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Topic Nine 9-3

TOTAL LAGRANGIAN
FORMULATION OF TRUSS
ELEMENT

We directly derive all required matrices
in the stationary global coordinate
system.

Recall that the linearized equation of
the principle of virtual work is

f oCis o€rs Soey;°dV + f 0Sj; domy °dV
OV OV

= t+At% —‘L &Si} Boei}°dv
A\

~

We will now show that the only non-
zero stress component is 9S11.

1) Mathematical explanation:
For simplicity, we assume constant

cross-sectional area.
(1+ €)

time t
X \®

~
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We may show that for the fibers of the
truss element

X = [(1 + €) cos'® —sinte]
(1 + €)sin'®  cos'd
Since the truss carries only axial stresses,
te _ P [(cos'®) (cos‘e)(sinte)]
= [(coste)(sm 8)  (sin'0)®

written in the statlonary coordinate frame

N

Hence usmg

_pOX
OS ! t_I = 1 for small €

P
we f|nd |: ) Y
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Physical explanation: we utilize an

time t* (conceptual):
Element is stretched

by 'P.

0 0

S = 'T —
time t. The element 0= -
is moved as a rigid .
bOdy (;§ — t‘I —
Xa‘

oS =

intermediate
configuration t*

rigid body motion)

°P/A O]
| 0 O
['P/A 0]
| 0 0]
[ 'P/A o}
| 0 O

(the components of the 2nd
Piola-Kirchhoff stress tensor
X1 do not change during a

~
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The linearized equation of motion
simplifies to

j oC1111 011 do€11 °dV +J 0S11 OomM11 °dv
oy oy

=" “L 0S11 8011 °dV
Vv

Again, we need only consider one
component of the strain tensor.

N
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Next we recognize:
t ‘P
0911 = A
oCin = E ’ 0V=A|—

The stress and strain states are
constant along the truss.

Hence the equation of motion becomes
(EA) 0€11 00€11 L + P 80’1]11 L
— t+Atgt _ tP 80911 L

N\

To proceed, we must express the strain

increments in terms of the displacement
increments:

011 = (;EL g )
Som11 = (30" oBNL) (6Bnw 0)

where U4

=
Il
N
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. t t
Since o0€11 = oU1,1 + oU1,1 oU1,1 + oU2,1 oU2,1
1 2 2
+ 5 ((out,1)° + (ouz,1)%)
we recognize
t t
0€11 = oU1,1 t oU1,1 o0U1,1 + oU21 oU2,1

OoM11 = OoU1,1 oU1,1 T doUz,1 oUz,1

= [80U1,1 80U2,1] [oum]

oU2, 1

N

X2

We notice the presence of ¢us: and
oUz.1 iN o€11. These can be evaluated
using kinematics:

t t
t . AU1 t _ A Uz
oUi1 = L , oU21 L
et =cos'9 -1 =sin'
A U4
L
te AtU2
_—time O
L | X1
e

J
~
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truss). For example,
du4 _ AU1

u? — ul

Hence we obtain

-t -
oU2,1 L 0o -1

u1 = = =
oH1. ?X1 A0X1

1
0

L

0
1

|

We can now write the displacement
derivatives in terms of the
displacements (this is simple because
all quantities are constant along the

\

N\

Therefore
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I%[—1 0 1 0]

t
oBLo

4 [cos'®—1 sin'o] (% [‘1
L

t
0€11 = oU1,1 + [oU1,1 3U2,1] [

oU1,1
oUz2,1

|

0o 1
0 -1

0

)

0 1))

initial displacement effect ¢BL1

1S
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=il 1 0 1 0140
L £
c§§Lo
+1[[—(coste — 1) | —sin'® { cos'® — 1§ sin'e] G
l |
oBL1
21[[ —-cos'®  —sin'®  cos'®  sin'9] O
L ]
oBL
Also (;QIIL C§§NL
(D O 9 9]
dom11 = 00 11 0 —1 (E[ 0 -1 0 1] a
Ll 1 0 . )
oU1,1
0 1 [0U2,1]
[Bous,1  BoUz,1]
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Transparency Using these expressions,
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(cos'0)®|(cos'8)(sin'0)] —(cos'0)® |-(cos'e)(sin'e)
30T [EA (sin®)°  |~(cos)(sin®) —(sin')?
L (cos'9)® | (cos'®)(sin'd)
symmetric (sin')?
oKL
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and

N (

We notice that the element matrices
corresponding to the T.L. and U.L.
formulations are identical:

* The coordinate transformation used in
the U.L. formulation is contained in
the “initial displacement effect” matrix
used in the T.L. formulation.

« The same can also be shown in
detail analytically for a beam element,
see K. J. Bathe and S. Bolourchi,
Int. J. Num. Meth. in Eng., Vol. 14,
pp. 961-986, 1979.

J
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Example: Collapse analysis of a truss

Transparenc
o9 structure
H=5
A=1
E = 200,000
ET =0
= 100

» Perform collapse analysis using U.L.
formulation.

» Test model response when using
M.N.O. formulation.

N\

For this structure, we may analytically

Tran;pza(;'ency calculate the elastic limit load and the
i ultimate limit load. We assume for now

that the deflections are infinitesimal.

— Elastic limit load
(side trusses just become plastic)
P=341.4
— Ultimate limit load
(center truss alsobecomes plastic)
P=441.4

AN
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Using automatic load step incrementa-
tion and the U.L. formulation, we
obtain the following results:

500} analytical ultimate limit load

-

i

analytical elastic limit load
o : 'v=0.005
— : 'v=0.0001

\

We now consider an M.N.O. analysis.

We still use the automatic load step
incrementation.

* If the stiffness matrix is not
reformed, almost identical results
are obtained (with reference to the
U.L. results).

J
N
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« If the stiffness matrix is reformed
for a load level larger than the
elastic limit load, the structure is
found to be unstable (a zero
pivot is found in the stiffness
matrix).

Why?

\-
~

Explanation:

» In the M.N.O. analysis, once the side
trusses have become plastic, they no
longer contribute stiffness to the
structure. Therefore the structure is
unstable with respect to a rigid body
rotation.

wt?
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 In the U.L. analysis, once the side
trusses have become plastic, they still
contribute stiffness because they are
transmitting forces (this effect is
included in the {Kn. matrix).

Also, the internal force in the center
truss provides stability through the
:KNL matrix.

1P

100,/ [\.100

~

Example: Large displacements of a
uniform cable

i- S ‘—‘i prescribed

displacement

N

Eight 2-node truss elements

_— , Initial S = 80 m

initial tension A=10"*m2

of 500 N E = 2.07 x 10" Pa
p = 7750 kg/m®

» Determine the deformed shape
when S = 30 m.

~
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This is a geometrically nonlinear
problem (large displacements/large
rotations but small strains).

The flexibility of the cable makes the
analysis difficult.

— Small perturbations in the nodal
coordinates lead to large
changes in the out-of-balance
loads.

— Use many load steps, with
equilibrium iterations, so that
the configuration of the cable
is never far from an equilibrium
configuration.

N

Solution procedure employed to solve
this problem:

* Full Newton iterations without line
searches are employed.

» Convergence criteria:

Au(i)T t+AtR _ '(+AtF(i—1)

AR — AFCY), < 0.01 N

L
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« The gravity loading and the prescribed
displacement are applied as follows:

Number of equilibrium
Time step Comment iterations required

per time step

1 The gravity loading 14
is applied.

The prescribed

) displacement is applied
2-1001 in 1000 equal =5
steps.

\

Pictorially, the results are

4
<
*

undeformed

S=55m

S=30m

A\
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