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PROFESSOR: Ladies and gentlemen, welcome to this lecture on nonlinear finite element analysis

of solids and structures. In the previous lectures, we considered the general

continuum mechanics formulations that we use for nonlinear finite element analysis.

And we also introduced briefly the finite element matrices. In the coming lectures, I

would like now to discuss with you these finite element matrices in more detail.

Finite element matrices can generally be categorized as continuum elements. We

call them sometimes also solid elements. The truss element, for example, would be

a continuum element. The 2D element, the 3D elements would be continuum

elements. The 2D and 3D elements we may also call solid elements. And as

another category, we have the structural elements. Structure elements are beam

elements, plate elements, shell elements.

Of course, a distinguishing feature between the structural elements and the

continuum elements is that continuum elements carry only nodal point

displacements as degrees of freedom, whereas the structural elements have also

rotational degrees of freedom at their nodes.

In this lecture, I like to talk about the 2D continuum elements, the 2D plane stress,

plane strain, and axisymmetric elements. These elements are used very, very

widely in the engineering professions for all sorts of analyses-- plane stress

analyses of plates, plane strain analysis all dams, axisymmetric analysis of shells,

and so on and so on.

The elements are very general, and can be used for geometric and material

nonlinear analyses. I also like to then, at the end of the lecture, talk briefly about the

3D elements that are also very widely used, and that are really formulated in the

same way as the 2D elements. Therefore, once you understand to 2D elements

very well, it is fairly easy to generalize these concepts or use these concepts also to

construct and formulate 3D elements.
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Let me now go over to my view graph and discuss it with you the information that I

have on these view graphs. Once again, I like to talk about plane stress, plane

strain elements, and axisymmetric elements in this lecture. And these derivations

that we will be discussing, as I said already, are directly applicable also, or can

directly be extended to three dimensional elements.

Let's look at a typical 2D element, two dimensional element. This is a nine-node

element in the stationary coordinate frame, x1, x2. x times 0, we would see this

element here. Notice there are nine nodes, 1 to 9. Notice that we will be talking

about the isoparametric elements. And these have the R and F auxiliary coordinate

system, the natural coordinate system, just like in linear analysis.

X times 0, to the element is here. And at time t, the element is here. Notice that the

element has undergone large displacements, large rotations. You don't see very

large rotations here, but the rotations could be very large. And certainly also large

strains. You can see directly that the element here has grown from its size, so

certainly it must have been subjected to large strains.

So we consider really a very general motion. But remember, once again, that the

coordinate frame, x1, x2, the Cartesian coordinate frame, remains stationary, as we

have discussed in the previous lectures.

Because the elements are isoparametric elements, we can directly write these

expressions. That 0x1's, the coordinates of the material points in the elements at

time 0, are given via this interpolation. The hk are the interpolation functions that we

also use in linear analysis.

The 0x1k are the nodal point coordinates. k refers to the nodal point. 1 refers to the

coordinate direction. 0 refers to the fact that they're looking at the configuration at

time 0. This 0 is, of course, the same 0 that we see here. This one is the same one

that we see there. We are summing, of course, of all the nodes. And for the element

that I just had on the previous view graph, it would be nine nodes, so n is equal to 9.

We have a similar expression for the x2 coordinate direction. In other words, 0x2 is
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given like that. This is the x2 coordinate of a material particle, and it's expressed in

terms of the nodal point coordinates of the elements expressed in terms of the

nodal point coordinates of the element.

The same expression is also applicable at time t. Notice all we have exchanged is

the 0 to a t, 0 to a t. And similarly here for the x2 coordinate. 0 to t, and similar here,

0 to t.

Let us look at an example. Here we have depicted a four-node element. The

original element lies here. It's black. The R and F system, of course, is the natural

coordinate system. This is a configuration of the element at time 0. It moves into

that configuration to time t, or it is at, in this configuration, at time t.

Notice that these are the interpolations that I just introduced you to. The hk

functions are, of course, interpolation functions. Once again, these are here, the

nodal point coordinates. k is the nodal point, t is the time that we're looking at, xi

means the i's direction. i, of course, in this particular case, 1 or 2. Similarly, for the

original geometry of the element.

The hk's are listed out here on the right-hand side. Notice these are the same

interpolation functions that we are using in linear analysis. No difference there. For

example, h1 is given right here. And this is, of course, the interpolation function

corresponding to nodal point 1, as shown right there. You are probably very familiar

with these interpolation functions, and I don't need to go into details there.

