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Topic 9

The Two-Noded
Truss Element­
Total Lagrangian
Formulation

• Derivation of total Lagrangian truss element
displacement and strain-displacement matrices from
continuum mechanics equations

• Mathematical and physical explanation that only one
component (~Sl1) of the 2nd Piola-Kirchhoff stress tensor
is nonzero

• Physical explanation of the matrices obtained directly by
application of the principle of virtual work

• Discussion of initial displacement effect

• Comparison of updated and total Lagrangian
formulations

• Example analysis: Collapse of a truss stru.....eture

• Example analysis: Large displacements of a cable

Section 6.3.1

6.15,6.16



TOTAL LAGRANGIAN
FORMULATION OF TRUSS

ELEMENT
We directly derive all required matrices
in the stationary global coordinate
system.

Recall that the linearized equation of
the principle of virtual work is

f oCifs oers 80eiJ- °dV + f JSii' 80 'TJiJ- °dVJov Jov

= t+~tm - f JSij. 80eiJ- °dV
Jov

We will now show that the only non­
zero stress component is JS11.

1) Mathematical explanation:
For simplicity, we assume constant
cross-sectional area. ~\

L(1 + E)

time t \
'\ te

X2j timeD
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L
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We may show that for the fibers of the
truss element

t _ [(1 + e) coste -sinte]
oX - (1 + e) sinte coste

Since the truss carries only axial stresses,
t
T

::;:: tp [(coste)2 (cOSte)(Sinte)]
- A (coste)(sinte) (sinte)2

, ,,
written in the stationary coordinate frame
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(the components of the 2nd
Piola-Kirchhoff stress tensor
do not change during a
rigid body motion)

8s = 0T = [OP/A
- - 0

cis = t*T = [tP/A
- - 0

JS=[tP6A\ta
time 0 \

time t: The element
is moved as a rigid
body.

Physical explanation: we utilize an
time t* (conceptual): inter.medi~te *
Element is stretched configuration t
by tp.

The linearized equation of motion
simplifies to

f OC1111 Oe11 80e11 °dV + f dS11 80TJ11 °dVJov Jov

=t+.:lt9R, - f dS11 80e11 °dV
Jov
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Again, we need only consider one
component of the strain tensor.
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Next we recognize:
tpts -o 11 - A

OC1111 = E , °v = A L

The stress and strain states are
constant along the truss.

Hence the equation of motion becomes

(EA) Oe11 80e11 L + tp 80Tl11 L
= t+·::ltffi - tp 80e11 L

To proceed, we must express the strain
increments in terms of the displacement
increments:

where

0=

u~

u~

u~

u~
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Since OE11 = OU1,1 + JU1,1 oU1,1 + JU2,1 OU2,1

+ ~ ((OU1,1)2 + (OU2,1)2)
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we recognize

t t
Oe11 = OU1,1 + OU1,1 OU1,1 + OU2,1 OU2,1

()OT) 11 = ()oU 1,1 oU 1,1 + ()OU2,1 OU2,1

= [()OU1,1 ()OU2,1] [O~1'1]
o 2,1
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t
OU2,1

time 0

time t

We notice the presence of Ju1,1 and
6U2,1 in Oe11. These can be evaluated
using kinematics:

t LltU1OU1,1 - ---:--L
= coste - 1

~--L--+l·1
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We can now write the displacement
derivatives in terms of the
displacements (this is simple because
all quantities are constant along the
truss). For example,

A 2 1
aUl UUl Ul - Ul

OU1,1 = a OXl = ~OXl = L

Hence we obtain
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[
OU1,1] = 1 [-1
OU2,1 L 0

Therefore

_ [t
Oell - OU1,1 + OU1,1

= L
1

[-1 0 1 0] a
I 1-

JSLO

o 1 0
1

]
-1 0

tu ] [OU1'1]o 2,1 Uo 2,1

U~

u~

u~

u~

+ [coste-1 sinte] (1 [-1 0 1
I L 0 -1 0

initial displacement effect J~L1



Oe11 = ~[-1 0 1 0 ] Q
1'- -----',-

dSlO

+ ~ [-(coste - 1) i-side i coste - 1 i sinte] .Y
I I

dSL1
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Also

o
-1 6 ~]) Q
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Using these expressions,

r-- - 1\(COSt6)2 (cOsl6)(sinl6) -(CosI6)2 -(cost6)(sinI6)

