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ELECTRODYNAMIC FIELDS: 
THE SUPERPOSITION 
INTEGRAL 
POINT OF VIEW 

12.0 INTRODUCTION 

This chapter and the remaining chapters are concerned with the combined effects 
of the magnetic induction ∂B/∂t in Faraday’s law and the electric displacement 
current ∂D/∂t in Ampère’s law. Thus, the full Maxwell’s equations without the 
quasistatic approximations form our point of departure. In the order introduced in 
Chaps. 1 and 2, but now including polarization and magnetization, these are, as 
generalized in Chaps. 6 and 9, 

� · (�oE) = ρu −� · P (1) 

∂ �× H = Ju + (�oE + P) (2)
∂t

∂ �× E = − 
∂t
µo(H + M) (3) 

� · (µoH) = −� · (µoM) (4) 

One may question whether a generalization carried out within the formalism 
of electroquasistatics and magnetoquasistatics is adequate to be included in the full 
dynamic Maxwell’s equations, and some remarks are in order. Gauss’ law for the 
electric field was modified to include charge that accumulates in the polarization 
process. The accounting for the charge leaving a designated volume was done under 
no restrictions of quasistatics, and thus (1) can be adopted in the fully dynamic 
case. Subsequently, Ampère’s law was modified to preserve the divergence­free char­
acter of the right­hand side. But there was more involved in that step. The term 
∂P/∂t can be identified unequivocally as the current density associated with a 
time dependent polarization process, provided that the medium as a whole is at 
rest. Thus, (2) is the correct generalization of Ampère’s law for polarizable media 

1 



2 Electrodynamic Fields: The Superposition Integral Point of View Chapter 12 

at rest. If the medium moves with the velocity v, a term � × (P × v) has to be 
added to the right­hand side[1,2]. The generalization of Gauss’ law and Faraday’s 
law for magnetic fields is by analogy. If the material is moving and magnetized, a 
term −µo� × (M × v) must be added to the right­hand side of (3). We shall not 
consider such moving polarized or magnetized media in the sequel. 

Throughout this chapter, we are generally interested in electromagnetic fields 
in free space. If the region of interest is filled by a material having an appreciable 
polarization and or magnetization, the constitutive laws are presumed to represent 
a linear and isotropic material 

D ≡ �oE + P = �E (5) 

B ≡ µo(H + M) = µH (6) 

and � and µ are assumed uniform throughout the region of interest.1 Maxwell’s 
equations in linear and isotropic media may be rewritten more simply 

� · �E = ρu (7) 

∂ �× H = Ju + 
∂t 
�E (8) 

∂ �× E = − 
∂t
µH (9) 

� · µH = 0 (10) 

Our approach in this chapter is a continuation of the one used before. By ex­
pressing the fields in terms of superposition integrals, we emphasize the relationship 
between electrodynamic fields and their sources. Next we take into account the ef­
fect of conducting bodies upon the electromagnetic field, introducing the boundary 
value approach. 

We began Chaps. 4 and 8 by expressing an irrotational E in terms of a scalar 
potential Φ and a solenoidal B in terms of a vector potential A. We start this 
chapter in Sec. 12.1 with the generalization of these potentials to represent the 
electric and magnetic fields under electrodynamic conditions. Poisson’s equation 
related Φ to its source in Chap. 4 and A to the current density J in Chap. 8. What 
equation relates these potentials to their sources when quasistatic approximations 
do not apply? In Sec. 12.1, we develop the inhomogeneous wave equation, which 
assumes the role played by Poisson’s equation in the quasistatic cases. It follows 
from this equation that for linearly polarizable and magnetizable materials, the 
superposition principle applies to electrodynamics. 

The fields associated with source singularities are the next topic, in analogy 
either with Chaps. 4 or 8. In Sec. 12.2, we start with the field of an elemental 
charge and build up the field of a dynamic electric dipole. Here we exemplify the 
launching of an electromagnetic wave and see how the quasistatic electric dipole 
fields relate to the more general electrodynamic fields. The section concludes by 
deriving the electrodynamic fields associated with a magnetic dipole from the fields 

1 To make any relation in this chapter apply to free space, let � = �o and µ = µo. 



3 Sec. 12.1 Electrodynamic Potentials 

for an electric dipole by exploiting the symmetry of Maxwell’s equations in source­
free regions. 

The superposition integrals developed in Sec. 12.3 provide particular solutions 
to the inhomogeneous wave equations, just as those of Chaps. 4 and 8, respectively, 
gave solutions to the scalar and vector Poisson’s equations. In describing the op­
eration of antennae, the fields that radiate away from the source are of primary 
interest. The superposition integrals for these radiation fields are used to find an­
tenna radiation patterns in Sec. 12.4. The discussion of antennae is continued in 
Sec. 12.5, which has as a theme the complex form of Poynting’s theorem. This 
theorem makes it possible to model the impedance of antennae as “seen” by their 
driving sources. 

In Sec. 12.6, the field sources take the form of surface currents and surface 
charges. It is generally not convenient to find the associated fields by making direct 
use of the superposition integrals. Nevertheless, the sources are a “given,” and any 
method that results in the associated fields amounts to solving the superposition 
integrals. This section provides a first view of the solutions to the wave equation 
in Cartesian coordinates that will be derived from the boundary value point of 
view in Chap. 13. In preparation for the boundary value approach of the next 
chapter, boundary conditions are satisfied by appropriate choices of sources. Thus, 
the parallel plate waveguide considered from the boundary value point of view in 
Chap. 13 is seen here from the point of view of waves initiated by given sources. 
The method of images, taken up in Sec. 12.7, provides further examples of this 
approach to satisfying boundary conditions. 

When boundaries are introduced in this chapter, they are presumed to be 
perfectly conducting. In Chap. 13, the boundaries can also be interfaces between 
perfectly insulating dielectrics. In both of these chapters, the theme is dynamical 
phenomena related to the propagation and reflection of electromagnetic waves. The 
dynamics are characterized by one or more electromagnetic transit times, τem. Dy­
namical phenomena associated with charge relaxation or magnetic diffusion, char­
acterized by τe and τm, are excluded. We will look at these again in Chaps. 14 and 
15. 

12.1 ELECTRODYNAMIC FIELDS AND POTENTIALS 

In this section, we extend the use of the scalar and vector potentials to the de­
scription of electrodynamic fields. In regions of interest, the current density J of 
unpaired charge and the charge density ρu are prescribed functions of space and 
time. If there is any material present, it is of uniform permittivity � and permeabil­
ity µ, D = �E and B = µH. For quasistatic fields in such regions, the potentials Φ 
and A are governed by Poisson’s equation. In this section, we see the role of Pois­
son’s equation for quasistatic fields taken over by the inhomogeneous wave equation 
for electrodynamic fields. 

In both Chaps. 4 and 8, potentials were introduced so as to satisfy automati­
cally the one of the two laws that was source free. In Chap. 4, we made E = 
so that E was automatically irrotational, �× E = 0. In Chap. 8 we let B = 

−�Φ 

so that B was automatically solenoidal, � · B = 
�× A 

0. Of the four laws compris­
ing Maxwell’s equations, (12.0.7)–(12.0.10), those of Gauss and Ampère involve 
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sources, while the last two, Faraday’s law and the magnetic flux continuity law, 
do not. Following the approach used before, potentials should be introduced that 
automatically satisfy Faraday’s law and the magnetic flux continuity law, (12.0.9) 
and (12.0.10). This is the objective of the following steps. 

Given that the magnetic flux density remains solenoidal, the vector potential 
A can be defined just as it was in Chap. 8. 

B = µH = (1)�× A 

With µH represented in this way, (12.0.10) is again automatically satisfied and 
Faraday’s law, (12.0.9), becomes 

�× 
�
E + 

∂

∂t 

A� 
= 0 (2) 

This expression is also automatically satisfied if we make the quantity in brackets 
equal to −�Φ. 

∂A
E =
 −�Φ− 

∂t
 (3) 

With H and E defined in terms of Φ and A as given by (1) and (3), the last 
two of the four Maxwell’s equations, (12.0.9–12.0.10), are automatically satisfied. 
Note, however, that the potentials that represent given fields H and E are not fully 
specified by (1) and (3). We can add to A the gradient of any scalar function, thus 
changing both A and Φ without affecting H or E. A further specification of the 
potentials will therefore be given shortly. 

We now turn to finding the equations that A and Φ must obey if the laws of 
Gauss and Ampère, the first two of (12.0.9­12.0.10), are to be satisfied. Substitution 
of (1) and (3) into Ampère’s law, (12.0.8), gives 

= µ�
∂ ∂A� 

+ µJu (4)�× (�× A)
∂t 

� −�Φ− 
∂t 

A vector identity makes it possible to rewrite the left­hand side so that this 
equation is 

∂ ∂A �(� · A)−� 2A = µ�
∂t 

� −�Φ− 
∂t 

� 
+ µJu (5) 

With the gradient and time derivative operators interchanged, this expression is 

∂Φ ∂2A ��� · A + µ� 
∂t 

� −� 2A = −µ� 
∂t2 

+ µJu (6) 

To uniquely specify A, we must not only stipulate its curl, but give its di­
vergence as well. This point was made in Sec. 8.0. In Sec. 8.1, where we were 
concerned with MQS fields, we found it convenient to make A solenoidal. Here, 
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where we have kept the displacement current, we set the divergence of A so that 
the term in brackets on the left is zero. 

∂Φ 
= −µ� 

(7)
� · A

∂t 

This choice of � · A is called the choice of the Lorentz gauge. In this gauge, the 
expression representing Ampère’s law, (6), reduces to one involving A alone, to the 
exclusion of Φ. 

∂2A � 2A− µ� = −µJu
∂t2 (8) 

The last of Maxwell’s equations, Gauss’ law, is satisfied by making Φ obey 
the differential equation that results from the substitution of (3) into (12.0.7). 

∂A ∂ ρu � · �� −�Φ− 
∂t 

� 
= ρu ⇒ � 2Φ + 

∂t 
(� · A) = − 

� 
(9) 

We can substitute for � · A using (7), thus eliminating A from this expression. 