But let us look now at the following, namely what had happened in the motion to a

nodal point. A typical nodal point would be the second nodal point here. The original

coordinates are as shown. And these original coordinates have grown, or have

become larger as shown here, because this node here has moved to that new

position. Notice this is now here, the coordinate of node 2, of course, x1 coordinate.

This superscript 2 means node 2, this 1 means 1 direction. t means time t. Here we

have 1 and 2 and time 0. Notice here, 2, 2 times 0. This 2 here, the bottom 2,

means coordinate direction 2. This top 2 means nodal point 2. This is a convention
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that we want to use. It is a bit heavy, but we have to somehow use a convention to

label our coordinates, and this is the one that I chose some time ago.

Similar here for the 2 coordinate, x2 coordinate, at time t. tx2 at nodal point 2. That

upper 2, once again, be the nodal point 2. And of course, this would also apply for

all the other nodal points.

If we look at the motion of a material particle that is in the element, we would obtain

that motion from the motion of the nodal points. Here we have now, in a nine-node

element that is originality here, and moves into this position. At time t it is in this

position.

Let's look at one particular particle within the element. Here we have one particle

right there. Notice that this particle here is given via this relationship here. r and s

are both 0.5-- you see r positive means this direction, s positive means that

direction, r and s 0.5 is there. We would use r and s equal to 0.5, substitute into hk.

And then, of course, we have 9 such hk's, substitute r and s equal to 0.5 into each

of these hk's. And sum out, this right-hand side, to get the coordinate, the

coordinates-- there are two, of course-- of this point here, this material particle, at

time 0. That's how we would obtain the coordinates of that material particle.

Now, at time t, we proceed much in the same way. Here we have the equation. We

would, again, take hk at r equal to 0.5, s equal to 0.5, for all case, and multiply these

hk values by these values here, which of course, are given because we must know

where these nodal points have arrived at.

So we can evaluate the right-hand side to directly get these two values, there are

two such values, tx1 and tx2, which gives then the position of this material particle at

time t. Notice that the isoparametric coordinates of a material particle never change.

You put that here in red because that is very important to keep in mind. Of course,

the actual coordinates of the particle change, because that particle moves through

space in a stationary coordinate frame, x1 and x2. But we are in s coordinates. The

natural coordinates do not change.
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Well a major advantage of the isoparametric finite element analysis is that we can

directly write, of course, at the displacements, are given as shown here via the

nodal point displacements. tU1 is the displacement of the material particle into the

one direction. The hk's are the isoparametric interpolation functions. And these are

the nodal point displacements. k being the nodal point displacements of nodal point

k. Similarly, for the 2 direction. And this holds at time t, and it also holds for the

incremental displacements from time t to time t plus delta t, as written right here.

That this is, in fact, 2 can easily be shown from the coordinate interpolations. You

see we had already these two interpolations, and all we need to do now is subtract

on the left-hand side, and on the right-hand side, to obtain this equation here. And

what are left with here, of course, must be the displacement of the material particle

that we're looking at-- tUi. And here, we must have the displacement of the nodal

points. And these are denoted as tUik. And that is exactly the relationships that we

were just dealing with, tUi is equal to hk tUik.

There is one very important point that I like to point out to you. Namely, that these

equations show directly that if we use a finite element mesh that is originally

compatible, in other words, compatible in a linear analysis, than this finite element

mesh will remain compatible throughout the motion, throughout the large

deformation motion. And that is a very important point. That we can say that the

mesh which originally is compatible will remain compatible throughout the analysis.

That follows directly from these equations.

The element matrices that we need, of course, require derivatives, and these are

obtained much in the same way as in linear analysis. We need this derivative here,

partial tUi, with respect to the original coordinates. This is the actual derivative. This

is the abbreviation that we used in the earlier lectures. And we obtained this

derivative by taking the differentiation of the hk's with respect to the original

coordinates. Of course, these are numbers. These are the nodal point

displacements. So it's this one that we really need to evaluate this derivative.

Similarly, for the incremental displacements. We want to take the differentiation of
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the incremental displacement with respect to the original coordinates. It's achieved

this way. Once again, here we have an expression that we need to evaluate, which

also goes in here, of course. And as we evaluate, as we will just now see, much in

the same way as in linear analysis.

