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Topic 8

The Two- oded
Truss Element­
Updated
Lagrangian
Formulation

• Derivation of updated Lagrangian truss element
displacement and strain-displacement matrices from
continuum mechanics equations

• Assumption of large displacements and rotations but
small strains

• Physical explanation of the matrices obtained directly by
application of the principle of virtual work

• Effect of geometric (nonlinear strain) stiffness matrix

• Example analysis: Prestressed cable

Section 6.3.1

6.15,6.16



TRUSS ELEMENT DERIVATION

A truss element is a structural member
which incorporates the following
assumptions:

• Stresses are transmitted only in the
direction normal to the cross-section.

• The stress is constant over the cross­
section.

• The cross-sectional area remains
constant during deformations.

We consider the large rotation-small
strain finite element formulation for a
straight truss element with constant
cross-sectional area.
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Elastic material with
Young's modulus E

Cross-sectional area A

Element lies in the Xl - X2

plane and is initially aligned
with the X1 axis.
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The deformations of the element are
specified by the displacements of its
nodes:

time 0 t Ul Xl

Our goal is to determine the element
deformations at time t+~t.

!!Pdated Lagrangian formulation:

The derivation is simplified if we
consider a coordinate system aligned
with the truss element at time t.



Written in the rotated coordinate system,
the equation of the principle of
virtual work is

JVt+Ll~s~ot+Ll~Ei} tdV = t+Lltm

As we recall, this may be linearized to
obtain

r tC~ijrS te rs Otei} tdV + r tfi}odli} tdV
Jtv Jtv

= t+ Lltm _ r tTi}Otei} tdV
Jtv
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Because the only non-zero stress Transparency
component is tf11, the linearized 8-6

equation of motion simplifies to

r tC 1111 te11 Ote11 tdV + r tf11 OtTl11 tdV
Jtv Jtv

= t+Lltm - r tf11 Ote11 tdV
Jtv

Notice that we need only consider one
component of the strain tensor.
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We also notice that:
tC 1111 = E
t- tp
T11 = A

tv = AL

Transparency
8-8

The stress and strain
states are constant
along the truss.

Hence the equation of motion becomes

(EA) t811 8 t811 L + tp 8dl11 L
HAtm. tp S::. L= '(Jt - Ute11

To proceed, we must express the strain
increments in terms of the (rotated)
displacement increments:

where
~

0=

This form is analogous
to the form used in
the two-dimensional
element formulation.
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S· - • 1 ((. )2 (. )2)Ince tE 11 = tU1,1 + 2 tU1,1 + tU2,1 ,

we recognize

t«311 = tU1,1

d111 = ~ ((tU1,1)2 + (tU2,1)2)

and

8dl11 = 8tu1,1 tU 1,1 + 8tU2,1 tU2,1

= [8tU1,1 8tU2,1] [t~1'1]
t 2,1.

matrix form

We can now write the displacement
derivatives in terms of the
displacements (this is simple because
all quantities are constant along the
truss). For example,

• aU1 aU1 U~ - U~
tU1,1 = atx1 = a tX1 = L

Hence we obtain

[:~:: ~] = ~ [ - 6 -~ 6 ~]
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and

t«311 = (i [-1 0 1 0]) ~
'-------v.:======~.s t -.s--,BL

t-
,...-,----"'-----" ,BNL

~~11 = &~T (tri -~)(H-6 ~~. 6
_______________' [,01,1 ]

[8tO1,1 8,02 ,1] ,02 ,1

Using these expressions,

(EA) te11 Bte11 L

\
BOT ~A ~ g
- L -1 0

o 0

-1 0
o 0
1 0
o 0

(setting successively each virtual nodal point
displacement equal to unity)



\
,

( ~
10-1 0])~T tp 0 1 0 -1 0

()!! L -1 0 1 0 -
o -1 0 1

and
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We have now obtained the required
element matrices, expressed in the
coordinate system aligned with the
truss at time t.

To determine the element matrices in
the stationary global coordinate system,
we must express the rotated
displacement increments uin terms of
the unrotated displacement increments
O.

We can show that

[~:] = [_~~~~e cS~~~:] [~:]

Transparency
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-1 coste sinte a a u~U1
-1 -sinte coste a a u1U2
-2 a a coste sinte u~U1

-2 0 0 -sinte coste u~U2

~ '~v

Q T 0- -



Using this transformation in the
equation of motion gives

BUT ~KL U~ BOT TT~KL T a
- - - - \,,- - -/-

~KL

- ,- 4 -/

~F

Performing the indicated matrix
multiplications gives
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- -
(COSt8)2 (cost8)(sint8) -(COSt8)2 -(cost8)(sint8)

(sint8)2 -(cost8)(sint8) -(sint8)2

symmetric (COSt8)2 (cost8)(sint8)

I (sint8)2
'--- -
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and

~F = tp

1 0 --1
1 0

1
symmetric

-coste
-sinte
coste
sinte

o
-1

o
1
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The vector :F makes physical sense:

Hence, at equilibrium,

tR - :F = Q



We note that the ~KNL matrix is unchanged by
the coordinate transformation.

• The nonlinear strain increment is
related only to the vector magnitude
of the displacement increment.

~+ (O~f~~(:,~J + (:I~~r)L
)(1

./'
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internal L\R
force tp

~R

Physically, :~NL gives the required
change in the externally applied nodal
point forces when the truss is rotated.
Consider only O~ nonzero.
For small o~, this gives a rotation
about node 1.
Moment equilibrium:
(dA) (L) = CA) (Ci~)

or AA _ tp -2
L.1 - - U2

1-
entry (4,4)
of lKNL ,-.-::l

- ,-

X~,-//'-

For small Q,

:~NL Q= t+~tB - tA
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Example: Prestressed cable

r Applied load 2 tR

Initial ten~ion = 0p i Length 2 L
Young's modulus E
Area A

Finite element model (using symmetry):

Of particular interest is the configuration
at time 0, when te = 0:

(O~) u~ = ~tR

The undeformed cable stiffness is given
solely by ~KNL.



The cable stiffens as load is applied:

~K = EA (sintO)2 + tp
,L . ~

~KL ~KNL

~KL increases as to increases (the truss
provides axial stiffness as to increases).

As to ~ 90°, the stiffness approaches Et,

but constant L and A means here that
only small values of to are permissible.

Using: L = 120 in , A = 1 in2
,

E = 30 x 106 psi , 0p = 1000 Ibs
we obtain

200.

Applied
force
(Ibs)

o.o........,=-- +_

Deflection (inches) 2.5
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We also show the stiffness matrix
components as functions of the applied
load:

200.0

Stiffness
(Iblin)

o.o~-----------+--
0.0 Applied force (Ibs) 200.0
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