∂2Φ ρu � 2Φ− µ� 
∂t2 

= − 
� (10) 

In summary, with H and E defined in terms of the vector potential A and 
scalar potential Φ by (1) and (3), the distributions of these potentials are governed 
by the vector and scalar inhomogeneous wave equations (8) and (10), respectively. 
The unpaired charge density and the unpaired current density are the “sources” in 
these equations. In representing the fields in terms of the potentials, it is understood 
that the “gauge” of A has been set so that A and Φ are related by (7). 

The time derivatives in (8) and (10) are the result of retaining both the 
displacement current and the magnetic induction. Thus, in the quasistatic limits, 
these terms are neglected and we return to vector and scalar potentials governed 
by Poisson’s equation. 

Superposition Principle. The inhomogeneous wave equations satisfied by A 
and Φ [(8) and (10)] as well as the gauge condition, (7), are linear when the sources 
on the right are prescribed. That is, if solutions Aa and Φa are associated with 
sources Ja and ρa, 

(Ja, ρa) (Aa, Φa) (11)⇒ 

and similarly, Jb and ρb produce the potentials Ab, Φb, 

(Jb, ρb) (Ab, Φb) (12)⇒ 
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then the potentials resulting from the sum of the sources is the sum of the potentials. 

[(Ja + Jb), (ρa + ρb)] [(Aa + Ab), (Φa + Φb)] (13)⇒ 

The formal proof of this superposition principle follows from the same reasoning 
used for Poisson’s equation in Sec. 4.3. 

In prescribing the charge and current density on the right in (8) and (10), it 
should be remembered that these sources are related by the law of charge conser­
vation. Thus, although Φ and A appear in (8) and (10) to be independent, they 
are actually coupled. This interdependence of the sources is reflected in the link 
between the scalar and vector potentials established by the gauge condition of (7). 
Once A has been found, it is often convenient to use this relation to determine Φ. 

Continuity Conditions. Each of Maxwell’s equations, (12.0.7)–(12.0.10), 
as well as the charge conservation law obtained by combining the divergence of 
Ampère’s laws with Gauss’ law, implies a continuity condition. In the absence of 
polarization and magnetization, these conditions were derived from the integral 
laws in Chap. 1. Generalized to include polarization and magnetization in Chaps. 
6 and 9, the continuity conditions for (12.0.7)–(12.0.10) are, respectively, 

n (�aEa − �bEb) = σsu (14)· 

n× (Ha − Hb) = Ku (15) 

n× (Ea − Eb) = 0 (16) 

n (µaHa − µbHb) = 0 (17)· 

The derivation of these conditions is the same as given at the end of the 
sections introducing the respective integral laws in Chap. 1, except that µoH is 
replaced by µH in Faraday’s law and �oE by �E in Ampère’s law. 

In Secs. 12.6 and 12.7, and in the following chapters, these conditions are 
used to relate electrodynamic fields to surface currents and surface charges. At the 
outset, we recognize that two of these continuity conditions are, like Faraday’s law 
and the law of magnetic flux continuity, not independent of each other. Further, just 
as the laws of Ampère and Gauss imply the charge conservation relation between 
Ju and ρu, the continuity conditions associated with these laws imply the charge 
conservation continuity condition obeyed by the surface currents and surface charge 
densities. 

To see the first interdependence, Faraday’s law is integrated over a surface S 
enclosed by a contour C lying in the plane of the interface, as shown in Fig. 12.1.1a. 
Stokes’ theorem is then used to write 

� 
d 

� 

C 

E · ds = − 
dt S 

µH · da (18) 

http:12.1.1a
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Fig. 12.1.1 (a) Surface S just above or just below the interface. (b) Volume 
V of incremental thickness h enclosing a section of the interface. 

Whether taken on side (a) or side (b) of the interface, the line integral on the 
left is the same. This follows from Faraday’s continuity law (16). Thus, if we take 
the difference between (18) evaluated on side (a) and on side (b), we obtain 

d 
(µaHa − µbHb) n = 0 (19)

dt 
· 

By making the tangential electric field continuous, we have assured the conti­
nuity of the time derivative of the normal magnetic flux density. For a sinusoidally 
time­dependent process, matching the tangential electric field automatically assures 
the matching of the normal magnetic flux densities. 

In particular, consider a surface of a conductor that is “perfect” in the MQS 
sense. The electric field inside such a conductor is zero. From (16), the tangential 
component of E just outside the conductor must also be zero. In view of (19), we 
conclude that the normal flux density at a perfectly conducting surface must be 
time independent. This boundary condition is familiar from the last half of Chap. 
8.2 

Given that the divergence of Ampère’s law combines with Gauss’ law to give 
conservation of charge, 

+ 
∂ρu = 0 (20)� · Ju 
∂t 

we should expect that there is a second relationship among the conditions of (14)– 
(17), this time between the surface charge density and surface current density that 
appear in the first two. Integration of (20) over the volume of the “pillbox” shown 
in Fig. 12.1.1b gives 

� � 
d 

� �
lim Ju da + ρudV = 0 (21)
h 0→ 

S 

· 
dt VΔA 0→ 

In the limit where first the thickness h and then the area ΔA go to zero, these 
integrals reduce to ΔA times 

n (Ja
u − Jb ) +�Σ Ku + 

∂σu = 0 (22)· u · 
∂t 

2 Note that the absence of a time­varying normal flux density does not imply that there is 
no tangential E. The surface of a material that is an infinite conductor in one direction but an 
insulator in the other might have no normal µH and yet support a tangential E in the direction 
of zero conductivity. 
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The first term is the contribution to the first integral in (21) from the surfaces on 
the (a) and (b) sides of the interface, respectively, having normals +n and −n. The 
second term, which is written in terms of the “surface divergence” defined in terms 
of a vector F by 

lim F indl (23)�Σ · F ≡ 
ΔA→0 C 

· 

results because the surface current density makes a finite contribution to the first 
integral in (21) even though the thickness h of the volume goes to zero. [In (23), in 

is the unit normal to the volume V , as shown in the figure.] Such a surface current 
density can be used to represent currents imposed over a region having a thickness 
that is small compared to other dimensions of interest. It can also represent the 
current on the surface of a perfect conductor. (In using the conservation of charge 
continuity condition in Secs. 7.6 and 7.7, this term was not present because the 
surfaces described by this continuity condition were not carrying surface currents.) 
In terms of coordinates local to the point of interest, the surface divergence can be 
thought of as a two­dimensional divergence. The last term in (22) results from the 
integration of the charge density over the volume. Because there is a surface charge 
density, there is net charge inside the volume even in the limit where h 0. →

When we specify Ku and σu in (14) and (15), it is with the understanding that 
they obey the charge conservation continuity condition, (22). But, we also conclude 
that the charge conservation law is implied by the laws of Ampère and Gauss, and 
so we know that if (14) and (15) are satisfied, then so too is (22). 

When perfectly conducting boundaries are described in Chaps. 13 and 14, 
the surface current and charge found on a perfectly conducting boundary using 
the continuity conditions from the laws of Ampère and Gauss will automatically 
satisfy the charge conservation condition. Further, a zero tangential electric field 
on a perfect conductor automatically implies that the normal magnetic flux density 
vanishes. 

With the inhomogeneous wave equation playing the role of Poisson’s equation, 
the stage is now set for a scenario paralleling that for electroquasistatics in Chap. 
4 and for magnetoquasistatics in Chap. 8. The next section identifies the fields 
associated with source singularities. Section 12.3 develops superposition integrals 
for the response to given distributions of the sources. Henceforth, in this and the 
next chapter, we shall drop the subscript u from the source quantities. 

12.2 ELECTRODYNAMIC FIELDS OF SOURCE SINGULARITIES 

Given the response to an elemental source, the fields associated with an arbi­
trary distribution of sources can be found by superposition. This approach will be 
formalized in the next section and can be utilized for determining the radiation pat­
terns of many antenna arrays. The fields resulting from this superposition principle 
form a particular solution that can be combined with solutions to the homogeneous 
wave equation to satisfy the boundary conditions imposed by perfectly conducting 
boundaries. 

We begin by identifying the potential Φ associated with a time varying point 
charge q(t). In a closed system, where the net charge is invariant, an increase in 
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Fig. 12.2.1 A point charge located at the origin of a spherical coordinate 
system. 

charge at one point must be compensated by a decrease in charge elsewhere. Thus, as 
we shall see in identifying the fields of an electric dipole, physically meaningful fields 
are the superposition of those produced by at least two point charges of opposite 
sign. Conservation of charge further requires that this shift in the distribution of 
net charge from one region to another be accounted for by a current. This current 
is the source term in the inhomogeneous wave equation for the vector potential. 

Potential of a Point Charge. Consider the potential Φ predicted by the in­
homogeneous wave equation, (12.1.10), for a time varying point charge q(t) located 
at the origin of the spherical coordinate system shown in Fig. 12.2.1. 

By definition, ρ is zero everywhere except at the origin, where it is singular.3 In 
the immediate neighborhood of the origin, we should expect that the potential varies 
so rapidly with r that the Laplacian would dominate the second time derivative in 
the inhomogeneous wave equation, (12.1.10). Then, in the vicinity of the origin, 
we should expect the potential for a point charge to be the same as for Poisson’s 
equation, namely q(t)/(4π�r) (4.4.1). From Sec. 3.1, we have a hint as to how 
the combined effects of the magnetic induction and electric displacement current 
represented by the second time derivative in the inhomogeneous wave­equation, 
(12.1.10), should affect this potential. We can expect that the response at a radial 
position r will be delayed by the time required for an electromagnetic wave to reach 
that position from the origin. For a wave propagating at the velocity c, this time 
is r/c. Thus, we make the educated guess that the solution to (12.1.10) for a point 
charge at the origin is 

rq
�
t − c 

�
Φ = (1)

4π�r 

where c = 1/
√
µ�. According to (1), given that the time dependence of the point 

charge is q(t), the potential at radius r is given by the familiar potential for a point 
charge, provided that t (t − r/c).→

Verification that Φ of (1) is a solution to the inhomogeneous wave equation 
(12.1.10) takes two steps. First, the expression is substituted into the homogeneous 
wave equation [(12.1.10) with no source] to see that it is satisfied everywhere except 
at the origin. In carrying out this step, note that Φ is a function of the spherical 

3 Of course, charge conservation requires that there be a current supplying this time­varying 
charge and that through action of this current, if charge accumulates at the origin, there must be a 
reduction of charge somewhere else. The simplest example of a source obeying charge conservation 
is the dipole. 
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radial coordinate r alone. Thus, �2Φ is simply r−2∂(r2∂Φ/∂r)/∂r. This operation 
gives the same result as the operation r−1∂2(rΦ)/∂r2. Thus, evaluated using the 
potential of (1), the terms on the left in the inhomogeneous wave equation, (12.1.10), 
become 

1 ∂2Φ 1 
� 
1 ∂2 r 1 1 ∂2 r � 2Φ− 

c2 ∂t2 
=

4π� r ∂r2
q
�
t − 

c 

� − 
r c2 ∂t2

q
�
t − 

c 

�� 

= 0 (2) 

for r �= 0. In carrying out this evaluation, note that ∂q/∂r = −q�/c and ∂q/∂t = q� 
where the prime indicates a derivative with respect to the argument. Thus, the 
homogeneous wave equation is satisfied everywhere except at the origin. 