Notice, here we have written down the partial of Ui with respect to the current

coordinates obtained as given here. Of course, these are the nodal point

displacement increments, and here we have the differentiation of the hk's with

respect to the current coordinates now. So once we have these evaluated, these

expressions evaluated, we can obtain all of the derivatives that go into the strain

displacement matrices that we want to have for the element.

The derivatives are evaluated using the chain rule, just as in linear analysis. We are

using that partial hk with respect to r, is given as partial hk with respect to x1 times

partial x1 with respect to r, et cetera. Of course, these are here the derivatives that

we want to calculate. Notice, this is what we need to calculate in order to get these.

And these here, just like in linear analysis, go into the Jacobian matrix written down

here. Here we have the Jacobian matrix.

And this is what we want. Therefore, we need to invert the Jacobian matrix, as in

linear analysis. And we obtain via this relationship here, the required derivatives.

The entries in this matrix involve derivatives of this form. Partial x1, 0x1 with respect

to r, with respect to s and so on.

And those are obtained here as shown on the right-hand side. Notice here, of

course, we only need differentiations with respect to r, with respect to the natural

coordinates. And since the functions hk are a function of r and f, we can directly

evaluate these kinds of expressions that go in the Jacobian matrix, and the inverse,

of course.

If we want to take derivatives with respect to the current coordinates, we proceed

much in the same way. This is the relationship that we arrive at by simply

substituting instead of the 0xi, the txi in to the Jacobian matrix, and of course, into

the expressions that are in here.
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So here we have a Jacobian matrix that is giving the derivatives of the current

coordinates at time t with respect to the natural coordinates. Such an element is

obtained as shown here. It involves again only the differentiation of the interpolation

functions with respect to the natural coordinates. Here, of course with respect to s,

because we want to differentiate with respect to s. Of course, these are the nodal

point coordinate at time t, which are known. We invert this relationship here to

obtain the differentiation that we need to have.

We are now ready to compute the required element matrices for the total

Lagrangian formulation. And the element matrices that we want to compute, of

course, our those established in the early lectures. The matrices that go into

evaluating these matrices are listed here. Here, of course, the tangent constitutive

relationship, which we will talk about much later. Not in this lecture. Here we have

the linear strain displacement matrix, the nonlinear strain displacement matrix. Here

again, the linear strain displacement matrix, a stress vector, and a stress matrix.

Let's see now how these matrices look for the two dimensional case.

The constitutive relation, just very briefly-- again, much more detail will be given in a

later lecture-- would be relating the increment in stress to the increments in strain.

Notice there's a 2 here, and this is the matrix which is established from this

relationship here. In the early lectures, we used this relationship, the tensor

notation. Well we have now a matrix notation, and this is the relationship with that

matrix notation.

C for a linear elastic material would look as shown here, and you are familiar with

this relationship from linear analysis. It's the same matrix that we encounter in linear

analysis. Of course, e being Young's modulus, nu being Poisson's ratio.

We also derived in the early lectures the expression for the incremental strain

terms. And here they are listed out. We have derived these right-hand side

expressions. We notice that what is here underscored by a blue line was the initial

displacement effect. And is this initial displacement effect, of course, is a particular

in gradient off the total Lagrangian formulation, as we discussed in the early
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lectures.

The nonlinear strain terms that we also derived in the earlier lectures, are listed

here for the two dimensional case. We have seen all these expressions on the

earlier view graph, except that we use then additional notation, in other words, a

notation that involved k and j's and i's, and we have to sum over k. Well if you do so,

you directly arrive at these relationships here.

It's an interesting point to derive this expression and the linear strain part for the

hoop strain-- this is called the hoop strain-- in the axisymmetric case. And let us look

at that derivation a bit more in detail. Here we have an axisymmetric element in its

original configuration. At time 0 it has moved into this configuration up to time t plus

delta t. Since we want to get the incremental strain from time t to time t plus delta t,

we're looking at the configuration of time t plus delta t in this derivation.

Notice that this here is the axis of revolution, which we denote as x2, x1 is this axis.

And if we look as a plan view onto this element, we would see this x1, x2 coming out

of the view graph, and x3 going down like this. Notice this here we label as 0ds, the

initial length of a hoop fiber, so to say. In fact, this hoop fiber starts right there at

0x1, which is, and I have to go now upwards to the upper graph again, which is

nothing else than the starting point of that fiber.

