22)%)

1
Mz2=M21 =3 (1,1 tU1,2 + tU2,1 tU2,2)

=1(ﬂ)2
tN33 2 tx1

L




Topic Seven 7-23

We construct B, so that

[ €11
t922 = te == :BL 0
212 - -
€33 only included for

axisymmetric analysis

N

Entries in {BL:

node k
uf L ub
_ | —- -

it | O

I uk T
0 | thk,2 __%_ node k
o | s uz |
h/' x4 | 0 :

} 4

only included for axisymmetric analysis

This is similar in form to the
B matrix used in linear analysis.

VAN
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We construct iBn. and ‘T so that
50" BAL T B O = tTij, O

Entries in 'T:

“Tii T2 00

Tor Tz O 0
0 0 T 'Ti2
0 0 "To1 T

0O 0 0 0

ths included only

for axisymmetric

N

analysis
Entries in {Bn.:
node k
uf ub
thk,1 } 0 :
thxe | O uk }
0 | h -——-| node k
| k1 ug |
0 I e
ho'xs | O

included only for
axisymmetric analysis

AN
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'T is constructed so that

50" 1Bl ti = tTij, Stei}

. . to .
Entries in 'T: T,
t
Ta2

t
T ,

t—1—2~ included only for
—33_| axisymmetric analysis

N\ (

Three-dimensional elements

X3
tk tok  tok
(x1, X2, Xa)
node k
X2 4
ok O k Ok
X1 ("x3, X2, Xa)

J
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Here we now use

N N
0Lk o oLk
oX1 = k21 he X1 , X2 = '241 hk “x3

0

X3 = hKOng

Mz

k=1

where the hy's are the isoparametric
interpolation functions of the three-
dimensional element.

.

N\

Also

Z

N
%= hXf , Xa= 3 he'X5
K= K=Y
N
'Xz = k21 hk txg

and then all the concepts and
derivations already discussed are
directly applicable to the derivation of
the three-dimensional element matrices.

_J
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