In the second step, we confirm that (1) is the dynamic potential of a point 
charge. We integrate the inhomogeneous wave equation in the neighborhood of 
r = 0, (12.1.10), over a small spherical volume of radius r centered on the origin. 

� � 
∂2Φ

� � 
ρ 

V 

−� · �Φ + µ� 
∂t2 

dv = 
V � 

dv (3) 

The Laplacian has been written in terms of its definition in anticipation of 
using Gauss’ theorem to convert the first integral to one over the surface at r. In 
the limit where r is small, the integration of the second time derivative term gives 
no contribution. 

∂2Φ ∂2 

µ� dv = µ� lim Φdv 
V ∂t2 ∂t2 r→0 V (4)

∂2 � r q4πr2 
= µ� lim dr = 0 

∂t2 r 0 0 4π�r → 

Integration of the first term on the left in (3) is familiar from Chap. 4, because 
Gauss’ theorem converts the volume integration to one over the enclosing surface 
and we therefore have 

− 
� 
� · �Φdv = − 

� 

S 

�Φ · da = −4πr2
∂

∂r 

Φ 

(5) 
= −4πr2

� − 
q � 

= 
q 

4π�r2 � 

In the limit where r 0, the integral on the right in (3) gives q/�. Thus, it reduces →
to the same expression obtained using (1) to evaluate the left­hand side of (3). We 
conclude that (1) is indeed the solution to the inhomogeneous wave equation for a 
point charge at the origin. 

Electric Dipole Field. An electric dipole consists of a pair of charges ±q(t) 
separated by the distance d, as shown in Fig. 12.2.2. As one charge increases in 
magnitude at the expense of the other, there is an elemental current i(t) directed 
between the two along the z axis. Charge conservation requires that 
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Fig. 12.2.2 A dynamic dipole in which the time­variation of the charge is 
accounted for by the elemental current i(t). 

dq
i = 

dt (6) 

This current can be pictured as a singularity in the distribution of the current 
density Jz. In fact, the role played by ρ/� as the source of Φ on the right in (12.1.10) 
is played by µJz in determining Az in (12.1.8). Just as q can be regarded as the 
integral of the charge density ρ over the elemental volume occupied by that charge 
density, µid is µJz first integrated over the cross­sectional area in the x − y plane 
of the current tube joining the charges (to give µi) and then integrated over the 
length d of the tube. Thus, we exploit the analogy between the z component of the 
vector inhomogeneous wave equation for Az and that for Φ, (12.1.8) and (12.1.10), 
to write the vector potential associated with an incremental current element at the 
origin. The solution to (12.1.8) is the same as that to (12.1.10) with q/� µid. → 

rµdi
�
t − 

� 

Az = c 

4πr (7) 

Remember that r is a spherical coordinate, so it is best to convert this ex­
pression into spherical coordinates. Figure 12.2.3 shows that 

Ar = Az cos θ; Aθ = −Az sin θ (8) 

Thus, in spherical coordinates, (7) becomes the vector potential for an electric 
dipole. 

r r 

A = 
µd

� 
i
�
t − c 

� 

cos θir − 
i
�
t − c 

� 

sin θiθ 

� 

(9)
4π r r 

The dipole scalar potential is the superposition of the potentials due to the 
individual charges, (5). The positive charge is located on the z axis at z = d, while 
the negative one is at the origin, so superposition gives 

d r1 
� 
q
�
t − 

� 
r cos θ

�� 
q
�
t − c 

��
cΦ =

4π� r − 
c 

d

− 

cos θ 
− 

r 
(10) 
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Fig. 12.2.3 The z­directed potential is analyzed into its components in 
spherical coordinates. 

where, in a way familiar from Sec. 4.4, the distance from the point of observation to 
the charge at z = d is approximated by r − d cos θ. With q� indicating a derivative 
with respect to the argument, expansion in a Taylor’s series based on d cos θ � r 
gives 

1 
�� 

1
+ 
d cos θ

� 
r � 

+ 
d cos θ r � − 

q
�
t − c 

�� 

(11)Φ � 
4π� r r2 

q
�
t − 

c c r
q�

�
t − 

c r 

r 

and keeping terms that are linear in d results in the desired scalar potential for the 
electric dipole. 

r rd 
� 
q
�
t − c 

� 
q�

�
t − c 

��
Φ = + cos θ (12)

4π� r2 cr 

The vector potential (9) and scalar potential (12) obey (12.1.7), as can be con­
firmed by differentiation and use of the conservation law (6). We can now evaluate 
the magnetic and electric fields associated with these scalar and vector potentials. 
The magnetic field intensity follows by evaluating (12.1.1) using (9). [Remember 
that conservation of charge requires that q� = i, in accordance with (6).] 

r rd 
� 
i�
�
t − c 

� 
i
�
t − c 

��
H = + sin θiφ4π cr r2 (13) 

To find E, (12.1.3) is evaluated using (9) and (12). 

r rd 
� � 

q
�
t − c 

� 
q�

�
t − c 

��
E = 2 + cos θir4π� r3 cr2 

r r r� 
q
�
t − c 

� 
q�

�
t − 

� 
q��

�
t − c 

�� �
c+ + + sin θiθ 

r3 cr2 c2r (14) 

As can be seen by comparing (14) to (4.4.10), in the limit where c ,→ ∞ 
this electric field becomes the electric field found from the electroquasistatic dipole 
potential. Note that the quasistatic field is proportional to q (rather than its first or 
second temporal derivative) and decays as 1/r3. The first and second time deriva­
tives of q are of order q/τ and q/τ2 respectively, where τ is the typical time interval 
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Fig. 12.2.4 Far fields constituting a plane wave propagating in the radial 
direction. 

within which q experiences an appreciable change. Thus, these time derivative terms 
are small compared to the quasistatic terms if r/c � τ . What we have found gives 
substance to the arguments given for the EQS approximation in Sec. 3.3. That is, 
we have found that the quasistatic approximation is justified if the condition of 
(3.3.5) prevails. 

The combination of electric displacement current and magnetic induction lead­
ing to the inhomogeneous wave equation has three dramatic effects on the dipole 
fields. First, the response at a location r is delayed4 by the transit time r/c. Second, 
the electric field is not only proportional to q(t − r/c), but also to q�(t − r/c) and 
q��(t− r/c). Third, the part of the electric field that is proportional to q�� decreases 
with radius in proportion to 1/r. Associated with this “far field” is a magnetic field, 
the first term in (13), that similarly decreases as 1/r. Together, these fields comprise 
an electromagnetic wave propagating radially outward from the dipole antenna. 

d i�
�
t − r 

� 
sin θiφclim H 

r→∞ 
→ 

4π cr 
rd q��

�
t − c 

�
lim E sin θiθ (15) 

r→∞ 
→ 

4π� c2r 
Note that these field components are orthogonal to each other and transverse to 
the radial direction of propagation, as shown in Fig. 12.2.4. 

To appreciate the significance of the 1/r dependence of the fields in (15), 
consider the Poynting flux, (11.2.9), associated with these fields. 

lim [E× H] = 
� d �2�

µ/� 

�
q��

�
t − rc 

��2 
sin2 θ (16) 

r→∞ 4π c2r2 

The power flow out through a spherical surface at the radius r follows from this 
expression as 

P = 
� 

E× H · da = 
� 

0 

π �
4
d

π 

�2�
µ/�

(
c

q
2

��

r

)
2

2 

sin2 θ2πr2 sin θdθ 
(17) 

r 
c= 

d2 �
µ/� 

�
q��

�
t − 

��2 
6π c2 

4 In addition to the retarded response highlighted here, an “advanced” response, where t −
r/c t+ r/c, is also a solution to the inhomogeneous wave equation. Because it does not fit with →
our idea of causality, it is not used here. 
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Fig. 12.2.5 (a) Time dependence of the dipole charge q(t) as well 
as its first and second derivatives. (b) The radial dependence of the 
functions needed to evaluate the dipole fields resulting from the turn­on 
transient of (a) when t > T . 

Because the far fields of the dipole vary as 1/r, and hence the power flux 
density is proportional to 1/r2, and because the area of the surface at r increases 
as r2, we conclude that there is a net power flowing outward from the dipole at 
infinity. These far field components are called the radiation field. 

Example 12.2.1. Turn­on Fields of an Electric Dipole 

To help establish the physical significance of the electric dipole expressions for 
E and H, (13) and (14), consider the fields associated with charging an electric 
dipole through the transient shown in Fig. 12.2.5a. Over a period T , the charge 
increases from zero to Q with a continuous first derivative but a second derivative 
that suffers a finite discontinuity, as shown in the figure. Multiplied by appropriate 
factors of 1/r, 1/r2, and 1/r3, the field distributions are made up of these three 
functions, with t replaced by t − r/c. Thus, at a given instant in time, the factors 
q(t − r/c), q�(t − r/c), and q��(t − r/c) have the radial distributions shown in Fig. 
12.2.5b. 

The electric and magnetic fields are shown at three successive instants in time 
in Fig. 12.2.6. The transient part of the field is confined to an annular region with 
its outside radius at r = ct (the wave front) and inner radius at r = c(t− T ). Inside 
this latter radius, the fields are static and composed only of those terms varying as 
1/r3. Thus, when t = T (Fig. 12.2.6a), all of the field is transient, because the source 
has just reached a constant state. At the subsequent times t = 2T and t = 3T , the 
fields left behind by the outward propagating rear of the wave transient, the E field 
of a static electric dipole and H = 0, are as shown in Figs. 12.2.6b and 6c. 