In other words, this green dot, this green dot is nothing else than the start of this

arrow. I could say let's line them up like that. So this arrow here goes really into the

view graph up there. If you look further to the right here we see that we have also a

blue arrow, of course, curved. We call it the hoop, it's a circle really, the radius

around this origin that we're looking at, like that.

And notice that the start of this arrow here is this blue dot right there. A material

fiber, a material particle, let's put it this way, a material particle that has moved from

here to there causes, in axisymmetric analysis, this fiber here to take on this length.

And of course, the change in this length gives us the hoop strain. Let us look at this

relationship here, because that gives us a relationship between the change in the
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length of the fiber, green fiber, blue fiber, so to say, in plan view. And that is nothing

else than 0x1 dividing t plus delta x1. Why is that the case? Well you see it by

geometry from this picture. And we will use this expression here now to evaluate the

actual strain.

We find that the Green-Lagrangian strain can be written as in this form. We

substitute the expression that we just obtained for this relationship. We substitute

the displacements. Displacements to configuration t, and incremental displacement

from t to t plus delta t divided by the 0x1, of course, still here. We then go through a

number of steps of arithmetic, I'm sure you can easily do those, and you arrive at

this result. If we look at this, we find that this here expression only involves the

displacements to time t. And that must, therefore, be the Green-Lagrangian strain at

time t.

Notice that this expression here involves incremental displacements, linear

incremental displacement, no products of them, and the initial displacement at time

t. This is the initial displacement effect, which we always have in the total

Lagrangian formulation. This is a linear strain term involving only the incremental

displacement. And this the total linear strain increment.

Notice this is a total nonlinear strain incremental. It involves the incremental

displacement u1 squared, and that's why it is a nonlinear strain increment. Of

course, this total here is the incremental strain. This total is the incremental strain.

It's a nice derivation that gives some insight into how these expressions that I had

already on the earlier view graph are arrived at.

Well we are now ready to construct the B matrix. On the left-hand side, we would

have, of course, the strains. If you look at the linear strain displacement matrix, we

have the linear strains here. Notice there's a 2 here because of the 0e12 being

equal to 0e21. We simply put 2 times 0e12 in here. And this is a total linear strain

increment. Here we have a sum of two matrices giving us a total linear strain

displacement matrix. This is the one that does not include the initial displacement

effect. That one includes initial displacement effect. And here we have the nodal
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point incremental displacement the way we defined them in an earlier lecture.

Well the entries in t0BL0 are shown here, involving of course, four-nodal point k

derivatives of the interpolation functions corresponding to nodal point k. Notice that

this last row is only included if we are dealing with an axisymmetric analysis. And

notice that these are then exactly the terms that we also have in linear analysis.

So no surprises here. No new entries, as a matter of fact, when compared to linear

analysis. Except that we see a 0 here, meaning, of course, that we're taking a

differentiation with respect to the original coordinates. Generally, in linear analysis, if

you look at the book, of course, you would not see this 0 here because it's not

necessary to have that 0 there. We always take differentiations with respect to the

original geometry.

Maybe a quick word also how we want to read this here. Notice these two entries

here, of course, nothing else in these two blue entries. Because these two entries

multiply these two columns, for readability I put this entry there, put this entry there,

so that you directly see this column here corresponds to u1k, and this column

corresponds to u2k. Of course, both columns correspond to node k.

If we look at the matrix t0BL1, which includes now the initial displacement effect, in

fact, introduces the initial displacement effect to the total strain displacement matrix,

it looks this way. Once again, this is a contribution coming corresponding to u1k

This is the contribution corresponding to u2k. And notice here you have the initial

displacement effect appearing right here. All initial displacement effects. And

similarly here, initial displacement effect.

Once again, if you don't have an axisymmetric analysis, in other words, you have a

plane stress, plane strain case, you would drop this last row. We construct the

t0BNL and T0S matrix. Next for the geometric stiffness matrix, and we talked about

this expression in the earlier lecture, notice that this here is giving up, of course, the

matrix, the k matrix, that we're looking for, this part here. And the F matrix looks as

shown here.
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I pointed out very strongly in the earlier lecture that we construct the S and the BNL

such that when this product is taken, we get directly this one. Because this is basic.

This is obtained from the continuum mechanics formulation. And we want to

evaluate this. Therefore, we construct the BNL and S such that this product, indeed,

gives us this contribution. And as is constructed as shown here. The BNL is

constructed as shown here. Notice the u2k contributions, the u1k contribution for

node k.