(sint6f - (cosl6)(sint6) -(sinI6)2

(cos16)2 (cost6)(sinl6)

symmetric (sinl6)2 1/~
I -

o
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tpt1- 0
L -1

o

o
1
o

-1

-1
o
1
o

o



and
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-coste
-sinte
coste
sinte

JF

We notice that the e.lement matrices
corresponding to the T.L. and U.L.
formulations are identical:

• The coordinate transformation used in
the U.L. formulation is contained in
the "initial displacement effect" matrix
used in the T.L. formulation.

• The same can also be shown in
detail analytically for a beam element,
see K. J. Bathe and S. Bolourchi,
Int. J. Num. Meth. in Eng., Vol. 14,
pp. 961-986, 1979.
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Example: Collapse analysis of a truss
structure

H = 5
A = 1
E = 200,000
ET = 0
cry = 100

H H

• Perform collapse analysis using U. L.
formulation.

• Test model response when using
M.N.O. formulation.

For this structure, we may analytically
Galculate the elastic limit load and the
ultimate limit load. We assume for now
that the deflections are infinitesimal.

Elastic limit load
(side trusses just become plastic)

P=341.4

Ultimate limit load
(center truss also becomes plastic)

P=441.4



analytical elastic limit load

~ : 1v =0.005

- : 1v=0.0001

Using automatic load step incrementa­
tion and the U.L. formulation, we
obtain the following results:

500 tnalytical ultimate limit load

400

p 30

200

100

o+--t----t--+--t---+--....
o .02 .04 .06 .08 .10

v

We now consider an M.N.O. analysis.

We still use the automatic load step
incrementation.

• If the stiffness matrix is not
reformed, almost identical results
are obtained (with reference to the
U.L. results).
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• If the stiffness matrix is reformed
for a load level larger than the
elastic limit load, the structure is
found to be unstable (a zero
pivot is found in the stiffness
matrix).

Why?
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Explanation:

• In the M.N.O. analysis, once the side
trusses have become plastic, they no
longer contribute stiffness to the
structure. Therefore the structure is
unstable with respect to a rigid body
rotation.



• In the U.L. analysis, once the side
trusses have become plastic, they still
contribute stiffness because they are
transmitting forces (this effect is
included in the ~KNL matrix).

Also, the internal force in the center
truss provides stability through the
~KNL matrix.

fP
100

1
00

Example: Large displacements of a
uniform cable

I' S -I prescribed
~ ---, displacement

~ · • · • · • • A-
g f Eight 2-node truss. ~Ieme~

. .. I' Imtlal S - 80 m
Imtla tensIon A = 10-4 m2

of 500 N E = 2.07 X 1011 Pa
p = 7750 kg/m3

• Determine the deformed shape
when S = 30 m.
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This is a geometrically nonlinear
problem (large displacements/large
rotations but small strains).
The flexibility of the cable makes the
analysis difficult.

- Small perturbations in the nodal
coordinates lead to large
changes in the out-of-balance
loads.

- Use many load steps, with
equilibrium iterations, so that
the configuration of the cable
is never far from an equilibrium
configuration.

Solution procedure employed to solve
this problem:

• Full Newton iterations without line
searches are employed.

• Convergence criteria:

dU(i)T (t+~tR _ t+~tF(i-1))

- dU(1)T (t+~tR _ tF) <: 0.001

11t+~tR - t+~tF(i-1)112 <: 0.01 N



• The gravity loading and the prescribed
displacement are applied as follows:

Number of equilibrium
Time step Comment iterations required

per time step

1
The gravity loading

14is applied.

The prescribed

2-1001 displacement is applied ::;5
in 1000 equal
steps.

Pictorially, the results are

\
undeformed

~
8=55 m
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