The flow of charges to the poles of the dipole produces an electromagnetic wave 
which reveals its identity once the annular region of the transient fields propagates 
out of the range of the near field. Note that the electric and magnetic fields shown in 
the outward propagating wave of Fig. 12.2.6c are mutually sustaining. In accordance 
with Faradays’ law, the curl of E, which is φ directed and tends to be largest midway 

http:12.2.5a
http:12.2.5b
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Fig. 12.2.6 Electric fields (solid lines) and magnetic fields resulting 
from turning on an electric dipole in accordance with the temporal de­
pendence indicated in Fig. 12.2.5. The fields are zero outside the wave 
front indicated by the outermost broken line. (a) For t < T , the entire 
field is in a transient state. (b) By the time t > T , the fields due to the 
transient are seen to be propagating outward between the expanding 
spherical surfaces at r = ct and r = c(t − T ). Inside the latter surface, 
which is also indicated by a broken line, the fields are static. (c) At 
still later times, the propagating wave divorces itself from the dipole as 
the electric field generated by the magnetic induction, and the magnetic 
field generated by the displacement current, become self­sustaining. 

between the front and back of the wave, is balanced by a time rate of change of B 
which also has its largest value in the same region.5 Similarly, to satisfy Ampère’s 
law, the θ­directed curl of H, which also peaks midway between the front and back 
of the wave, is balanced by a time rate of change of D that peaks in the same region. 

It is instructive to review the discussion given in Sec. 3.3 of EQS and MQS 
approximations and their relation to electromagnetic waves. The electric dipole 
considered here in detail is the prototype system sketched in Fig. 3.3.1a. We have 
indeed found that if the condition of (3.3.5) is met, the EQS fields dominate. We 
should expect that if the current carried by the elemental loop of the prototype 
MQS system of Fig. 3.3.1b is a rapidly varying function of time, then the magnetic 
dipole (considered in the MQS limit in Sec. 8.3) also gives rise to a radiation field 

5 In discerning a time rate of change implied by the figure, remember that the fields in the 
region of the spherical shell indicated by the two broken­line circles in Figs. 12.2.6b and 12.2.6c 
are propagating outward. 
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much like that discussed here. These fields are considered at the conclusion of this 
section. 

Electric Dipole in the Sinusoidal Steady State. In the sections that follow, 
the fields of the electric dipole will be superimposed to obtain field patterns from 
antennae used at radio and microwave frequencies. In most of these practical sit­
uations, the field sources, q and i, are essentially in the sinusoidal steady state. In 
particular, 

iejωt i = Re ˆ (18) 

where î is a complex number representing both the phase and amplitude of the 
current. Then, the general expression for the vector potential of the electric dipole, 
(7), becomes 

µdî 
Az = Re ejω(t− rc ) (19)

4πr 

Separation of the time dependence from the space dependence in solving the inho­
mogeneous wave equation is accomplished by the use of complex vector functions 
of space multiplied by exp jωt. With the understanding that the time dependence 
is recovered by multiplying by exp(jωt) and taking the real part, we will now deal 
with the complex amplitudes of the fields and drop the factor exp jωt. Thus, (19) 
becomes 

e−jkr 

Az = Re Â  
ze

jωt; Â  
z = 

µdî
(20)

4π r 

where the wave number k ≡ ω/c. 
In terms of complex amplitudes, the magnetic and electric field intensities of 

the electric dipole follow from (13) and (14) as [by substituting q Re (̂i/jω) exp 
(−jkr) exp(jωt)] 

→ 

e−jkr 

Ĥ = j
kdî� 1 

+ 1
� 
sin θ iφ (21)

4π jkr r 

Ê =j
kdî�

µ/�

�
2
� 

1 
+

1 
� 

cos θir4π (jkr)2 jkr � 
1 1 

� � 
e−jkr 

(22) 
+ + + 1 sin θiθ(jkr)2 jkr r 

The far fields are given by terms with the 1/r dependence. 

e−jkr 

Ĥφ = j
kdî 

sin θ
4π r (23) 

Êθ = 
�
µ/�Ĥ 

φ (24) 
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Fig. 12.2.7 Radiation pattern of short electric dipole, shown in the range 
π/2 < φ < 3π/2. 

These fields, which are a special case of those pictured in Fig. 12.2.4, propagate 
radially outward. The far field pattern is a radial progression of the fields shown 
between the broken lines in Fig. 12.2.6c. (The response shown is the result of one 
half of a cycle.) 

It follows from (23) and (24) that for a short dipole in the sinusoidal steady 
state, the power radiated per unit solid angle is6 

4πr2 1 1 (kd)2�Sr� = r 2 Re Ê × Ĥ∗ · ir = 
�
µ/� |̂i| 2 sin2 θ (25)

4π 2 2 (4π)2

Equation (25) expresses the dependence of the radiated power on the direction 
(θ, φ), and can be called the radiation pattern. Often, only the functional depen­
dence, Ψ(θ, φ) is identified with the “radiation pattern.” In the case of the short 
electric dipole, 

Ψ(θ, φ) = sin2 θ (26) 

and the radiation pattern is as shown in Fig. 12.2.7. 

The Far­Field and Uniformly Polarized Plane Waves. For an observer far 
from the dipole, the variation of the field with respect to radius is more noticeable 
than that with respect to the angle θ. Further, if kr is large, the radial variation 
represented by exp(−jkr) dominates over the much weaker dependence due to the 
factor 1/r. This term makes the fields tend to repeat themselves every wavelength 
λ = 2π/k. At frequencies of the order used for VHF television, the wavelength is 
on the order of a meter, while the station antenna is typically kilometers away. 
Thus, over the dimensions of a receiving antenna, the variations due to the factor 
1/r and the θ variation in (23) and (24) are insignificant. By contrast, the receiving 
antenna has dimensions on the order of λ, and so the radial variation represented by 
exp(−jkr) is all­important. Far from the dipole, where spatial variations transverse 
to the radial direction of propagation are unimportant, and where the slow decay 
due to the 1/r term is negligible, the fields take the form of uniform plane waves. 
With the local spherical coordinates replaced by Cartesian coordinates, as shown 
in Fig. 12.2.8, the fields then take the form 

E = Ez(y, t)iz; H = Hx(y, t)ix (27) 

6 Here we use the time average theorem of (11.5.6). 

http:12.2.6c
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Fig. 12.2.8 (a) Radiation field of electric dipole. (b) Cartesian representation 
in neighborhood of remote point. 

That is, the fields depend only on y, which plays the role of r, and are directed 
transverse to y. Instead of the far fields given by (15), we have traveling­wave fields 
that, by virtue of their independence of the transverse coordinates, are called plane 
waves. To emphasize that the dipole has indeed launched a plane wave, in (15) we 
replace 

rd q��
�
t − c 

� 

sin θ E+

�
t − 

y � 
(28)

4π� c2r 
→ 

c 

and recognize that i� = q��, (6), so that 

y y
E = E+

�
t − 

�
iz; H = 

�
�/µE+

�
t − 

�
ix (29) 

c c 

The dynamics of such plane waves are described in Chap. 14. Note that the ratio 
of the magnitudes of E and H is the intrinsic impedance ζ ≡ 

�
µ/�. In free space, 

ζ = ζo ≡ 
�
µo/�o ≈ 377Ω. 

Magnetic Dipole Field. Given the magnetic and electric fields of an elec­
tric dipole, (13) and (14), what are the electrodynamic fields of a magnetic dipole? 
We answer this question by exploiting a far­reaching property of Maxwell’s equa­
tions, (12.0.7)–(12.0.10), as they apply where Ju = 0 and ρu = 0. In such regions, 
Maxwell’s equations are replicated by replacing H by −E, E by H, � by µ, and µ 
by �. It follows that because (13) and (14) are solutions to Maxwell’s equations, 
then so are the fields. 

m + 
qmE = − 

4
d

π 

� q
cr 

��

r

� 
2 

� 
sin θiφ (30) 

d 
�
2
� qm q� 

+
� qm qm

� 
m 

�
H =

4πµ r3 
+ 
cr

m 
2

� 
cos θir 

r3 
+ 
cr2 

+ 
c

q
2

�� 

r 

� 
sin θiθ (31) 

Of course, qm must now be interpreted as a source of divergence of H, i.e., a 
magnetic charge. Substitution shows that these fields do indeed satisfy Maxwell’s 
equations with J = 0 and ρ = 0, except at the origin. To discover the source 
singularity at the origin giving rise to these fields, they are examined in the limit 
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Fig. 12.2.9 Magnetic dipole giving rise to the fields of (33) and (34). 

where r 0. Observe that in the neighborhood of the origin, terms proportional →
to 1/r3 dominate H as given by (31). Close to the source, H takes the form of a 
magnetic dipole. This can be seen by a comparison of this near field to that given 
by (8.3.20) for a magnetic dipole. 

r r 
dqm

�
t − 

� 
= µm

�
t − 

� 
(32) 

c c 
With this identification of the source, (30) and (31) become 

r r µ 
� 
m���t − c 

� 
m��t − c 

��
E = − 

4π cr 
+ 

r2 
sin θiφ 

(33) 

r r1 
� � 

m
�
t − 

� 
m��t − 

��
H = 2 c + c cos θir4π r3 cr2 

r r r� 
m

�
t − c 

� 
m��t − c 

� 
m���t − c 

�� �
+ + + sin θiθ 

r3 cr2 c2r (34) 

The small current loop of Fig. 12.2.9, which has a magnetic moment m = πR2i, 
could be the source of the fields given by (33) and (34). If the current driving this 
loop were turned on in a manner analogous to that considered in Example 12.2.1, 
the field left behind the outward propagating pulse would be the magnetic dipole 
field derived in Example 8.3.2. 

The complex amplitudes of the far fields for the magnetic dipole are the 
counterpart of the fields given by (23) and (24) for an electric dipole. They follow 
from the first term of (33) and the last term of (34) as 

Ĥθ = − 
4
k

π 

2 

m̂ sin θ
e−

r 

jkr 

(35) 

Êφ = −
�
µ/�Ĥ 

θ (36) 
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In Sec. 12.4, it will be seen that the radiation fields of the electric dipole can be 
superimposed to describe the radiation patterns of current distributions and of 
antenna arrays. A similar application of (35) and (36) to describing the radiation 
patterns of antennae composed of arrays of magnetic dipoles is illustrated by the 
problems. 