Finally, we also need the t0S vector, hat vector. I pointed out in the earlier lecture

that this vector and this matrix are constructed in such a way that this product here

gives us exactly this expression here. This is basic coming from continuum

mechanics, and this is what we have to capture. The entries in F hat are given here.

And with this then, we would be ready to actually calculate all the matrices and

vectors for the total Lagrangian formulation.

Let us now look at an example to reinforce our understanding of how all of these

matrices are constructed, how they are evaluated. Here we have the following case.

A four-node element originally in the configuration shown in black. Four nodes, as

you can see, one, two, three, four. This element moves from time 0 to time t into

this configuration. The RAD configuration. Node 0.1 move there, node 0.2 move

there.

Notice that the element has stretched and sheared over, but it has only stretched

into the vertical direction, not into the horizontal direction. Let us identify the lengths,

values that we have to deal with. 0.2 here, 0.2 there. Notice that the displacement

upward is 0.1. And the shearing over, so to say, is 0.1. We want to consider plane

strain conditions. And the problem that we like to pose is calculate these two

matrices, the linear strain, and the nonlinear strain displacement matrix for this

particular case.

Let's first look now a bit at what's happening here to the material fiber. If we look at

the horizontal material fiber, shown here in black in the original configuration, we

notice that these material fibers are simply translated rigidly over horizontally. As
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shown here via the red arrows. So these black material fibers lying horizontally are

simply sheared over rigidly, as shown by the red arrows. 2 time t, of course.

Let's look now at the vertical fibers in this problem. Let's see what has happened to

them. Here we have the vertical fiber shown in black in the original configuration.

Let's see how they end up in their final configuration. We see that these fibers have

actually stretched, they've become longer, and they have also rotated over.

Well this is the kinematics that we are looking at. And let us now attack the problem

of constructing, once again, the linear strain displacement matrix, and the nonlinear

strain displacement matrix. We do so by first identifying which is the isoparametric

coordinate system that we use. That coordinate system is shown here, r and s.

Let us then now start this problem. And we identify simply by inspection really

because it's a fairly simple geometry that we're dealing with. That this differentiation

is nothing else than 0.1, this differentiation is 0, that one is 0, and this one is 0.1. Of

course, these are the elements that go into the Jacobian matrix, as I discussed

earlier.

We put these elements into this 2 by 2 matrix, calculate the determinant, interesting

to note what the value is. That one is needed, of course, later on in the numerical

integration of the matrices. And we also recognize that to obtain this derivative of an

interpolation function, we need to invert this matrix here.

This 0.1 inverted gives us 10, and that is this 10 right there. Therefore, we have

now partial with respect to x1, 0x1 is 10 times partial with respect to R. Of course, in

the actual expression, we would put hk's in here, and hk's in there. Similar we get

the differentiation with respect to x2. We will use this expression here, putting the

actual hk's in there and in there.

Well this is some preparatory work to actually complete the problem of constructing

the linear strain and nonlinear strain displacement matrix. And I think this is actually

a very good point where you might want to sit back and try to complete the whole

problem.
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Ladies and gentlemen, welcome again. I hope you've had a close look at the

example, and surely I would be very interested in knowing how it went. But let us

now look at the solution. We already discussed that for this example, the Jacobian is

given by this matrix here. And therefore, these are the differentiations that we can

directly use. Notice, of course, we need the differentiation with respect to the x1

coordinate, and with respect to the x2 coordinate of all the interpolation functions.

One way to proceed now is to make a little table where we have here in this column

the nodes, we have in this column here the differentiations that we need, partial hk

with respect to 0x1. Further differentiations here, partial hk with respect to x2.

Notice that the Jacobian, the inverse of the Jacobian matrix being 10, makes a 1/4

equal to 2.-- 1/4 times 10 being equal to 2.5. So that's why you see the 2.5 here.

These are the nodal point displacements, which, of course, are given for this

particular case. And with these nodal point displacements given, and these

differentiations calculated as listed here, we can now evaluate these products here.

And that is done as shown in these columns.

Notice the sum of these gives us these differentiations here, which go into the initial

displacement effect of the strain displacement matrix. Well like that, of course, you

can also calculate the differentiations of the t0u21 and the t0u22. And both these

terms are also required in the initial displacement effect of the strain displacement

matrix.