12.3 SUPERPOSITION INTEGRAL FOR ELECTRODYNAMIC FIELDS 

With the identification in Sec. 12.2 of the fields associated with point charge 
and current sources, we are ready to construct fields produced by an arbitrary 
distribution of sources. Just as the superposition integral of Sec. 4.5 was based 
on the linearity of Poisson’s equation, the superposition principle for the dynamic 
fields hinges on the linear nature of the inhomogeneous wave equations of Sec. 12.1. 

Transient Response. The scalar potential for a point charge q at the origin, 
given by (12.2.1), can be generalized to describe a point charge at an arbitrary 
source position r� by replacing the distance r by r− r� (see Fig. 4.5.1). Then, the 
point charge is replaced by the charge density ρ

|| 
evaluated at the source position 

multiplied by the incremental volume element dv�. With these substitutions in the 
scalar potential of a point charge, (12.2.1), the potential at an observer location r 
is the integrand of the expression 

� 
ρ
�
r�, t − |r−r�| �

Φ(r, t) = c dv� 
V � 4π� |r− r�| (1) 

The integration over the source coordinates r� then superimposes the fields at r due 
to all of the sources. Given the charge density everywhere, this integral comprises 
the solution to the inhomogeneous wave equation for the scalar potential, (12.1.10). 

In Cartesian coordinates, any one of the components of the vector inhomoge­
neous wave­equation, (12.1.8), obeys a scalar equation. Thus, with ρ/� µJi, (1) 
becomes the solution for Ai, whether i be x, y or z. 

→ 

� 
J
�
r�, t − |r−c 

r� | �
A(r, t) = µ dv� 

V � 4π|r − r�| (2) 

We should keep in mind that conservation of charge implies a relationship between 
the current and charge densities of (1) and (2). Given the current density, the charge 
density is determined to within a time­independent distribution. An alternative, 
and often less involved, approach to finding E avoids the computation of the charge 
density. Given J, A is found from (2). Then, the gauge condition, (12.1.7), is used 
to find Φ. Finally, E is found from (12.1.3). 
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Sinusoidal Steady State Response. In many practical situations involving 
radio, microwave, and optical frequency systems, the sources are essentially in the 
sinusoidal steady state. 

= ρ(r)ejωt Φ = Φ(r)ejωt ρ Re ˆ Reˆ (3)⇒ 

Equation (1) is evaluated by using the charge density given by (3), with r r� and 
t → |r − r�|/c 

� 
ρ̂(r�)ejω

�
t− |r−r�| 

� 

→
t − 

c 

Φ = Re dv� 
V � 4π� |r − r�| (4) 

−jk|r−� � 
ρ̂(r�)e r�| � 

= Re dv� ejωt 

V � 4π� |r − r�|
where k ≡ ω/c. Thus, the quantity in brackets in the second expression is the 
complex amplitude of Φ at the location r. With the understanding that the time 
dependence will be recovered by multiplying this complex amplitude by exp(jωt) 
and taking the real part, the superposition integral for the complex amplitude of 
the potential is 

Φ̂ = 
� 

ρ̂(r�)e−jk|r−r�| 
dv�

4π� |r− r�| (5)V � 

From (2), the same reasoning gives the superposition integral for the complex am­
plitude of the vector potential. 

ˆ µ 
� 

Ĵ(r�)e−jk|r−r� |
A = dv� 

(6)4π V � |r− r�| 

The superposition integrals are often used to find the radiation patterns of 
driven antenna arrays. In these cases, the distribution of current, and hence charge, 
is independently prescribed everywhere. Section 12.4 illustrates this application of 
the superposition integral. 

If fields are to be found in confined regions of space, with part of the source 
distribution on boundaries, the fields given by the superposition integrals represent 
particular solutions to the inhomogeneous wave equations. Following the same ap­
proach as used in Sec. 5.1 for solving boundary value problems involving Poisson’s 
equation, the boundary conditions can then be satisfied by superimposing on the 
solution to the inhomogeneous wave equation solutions satisfying the homogeneous 
wave equation. 

12.4 ANTENNA RADIATION FIELDS IN THE SINUSOIDAL STEADY STATE 

Antennae are designed to transmit and receive electromagnetic waves. As we know 
from Sec. 12.2, the superposition integrals for the scalar and vector potentials result 
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Fig. 12.4.1 Incremental current element at r� is source for radiation field at 
(r, θ, φ). 

in both the radiation and near fields. If we confine our interest to the fields far from 
the antenna, extensive simplifications are achieved. 

Many types of antennae are composed of driven conducting elements that are 
extremely thin. This often makes it possible to use simple arguments to approxi­
mate the distribution of current over the length of the conductor. With the current 
distribution specified at the outset, the superposition integrals of Sec. 12.3 can then 
be used to determine the associated fields. 

An element idz� of the current distribution of an antenna is pictured in Fig. 
12.4.1 at the source location r�. If this element were at the origin of the spheri­
cal coordinate system shown, the associated radiation fields would be as given by 
(12.2.23) and (12.2.24). With the distance to the current element r� much less than 
r, how do we adapt these expressions so that they represent the fields when the 
incremental source is located at r� rather than at the origin? 

The current elements comprising the antenna are typically within a few wave­
lengths of the origin. By contrast, the distance r (say, from a TV transmitting 
antenna, where the wavelength is on the order of 1 meter, to a receiver 10 kilome­
ters away) is far larger. For an observer in the neighborhood of a point (r, θ, φ), 
there is little change in sin θ/r, and hence in the magnitude of the field, caused by 
a displacement of the current element from the origin to r�. However, the phase of 
the electromagnetic wave launched by the current element is strongly influenced by 
changes in the distance from the element to the observer that are of the order of a 
wavelength. This is seen by writing the argument of the exponential term in terms 
of the wavelength λ, jkr = j2πr/λ. 

With the help of Fig. 12.4.1, we see that the distance from the source to the 
observer is r−r� ir. Thus, for the current element located at r� in the neighborhood · 
of the origin, the radiation fields given by (12.2.23) and (12.2.24) are 

Ĥ 
φ � 

4
jk 

π 
sin θ

e−jk(r

r 

−r�·ir) 
i(r�)dz� 

(1) 
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Fig. 12.4.2 Line current distribution as source of radiation field. 

ˆ 
� 
µ
Ĥ 

φEθ � 
� (2) 

Because E and H are vector fields, yet another approximation is implicit in 
writing these expressions. In shifting the current element, there is a slight shift 
in the coordinate directions at the observer location. Again, because r is much 
larger than r� , this slight change in the direction of the field can be ignored. Thus, | |
radiation fields due to a superposition of current elements can be found by simply 
superimposing the fields as though they were parallel vectors. 

Distributed Current Distribution. A wire antenna, driven by a given current 
distribution Re [̂i(z) exp(jωt)], is shown in Fig. 12.4.2. At the terminals, the complex 
amplitude of this current is î = Io exp(jωt + αo). It follows from (1) and the 
superposition principle that the magnetic radiation field for this antenna is 

e−jkr 

Ĥφ � 
4
jk 

π 
sin θ

r 

� 
î(z�)ejkr�·ir dz� (3) 

Note that the role played by id for the incremental dipole is now played by i(z�)dz�. 
For convenience, we define a field pattern function ψo(θ) that gives the θ dependence 
of the E and H fields 

ψo(θ) ≡ 
sin θ 

� 
î(z�) 

ej(kr�·ir−αo)dz�
l Io (4) 

where l is the length of the antenna and ψo(θ) is dimensionless. With the aid of 
ψo(θ), one may write (3) in the form 

jkl e−jkr 

Ĥ 
φ � 

4π r
Ioe

jαo ψo(θ) (5) 
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Fig. 12.4.3 Center­fed wire antenna with standing­wave distribution 
of current. 

By definition, î(ˆ )z� = Io exp(jαo) if z� is evaluated at the terminals of the antenna. 
Thus, ψo is neither a function of Io nor of αo. In order to evaluate (5), one needs 
to know the current dependence on z�, î(z�). One can show that the current dis­
tribution on a (open­ended) thin wire is made up of a “standing wave” with the 
dependence sin(2πs/λ) upon the coordinate s measured along the wire, from the 
end of the wire. The proof of this statement will be presented in Chapter 14, when 
we shall discuss the current distribution in a coaxial cable. 

Example 12.4.1. Radiation Pattern of Center­Fed Wire Antenna 

A wire antenna, fed at its midpoint and on the z axis, is shown in Fig. 12.4.3. The 
current distribution is “given” according to the above remarks. 

î = −Io 
sin k(|z| − l/2) 

ejαo (6)
sin(kl/2) 

In setting up the radiation field superposition integral, (5), observe that r� ir = · 
z� cos θ. 

ψo = 
sin θ 

� l/2 − sin k(|z�| − l/2) 
ejkz� cos θdz� (7)

l −l/2 
sin(kl/2) 

Evaluation of the integral7 then gives 

� 
cos(kl/2) − cos 

� 
kl cos θ

�� 
ψo = (8) 

2 2 

kl sin(kl/2) sin θ 

The radiation pattern of the wire antenna is proportional to the absolute value 
squared of the θ­dependent factor of ψo 

� 
cos(kl/2) − cos 

� 
kl cos θ

��2 

Ψ(θ) = 2 (9)
sin θ 

7 To carry out the integration, first express the integration over the positive and negative 
segments of z� as separate integrals. With the sine functions represented by the sum of complex 
exponentials, the integration is reduced to a sum of integrations of complex exponentials. 



Sec. 12.4 Antennae Radiation Fields 25 

Fig. 12.4.4 Radiation patterns for center­fed wire antennas. 

In viewing the plots of this radiation pattern shown in Fig. 12.4.4, remember 
that it is the same in any plane of constant φ. Thus, a three­dimensional picture of 
the function Ψ(θ, φ) is generated by rotating one of these patterns about the z axis. 

The radiation pattern for a half­wave antenna differs little from that for the 
short dipole, shown in Fig. 12.2.7. Because of the interference between waves gen­
erated by segments having different phases and amplitudes, the pattern for longer 
wires is more complex. As the length of the antenna is increased to many wave­
lengths, the number of lobes increases. 

Arrays. Desired radiation patterns are often obtained by combining driven 
elements into arrays. To illustrate, consider an array of 1 + n elements, the first 
at the origin and designated by “0”. The others are designated by i = 1 . . . n 
and respectively located at ai. We can find the radiation pattern for the array by 
summing over the contributions of the separate elements. Each of these takes the 
form of (5), with r r − ai ir, Io Ii, αo αi, and ψo(θ) ψ(θ).→ · → → → 

n

Ĥ 
φ � 

jkl � 
e−jk(r−ai·ir)Iiejαiψi(θ) (10)

4πr 
i=0 

In the special case where the magnitude (but not the phase) of each element is the 
same and the elements are identical, so that Ii = Io and ψi = ψo, this expression 
can be written as 

jαoĤθ � 
jkl

Ioe
e−jkr 

ψo(θ)ψa(θ, φ) (11)
4π r 

where the array factor is 
n

jkai ir j(αi−αo)ψa(θ, φ) ≡ 
� 

e · e (12) 
i=0 



26 Electrodynamic Fields: The Superposition Integral Point of View Chapter 12 

Fig. 12.4.5 Array consisting of two elements with spacing, a. 

Note that the radiation pattern of the array is represented by the square of the 
product of ψo, representing the pattern for a single element, and the array factor 
ψa. If the n + 1 element array is considered one element in a second array, these 
same arguments could be repeated to show that the radiation pattern of the array 
of arrays is represented by the square of the product of ψo, ψa and the square of 
the array factor of the second array. 

Example 12.4.2. Two­Element Arrays 

The elements of an array have a spacing a, as shown in Fig. 12.4.5. The array factor 
follows from evaluation of (12), where ao = 0 and a1 = aix. The projection of ir 
into ix gives (see Fig. 12.4.5) 

a1 ir = a sin θ cos φ (13)· 

It follows that 
ψa = 1 + ej(ka sin θ cos φ+α1−αo) (14) 

It is convenient to write this expression as a product of a part that determines the 
phase and a part that determines the amplitude. 

ψa = 2ej(ka sin θ cos φ+α1−αo)/2 cos 
� ka 

sin θ cos φ+ 
1
(α1 − αo)

� 
(15)

2 2 

Dipoles in Broadside Array. With the elements short compared to a 
wavelength, the individual patterns are those of a dipole. It follows from (4) that 

ψo = sin θ (16) 

With the dipoles having a half­wavelength spacing and driven in phase, 

λ 
a = ka = π, α1 − αo = 0 (17)

2 
⇒ 

The magnitude of the array factor follows from (15). 

|ψa| = 2
�� cos 

� π 
2 

sin θ cos φ
��� (18) 
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Fig. 12.4.6 Radiation pattern of dipoles in phase, half­wave spaced, 
is product of pattern for individual elements multiplied by the array 
factor. 

The radiation pattern for the array follows from (16) and (18). 

Ψ = |ψo| 2 |ψa| 2 = 4 sin2 θ cos 2 
� π 

2 
sin θ cos φ

� 
(19) 

Figure 12.4.6 geometrically portrays how the single­element pattern and ar­
ray pattern multiply to provide the radiation pattern. With the elements a half­
wavelength apart and driven in phase, electromagnetic waves arrive in phase at 
points along the y axis and reinforce. There is no radiation in the ±x directions, 
because a wave initiated by one element arrives out of phase with the wave being 
initiated by that second element. As a result, the waves reinforce along the y axis, 
the “broadside” direction, while they cancel along the x axis. 

Dipoles in End­Fire Array. With quarter­wave spacing and driven 90 
degrees out of phase, 

λ π 
a = , α1 − αo = (20)

4 2 
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Fig. 12.4.7 Radiation pattern for dipoles quarter­wave spaced, 90 de­
grees out of phase. 

the magnitude of the array factor follows from (15) as 

|ψa| = 2
�� cos 

� π 
4 

sin θ cos φ+ 
π 

4 

��� (21) 

The radiation pattern follows from (16) and (21). 

Ψ = |ψo| 2 |ψa| 2 = 4 sin2 θ cos 2 
� π 
4 

sin θ cos φ+ 
π 

4 

� 
(22) 

Shown graphically in Fig. 12.4.7, the pattern is now in the −x direction. Waves 
initiated in the −x direction by the element at x = a arrive in phase with those 
originating from the second element. Thus, the wave being initiated by that second 
element in the −x direction is reinforced. By contrast, the wave initiated in the +x 
direction by the element at x = 0 arrives 180 degrees out of phase with the wave 
being initiated in the +x direction by the other element. Thus, radiation in the +x 
direction cancels, and the array is unidirectional. 

Finite Dipoles in End­Fire Array. Finally, consider a pair of finite length 
elements, each having a length l, as in Fig. 12.4.3. The pattern for the individual 
elements is given by (8). With the elements spaced as in Fig. 12.4.5, with a = λ/4 
and driven 90 degrees out of phase, the magnitude of the array factor is given by 
(21). Thus, the amplitude of the radiation pattern is 

� 
cos 

� 
kl

� 
− cos 

� 
kl cos θ

��2� 
π2 2 2 

�π ��2 

Ψ = 4 cos sin θ cos φ+ (23)
sin θ 4 4 

For elements of length l = 3λ/2 (kl = 3π), this pattern is pictured in Fig. 12.4.8. 

Gain. The time average power flux density, Sr(θ, φ) , normalized to the 
power flux density averaged over the surface of a sphere, is called the gain of an 
antenna. 

G = 
S 
π
r(θ, φ)� 

(24)
1 

� π �
�
2 

r sin θdφrdθ4πr2 0 0 
�Sr� 
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Fig. 12.4.8 Radiation pattern for two center­fed wire antennas, quarter­wave 
spaced, 90 degrees out­of­phase, each having length 3λ/2. 

If the direction is not specified, it is implied that G is the gain in the direction of 
maximum gain. 

The radial power flux density is the Poynting flux, defined by (11.2.9). Using 
the time average theorem, (11.5.6), and the fact that the ratio of E to H for the 
radiation field is 

�
µ/�, (2), gives 

1 ˆ 1 
Re ˆ ˆ 1 ˆ 2 �Sr� = 2

ReÊ × H∗ =
2 

EθHφ
∗ =

2

�
�/µ|Eθ| (25) 

Because the radiation pattern expresses the (θ, φ) dependence of Eθ
2 with a| |

multiplicative factor that is in common to the numerator and denominator of (24), 
G can be evaluated using the radiation pattern Ψ for Sr . 

Example 12.4.3. Gain of an Electric Dipole 

For the electric dipole, it follows from (1) and (2) that the radiation pattern is 
proportional to sin2(θ). The gain in the θ direction is then 

sin2 θ 3 2G = = sin θ (26)
1 
� π 

sin3 θdθ 2 
2 0 

and the “gain” is 3/2. 

12.5 COMPLEX POYNTING’S THEOREM AND RADIATION RESISTANCE 

To the generator supplying its terminal current, a radiating antenna appears as 
a load with an impedance having a resistive part. This is true even if the antenna 
is made from perfectly conducting material and therefore incapable of converting 
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electrical power to heat. The power radiated away from the antenna must be sup­
plied through its terminals, much as if it were dissipated in a resistor. Indeed, if 
there is no electrical dissipation in the antenna, the power supplied at the terminals 
is that radiated away. This statement of power conservation makes it possible to 
determine the equivalent resistance of the antenna simply by using the far fields 
that were the theme of Sec. 12.4. 

Complex Poynting’s Theorem. For systems in the sinusoidal steady state, 
a useful alternative to the form of Poynting’s theorem introduced in Secs. 11.1 and 
11.2 results from writing Maxwell’s equations in terms of complex amplitudes before 
they are combined to provide the desired theorem. That is, we assume at the outset 
that fields and sources take the form 

jωt E = ReÊ(x, y, z)e (1) 

Suppose that the region of interest is composed either of free space or of perfect 
conductors. Then, substitution of complex amplitudes into the laws of Ampère and 
Faraday, (12.0.8) and (12.0.9), gives 

�× Ĥ = Ĵ + jω�Ê (2) 

�× Ê = −jωµĤ (3) 

The manipulations that are now used to obtain the desired “complex Poynting’s 
theorem” parallel those used to derive the real, time­dependent form of Poynting’s 
theorem in Sec. 11.2. We dot E with the complex conjugate of (2) and subtract the 
dot product of the complex conjugate of H with (3). It follows that8 

ˆ ˆ ˆ ˆ ˆ ˆE H∗) = E J∗ + jω(µH H∗ − �E Eˆ ∗) (4)−� · (ˆ × · · · 

The object of this manipulation was to obtain the “perfect” divergence on the 
left, because this expression can then be integrated over a volume V and Gauss’ 
theorem used to convert the volume integral on the left to an integral over the 
enclosing surface S. 

� 
1
(ˆ Ĥ∗)

� 
1 ˆ ˆ E Ê∗)dvE da =jω2 (µH H∗ − �ˆ− 

S 2
× · 

V 4
· · 

(5)� 
1 ˆ ˆ+ E J∗ dv 

V 2 
· u 

This expression has been multiplied by 1
2 , so that its real part represents the 

time average flow of power, familiar from Sec. 11.5. Note that the real part of the 
first term on the right is zero. The real part of (5) equates the time average of the 
Poynting vector flux into the volume with the time average of the power imparted 
to the current density of unpaired charge, Ju, by the electric field. This information 

8 � · (A
× B) = B · � × A− A · � × B
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Fig. 12.5.1 Surface S encloses the antenna but excludes the source. Spherical 
part of S is at “infinity.” 

is equivalent to the time average of the (real form of) Poynting’s theorem. The 
imaginary part of (5) relates the difference between the time average magnetic and 
electric energies in the volume V to the imaginary part of the complex Poynting 
flux into the volume. The imaginary part of the complex Poynting theorem conveys 
additional information. 