Another way to proceed, to get this initial displacement effect, is to evaluate the

deformation gradient. In an earlier lecture, we talked about the deformation gradient

and it's listed right here. It's a 2 by 2 matrix because we're talking about a two

dimensional motion. And here you have, for example, partial tx2 with respect to 0x1.

Here you have partial tx1 with respect to 0x1. 0x1, et cetera. And if we take this

deformation gradient or the elements of that information gradient, we can directly

obtain these differentiations here.

In other words, t0x11 minus 1 must give us this expression here. t0x12, being that

one here, gives us tu1 with respect to 0x2, in shorthand notation written as shown
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here, et cetera. So we can obtain, in other words, these elements also from the

deformation gradient.

Let us now look at how the columns of the strain displacement matrices look. We

simply substitute into the general expressions that I gave you earlier, and here we

have the t0 be a 0 entry for node three. Of course there are eight columns

altogether because we have a four-node element. We just showed two such

columns here for-- namely, those corresponding to node three. Similarly, for t0BL1,

we get these entries here. Once again, also for node three, of course.

Similarly, we can also construct the corresponding columns in the t0BNL matrix. And

these columns are given right there. Once again, for node three. This is, of course,

also a matrix that have altogether eight columns, because there are four nodes,

eight degrees of freedom.

Let us now, as a next step, consider the updated Lagrangian formulation in the

general plane stress, plane strain, axisymmetric case. In the updated Lagrangian

formulation, we have identified earlier, in an earlier lecture, that we need these

matrices and that vector. This is, of course, a linear strain stiffness matrix, that's a

nonlinear strain stiffness matrix, and that is the force vector that corresponds to the

internet element stresses.

The matrices that go into the calculation of these matrices are listed here. The

tangent material relationship, the linear strain displacement matrix go into the

calculation of this k matrix. This stress matrix, and that strain displacement matrix,

the nonlinear strain displacement matrix, these two quantities go into the calculation

of this k matrix. And this stress vector, and that linear strain displacement matrix

goes into the calculation of that F vector. We already derived that all earlier in an

earlier lecture.

The stress strain matrix is listed here. Notice that we have the incremental stresses.

Of course, these are increments in the second Piola-Kirchhoff stresses from time t

onwards. That's why you have the t here. That's why this t corresponds, of course,

to the updated Lagrangian formulation. Here we have the material tensor, here we
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have the strain terms.

Once again, the 2 that I pointed out early already for the total Lagrangian case as

well. Of course this matrix here, contains the elements of the material tensor, tCijrs,

which we used earlier when we talked about the continuum mechanics formations.

Well for the linear elastic case, we would simply use the very familiar stress strain

law that we are using also in linear analysis. Young's modulus, Poisson's ratio. So

this is one typical case for this C matrix. Of course, we will discuss later on in later

lectures how we construct the C matrix for all sorts of material conditions.

We need for the B matrix, for the linear strain displacement matrix, these entries

here, meaning we need these differentiations. Notice partial u1 with respect to tx1 is

in shorthand notation written as shown here. te22 is equal to that element, and

similarly we go on. Notice this, of course, is again, the hoop strain.

For the nonlinear strain displacement matrix, we need to look at the nonlinear strain

terms. And the nonlinear strain terms are listed out here now. We identified these

strain terms earlier when we discussed the updated Lagrangian formulation in an

earlier lecture. Of course, at that time, the strain terms were represented in terms of

ijk indices. Now we have to simply put i and j equal to 1, for example, and k equal to

1, and equal to 2, and you will directly obtain from the earlier expression that I

presented to you this term here. And similarly, you obtain all the other terms as well.

By the way, the hoop strain, the linear, and here we see the nonlinear hoop strain,

expression would be derived in the same way as we have done it in this lecture for

the total Lagrangian formulation. It would actually be a good exercise for you to do

so one and see how that goes. We construct the ttBL matrix to capture the total

strain, total linear strain, listed in this vector here as shown by this equation. Of

course, here we have the nodal point displacements. The nodal point displacements

are in this vector. Denote always that these are the discrete nodal point

displacements.

This last term, of course, we only introduced in axisymmetric analysis. The entries in
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this ttBL matrix are shown here for a typical node k. We use the same kind of

picture as for the total Lagrangian formulation. Notice here are the actual

displacements, the way they would appear in a vector. But since this element here

hits this column so to say, we have written it here once more in blue. This element

here hits this column, and we have therefore written it here once more in blue. So

this is really the column corresponding to the case node and the u1, the 1 direction.