Radiation Resistance. Consider the perfectly conducting antenna system 
surrounded by the spherical surface, S, shown in Fig. 12.5.1. To exclude sources 
from the enclosed volume, this surface is composed of an outer surface, Sa, that is 
far enough from the antenna so that only the radiation field makes a contribution, 
a surface Sb that surrounds the source(s), and a surface Sc that can be envisioned 
as the wall of a system of thin tubes connecting Sa to Sb in such a way that 
Sa + Sb + Sc is indeed the surface enclosing V . By making the connecting tubes 
very thin, contributions to the integral on the left in (5) from the surface Sc are 
negligible. We now write, and then explain, the terms in (5) as they describe this 
radiation system. 

n 

ˆ ˆ ˆ
� 

1�
�/µ Eθ 

2da +
� 1 

v̂ii
∗ = j2ω

� 
1� 1 

µ H 2 1 
� Ê 2�dv (6)− 

Sa 
2

| | 
i=1 

2 i
V 2 2

| | − 
2
| | 

The first term is the contribution from integrating the radiation Poynting 
flux over Sa, where (12.4.2) serves to eliminate H. The second term comes from the 
surface integral in (5) of the Poynting flux over the surface, Sb, enclosing the sources 
(generators). Think of the generators as enclosed by perfectly conducting boxes 
powered by terminal pairs (coaxial cables) to which the antennae are attached. We 
have shown in Sec. 11.3 (11.3.29) that the integral of the Poynting flux over Sb is 
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Fig. 12.5.2 End­loaded dipole and equivalent circuit. 

equivalent to the sum of voltage­current products expressing power flow from the 
circuit point of view. The first term on the right is the same as the first on the right 
in (5). Finally, the last term in (5) makes no contribution, because the only regions 
where J exists within V are those modeled here as perfectly conducting and hence 
where E = 0. 

Consider a single antenna with one input terminal pair. The antenna is a 
linear system, so the complex voltage must be proportional to the complex terminal 
current. 

v̂ = Zant ̂i (7) 

Here, Zant is the impedance of the antenna. In terms of this impedance, the time 
average power can be written as 

1 
Re(v̂î∗) =

1 
Re(Zant) î 2 =

1 
Re(Zant) Îo 2 (8)

2 2
| | 

2
| | 

It follows from the real part of (6) that the radiation resistance, Rrad, is 
� 

2 da Re(Zant) ≡ Rrad = 
�
�/µ 

Sa 

|Eθ| 
Îo 2 

(9) | |
The imaginary part of Zout describes the reactive power supplied to the antenna. 

ˆ 2 

Im(Zant) = 
ω

� 
(µ|H| −

2 

�|Ê|2)dv 
(10) |Io| 

The radiation field contributions to this integral cancel out. If the antenna elements 
are short compared to a wavelength, contributions to (10) are dominated by the 
quasistatic fields. Thus, the electric dipole contributions are dominated by the elec­
tric field (and the reactance is capacitive), while those for the magnetic dipole are 
inductive. By making the antenna on the order of a wavelength, the magnetic and 
electric contributions to (10) are often made to essentially cancel. An example is 
a half­wavelength version of the wire antenna in Example 12.4.1. The equivalent 
circuit for such resonant antennae is then solely the radiation resistance. 

Example 12.5.1. Equivalent Circuit of an Electric Dipole 

An “end­loaded” electric dipole is composed of a pair of perfectly conducting metal 
spheres, each of radius R, as shown in Fig. 12.5.2. These spheres have a spacing, d, 
that is short compared to a wavelength but large compared to the radius, R, of the 
spheres. 
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The equivalent circuit is also shown in Fig. 12.5.2. The statement that the 
sum of the voltage drops around the circuit is zero requires that 

î 
v̂ = + Rrad î (11)

jωC 

A statement of power flow is obtained by multiplying this expression by the complex 
conjugate of the complex amplitude of the current. 

1 jω 1 

2 
v̂î∗ = − 

2C
q̂q̂∗ +

2 
Rrad î̂i

∗; î ≡ jωq̂ (12) 

Here the dipole charge, q, is defined such that i = dq/dt. The real part of 
this expression takes the same form as the statement of complex power flow for the 

antenna, (6). Thus, with Êθ provided by (12.2.23) and (12.2.24), we can solve for 
the radiation resistance: 

π 

Rrad = 
�
µ/� 

(kd)2 
� 

sin2 θ(2πr sin θ)rdθ 
=

(kd)2 �
µ/� (13)

(4π)2
0 

r2 6π 

Note that because k ≡ ω/c, this radiation resistance is proportional to the square 
of the frequency. 

The imaginary part of the impedance is given by the right­hand side of (10). 
The radiation field contributions to this integral cancel out. In integrating over 
the near field, the electric energy storage dominates and becomes essentially that 
associated with the quasistatic capacitance of the pair of spheres. We assume that 
the spheres are connected by wires that are extremely thin, so that their effect can 
be ignored. Then, the capacitance is the series capacitance of two isolated spheres, 
each having a capacitance of 4π�R. 

C = 2π�R (14) 

Radiation fields are solutions to the full Maxwell equations. In contrast, EQS 
fields were analyzed ignoring the magnetic flux linkage in Faraday’s law. The ap­
proximation is justified if the size of the system is small compared with a wavelength. 
The following example treats the scattering of particles that are small compared 
with the wavelength. The fields around the particles are EQS, and the currents 
induced in the particles are deduced from the EQS approximation. These currents 
drive radiation fields, resulting in Rayleigh scattering. The theory of Rayleigh scat­
tering explains why the sky is blue in color, as the following example shows. 

Example 12.5.2. Rayleigh Scattering 

Consider a spatial distribution of particles in the field of an infinite parallel plane 
wave. The particles are assumed to be small as compared to the wavelength of the 
plane wave. They get polarized in the presence of an electric field Ea, acquiring a 
dipole moment 

p = �oαEa (15) 

where α is the polarizability. These particles could be atoms or molecules, such as 
the molecules of nitrogen and oxygen of air exposed to visible light. They could also 
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be conducting spheres of radius R. In the latter case, the dipole moment produced 
by an applied electric field Ea is given by (6.6.5) and the polarizability is 

α = 4πR3 (16) 

If the frequency of the polarizing wave is ω and its propagation constant k = ω/c, 
the far field radiated by the particle, expressed in a spherical coordinate system with 
its θ = 0 axis aligned with the electric field of the wave, is, from (12.2.22), 

e−jkr
� 
µo kωp̂ 

Eθ = sin θ (17)− 
�o 4π r 

where îd = jωp̂ is used in the above expression. The power radiated by each dipole, 
i.e., the power scattered by a dipole, is 

2 π 2π� 
1
� 

�o ˆ 2 1
� 
µo 

����
ωkp̂

����
1 

� � 
2 3PScatt = Eθ = dφr sin θdθ 

2 µo 
| | 

2 �o 4π r2 
Sa 0 0 

2 
1
� 
µo 

����
ωkp̂

����
8π 1 

� 
µo ω

4
2 2 ˆ 2 

(18) 

= = �oα E 
2 �o 4π 3 12π �o c2 

The scattered power increases with the fourth power of frequency when α is not a 
function of frequency. The polarizability of N2 and O2 is roughly frequency indepen­
dent. Of the visible radiation, the blue (high) frequencies scatter much more than 
the red (low) frequencies. This is the reason for the blue color of the sky. The same 
phenomenon accounts for the polarization of the scattered radiation. Along a line L 
at a large angle from the line from the observer O to the sun S, only the electric field 
perpendicular to the plane LOS produces radiation visible at the observer position 
(note the sin2 θ dependence of the radiation). Thus, the scattered radiation observed 
at O has an electric field perpendicular to LOS. 

The present analysis has made two approximations. First, of course, we as­
sumed that the particle is small compared with a wavelength. Second, we computed 
the induced polarization from the unperturbed field Eθ of the incident plane wave. 
This assumes that the particle perturbs the wave negligibly, that the scattered power 
is very small compared to the power in the wave. Of course, the incident wave de­
creases in intensity as it proceeds through the distribution of scatterers, but this 
macroscopic change can be treated as a simple attenuation proportional to the den­
sity of scatterers. 

12.6 PERIODIC SHEET­SOURCE FIELDS: UNIFORM AND NONUNIFORM 
PLANE WAVES 

This section introduces the electrodynamic fields associated with surface sources. 
The physical systems analyzed are generalizations, on the one hand, of such EQS 
situations as Example 5.6.2, where sinusoidal surface charge densities produced a 
Laplacian field decaying away from the surface charge source. On the other hand, 
the MQS sinusoidal surface current sources producing magnetic fields that decay 
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away from their source (for example, Prob. 8.6.9) are generalized to the fully dy­
namic case. In both cases, one expects that the quasistatic approximation will be 
contained in the limit where the spatial period of the source is much smaller than 
the wavelength λ = 2π/ω

√
µ�. When the spatial period of the source approaches, 

or exceeds, the wavelength, new phenomena ought to be revealed. Specifically, dis­
tributions of surface current density K and surface charge density σs are given in 
the x − z plane. 

K = Kx(x, t)ix +Kz(x, t)iz (1) 

σs = σs(x, t) (2) 

These are independent of z and are typically periodic in space and time, extending 
to infinity in the x and z directions. 

Charge conservation links K and σs. A two­dimensional version of the charge 
conservation law, (12.1.22), requires that there must be a time rate of decrease of 
surface charge density σs wherever there is a two­dimensional divergence of K. 

∂Kx ∂Kz ∂σs ∂Kx ∂σs+ + = 0 + = 0 (3)
∂x ∂z ∂t 

⇒ 
∂x ∂t 

The second expression results because Kz is independent of z. 
Under the assumption that the only sources are those in the x − z plane, it 

follows that the fields can be pictured as the superposition of those due to (Kx, σs) 
given to satisfy (3) and due to Kz. It is therefore convenient to break the fields 
produced by these two kinds of sources into two categories. 

Transverse Magnetic (TM) Fields. The source distribution (Kx, σs) does 
not produce a z component of the vector potential A, Az = 0. This follows because 
there is no z component of the current in the superposition integral for A, (12.3.2). 
However, there are both current and charge sources, so that the superposition 
integral for Φ requires that in addition to an A that lies in x − y planes, there 
is an electric potential as well. 