This is the column corresponding to the case node and the 2 direction.

If you compare this matrix with the matrix that we use in linear analysis, you would

see that the matrix looks very similar, except that in linear analysis you would not

have this t, or you don't put that t there in general because the t would, of course,

be actually the 0 configuration because all the differentiations are referred to 0

configuration anyway. And it is common to not have an index down here. If you look

at this textbook, chapter five, you would, for example, see there expressions such

as this without this t there.

So there's really not much of a surprise right here. You will surely see that this is the

right relationship to use in the B matrix based on your knowledge of linear analysis.

The expression of the nonlinear strain displacement matrix and the stress matrix

are these two expressions are constructed in such a way as to have that this

product on the left-hand side is equal to that expression there. I pointed that out

already earlier, that on the right-hand side this is the continuum mechanics variable,

and this continuum mechanics variable is, of course, the basic quantity, the basic

quantity that we actually want to capture. And we construct this matrix and that

matrix such as to do so. I should just point out there should be no bar here. Of

course, this is a tensor quantity, it's not a matrix, and so there should be no bar

there. That was a little error on my part.

The entries in the t tau are given right here. The last row and column are, of course,

only included if you deal with an axisymmetric analysis. ttBNL is shown here. Notice

again, differentiations with respect to time t. And the last row is only included if you

have an axisymmetric analysis.
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Finally, we want to also construct our stress vector such that when it is entered here

with the BL matrix that we already have defined, we capture via this product here

exactly that term. This is the term that is basic, that we have derived from the

continuum mechanics formulation. This is what we want to capture, and we do so by

this expression. And t tau hat is given right here. It lists all the stresses really,

including the hoop stress if you have an axisymmetric analysis.

This completes what I wanted to say about the two dimensional elements. We

talked about the total Lagrangian formulation, and the updated Lagrangian

formulation of these elements. In other words, we really presented the matrices

corresponding to these formulations in quite some detail. These details that we

discussed for the two dimensional elements are also almost directly applicable for

the three dimensional elements.

And here we have a typical eight-node element in a stationary coordinate frame, x1,

x2, x3, in its original configuration. The nodal point coordinates are listed here.

Notice k, of course, stands again for the node k. 1, 2, 3 stands for the directions 1,

2, 3. And the left superscript here stands for the time 0, the configuration 0. The

element moves from time 0 to time t up to this configuration here. And the nodal

points now are tx1k-- nodal point coordinate I should have said. Now tx1k, tx2k,

tx3k.

The notation is much the same as we have been using in two dimensional analysis.

Of course, we now have a third coordinate, the x3 coordinate also in the

formulation. We now use interpolations much the same way as for the two

dimensional elements. For the original configuration, we have these interpolations.

Notice, the third direction enters now. Once again, these are the interpolation

functions. These are the nodal point coordinates corresponding to the 1 direction.

These are the nodal point coordinates corresponding to the 2 direction, and so on.

Of course, we now also have to introduce the nodal point coordinates

corresponding to the 3 direction. And if the number of nodes, if you have an eight-

node element, and of course is 8. These are the interpolations used for the original
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geometry of the element, and for the configuration at time t, we use these

interpolations.

Notice these are now the nodal points coordinates corresponding to time t. We use

still the same interpolation functions, of course. And N is the same number as for

the 0 interpolation, or rather for the interpolation of the original geometry. In other

words, for the eight-node element that we briefly considered, N is in each case

equal to 8.

We use these expressions, we subtract from tx1 the 0x1 from tx2, the 0x2

expression from tx3, the 0x3 expression, and directly obtain the interpolations for

the displacement of the elements. And once we have the displacement

interpolation, we, of course, can directly find the derivative of these displacement

interpolations to obtain the strain interpolations. And these expressions then, the

derivatives of the displacement interpolation, enter into the construction of the strain

displacement matrices.

So we see that basically, the same procedure that we discussed with two

dimensional analysis is directly applicable to the three dimensional analysis, the only

difference being that the third direction, x3, has to be interpolated, the

displacements have to be carried along corresponding to the third direction, et

cetera.

This then brings me to the end of what I wanted to say in this lecture. Thank you

very much for your attention.
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