A = Ax(x, y, t)ix +Ay(x, y, t)iy; Φ = Φ(x, y, t) (4) 

Because the source distribution is independent of z, we have taken these potentials 
to be also two dimensional. It follows that H is transverse to the x − y coordinates 
upon which the fields depend, while E lies in the x − y plane. 

1
H = 

µ
�× A = Hz(x, y, t)iz 

∂A
E = −�Φ− 

∂t 
= Ex(x, y, t)ix + Ey(x, y, t)iy (5) 

Sources and fields for these transverse magnetic (TM) fields have the relative ori­
entations shown in Fig. 12.6.1. 

We will be concerned here with sources that are in the sinusoidal steady state. 
Although A and Φ could be used to derive the fields, in what follows it is more 
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Fig. 12.6.1 Transverse magnetic and electric sources and fields. 

convenient to deal directly with the fields themselves. The complex amplitude of 
Hz, the only component of H, is conveniently used to represent E in the free space 
regions to either side of the sheet. This can be seen by using the x and y components 
of Ampère’s law to write 

1 ∂Ĥz
Ex = 

jω� ∂y (6) 

Ê 
y 

1 ∂Ĥ 
z = − 

jω� ∂x (7) 

for the only two components of E. 
The relationship between H and its source is obtained by taking the curl 

of the vector wave equation for A, (12.1.8). The curl operator commutes with 
the Laplacian and time derivative, so that the result is the inhomogeneous wave 
equation for H. 

∂2H 
(8)

� 2H− µ� 
∂t2 

= −� × J 

For the sheet source, the driving term on the right is zero everywhere except in the 
x− z plane. Thus, in the free space regions, the z component of this equation gives 
a differential equation for the complex amplitude of Hz. 

� ∂2 

+ 
∂2 �

Ĥ 
z + ω2µ�Ĥ 

z = 0 
∂x2 ∂y2 (9) 

This expression is a two­dimensional example of the Helmholtz equation. Given 
sinusoidal steady state source distributions of (Kx, σs) consistent with charge con­
servation, (3), the continuity conditions can be used to relate these sources to the 
fields described by (6), (7), and (9). 
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Product Solutions to the Helmholtz Equation. One theme of this section is 
the solution to the Helmholtz equation, (9). Note that this equation resulted from 
the time­dependent wave equation by separation of variables, by assuming solu­
tions of the form Hz(x, y)T (t), where T (t) = exp(jωt). We now look for solutions 
expressing the x−y dependence that take the product form X(x)Y (y). The process 
is familiar from Sec. 5.4, but the resulting family of solutions is of wider variety, 
and it is worthwhile to focus on their nature before applying them to particular 
examples. 

With the substitution of the product solution Hz = X(x)Y (y), (9) becomes 

1 d2X 1 d2Y 
+ + ω2µ� = 0 (10)

X dx2 Y dy2 

This expression is satisfied if the first and second terms are constants 

−kx 
2 − ky 

2 + ω2µ� = 0 (11) 

and it follows that parts of the total solution are governed by the ordinary differ­
ential equations 

d2X d2Y 
+ k2X = 0; + k2Y = 0. (12)

dx2 x dy2 y 

Although kx and ky are constants, as long as they satisfy (11) they can be real or 
imaginary. In this chapter, we are interested in solutions that are periodic in the x 
direction, so we can think of kx as being real and kx 

2 > 0. Furthermore, the value 
of kx is fixed by the assumed functional form of the surface currents and charges. 
Equation (11) then determines ky from given values of kx and ω. In solving (11) 
for ky, we must take the square root of a quantity that can be positive or negative. 
By way of distinguishing the two roots of (11) solved for ky, we define 

� |
�
ω2µ� − kx 

2|; ω2µ� > kx 
2 

β ≡ −j|
�
kx 

2 − ω2µ�|; ω2µ� < kx 
2 

(13) 

and write the two solutions to (11) as 

ky ≡ �β (14) 

Thus, β is defined as either positive real or negative imaginary, and what we have 
found for the product solution X(x)Y (y) are combinations of products 

� 
cos kxx

�� 
e−jβy

�
Ĥzα sin kxx ejβy (15) 

Note that if ω2µ� < kx 
2, ky is defined by (13) and (14) such that the field, which is 

periodic in the x direction, decays in the +y direction for the upper solution but 
decays in the −y direction for the lower solution. These fields resemble solutions to 
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Fig. 12.6.2 Standing wave of surface charge density. 

Laplace’s equation. Indeed, in the limit where ω2µ� � k2, the Helmholtz equation x
becomes Laplace’s equation. 

As the frequency is raised, the rate of decay in the ±y directions decreases 
until ky becomes real, at which point the solutions take a form that is in sharp 
contrast to those for Laplace’s equation. With ω2µ� > kx 

2, the solutions that we 
assumed to be periodic in the x direction are also periodic in the y direction. 

The wave propagation in the y direction that renders the solutions periodic 
in y is more evident if the product solutions of (15) are written with the time 
dependence included. � 

cos kxx
� 

j(ωt�βy)Hz α sin kxx
e (16) 

For ω2µ� > kx
2, the upper and lower signs in (16) [and hence in (14)] correspond to 

waves propagating in the positive and negative y directions, respectively. 
By taking a linear combination of the trigonometric functions in (16), we 

can also form the complex exponential exp(jkxx). Thus, another expression of the 
solutions given by (16) is as 

Hz α e
j(ωt�βy�kxx) (17) 

Instead of having standing waves in the x direction, as represented by (16), we now 
have solutions that are traveling in the ±x directions. Examples 12.6.1 and 12.6.2, 
respectively, illustrate how standing­wave and traveling­wave fields are excited. 

Example 12.6.1. Standing­Wave TM Fields 

Consider the field response to a surface charge density that is in the sinusoidal 
steady state and represented by 

σs = Re
�
σ̂o sin kxxe

jωt
� 

(18) 

The complex coefficient σ̂o, which determines the temporal phase and magnitude of 
the charge density at any given location x, is given. Figure 12.6.2 shows this function 
represented in space and time. The charge density is always zero at the locations 
kxx = nπ, where n is any integer, and oscillates between positive and negative peak 
amplitudes at locations in between. When it is positive in one half­period between 
nulls, it is negative in the adjacent half­periods. It has the x dependence of a standing 
wave. 
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The current density that is consistent with the surface charge density of (18) 
follows from (3). � 

jωσ̂o 

� 
Kx = Re cos kxxe

jωt (19)
kx 

With the surface current density in the z direction zero, the fields excited by these 
surface sources above and below the sheet are TM. The continuity conditions, 
(12.1.14)–(12.1.17), relate the fields to the given surface source distributions. 

We start with Ampère’s continuity condition, the x component of (12.1.15) 

Hz
a − Hz

b = Kx at y = 0 (20) 

because it determines the x dependence of Hz as cos kxx. Of the possible combina­
tions of solutions given by (15), we let 

� 
ˆ cos kxxe

−jβy 

Ĥ 
z = A 

jβy (21)
B̂ cos kxxe

The upper solution pertains to the upper region. Note that we select a y dependence 
that represents either a wave propagating in the +y direction (for ω2µ� > 0) or a 
field that decays in that direction (for ω2µ� < 0). The lower solution, which applies 
in the lower region, either propagates in the −y direction or decays in that direction. 
One of two conditions on the coefficients in (21) it follows from substitution of these 
equations into Ampère’s continuity condition, (20). 

Â − ˆ jωσ̂o
B = (22)

kx 

A second condition follows from Faraday’s continuity condition, (12.1.16), which 
requires that the tangential electric field be continuous. 

Ê 
x
a − Ê 

x
b = 0 at y = 0 (23) 

Substitution of the solutions, (21), into (6) gives Ê 
x
a and Ê 

x
b , from which follows 

Â = −B̂ (24) 

Combining (2) and (3) we find 

Â = −B̂ = 
jωσ̂o 

(25)
2kx 

The remaining continuity conditions are now automatically satisfied. There is 
no normal flux density, so the flux continuity condition of (12.1.17) is automatically 
satisfied. But even if there were a y component of H, continuity of tangential E as 
expressed by (23) would guarantee that this condition is satisfied. 

In summary, the coefficients given by (25) can be used in (21), and those 
expressions introduced into (6) and (7), to determine the fields as 

Hz = Re± 
jωσ̂o 

cos kxxe
j(ωt�βy) (26)

2kx 
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Ex = Re− 
jσ̂oβ 

cos kxxe
j(ωt�βy) (27)

2�kx 

Ey = Re± 
σ̂o 

sin kxxe
j(ωt�βy) (28)

2� 

These fields are pictured in Fig. 12.6.3 for the case where σo is real. In the first 
field distribution, the frequency is low enough so that ω2µ� < kx

2. Thus, β as given by 
(13) has a negative imaginary value. The electric field pattern is shown when t = 0. 
At this instant, H = 0. When ωt = π/2, H is as shown while E = 0. The E and 
H are 90 degrees out of temporal phase. The fields decay in the y direction, much 
as they would for a spatially periodic surface charge distribution in the EQS limit. 
Because they decay in the ±y directions for reasons that do not involve dissipation, 
these fields are sometimes called evanescent waves. The decay has its origins in the 
nature of quasistatic fields, shaped as they are by Laplace’s equation. Indeed, with 
ω2µ� � kx

2 , E = −�Φ, and we are dealing with scalar solutions Φ to Laplace’s 
equation. The field pattern corresponds to that of Example 5.6.2. As the frequency 
is raised, the rate of decay in the y direction decreases. The rate of decay, β , reaches | |
zero as the frequency reaches ω = kx/

√
µ� = kxc. The physical significance of this 

condition is seen by recognizing that kx = 2π/λx, where λx is the wavelength in 
the x direction of the imposed surface charge density, and that ω = 2π/T where 
T is the temporal period of the excitation. Thus, as the frequency is raised to the 
point where the fields no longer decay in the ±y directions, the period T has become 
T = λx/c, and so has become as short as the time required for an electromagnetic 
wave to propagate the wavelength λx. 

The second distribution of Fig. 12.6.3 illustrates what happens to the fields as 
the frequency is raised beyond the cutoff frequency, when ω2µ� > kx

2. In this case, 
both E and H are shown in Fig. 12.6.3 when t = 0. Fields above and below the sheet 
propagate in the ±y directions, respectively. As time progresses, the evolution of the 
fields in the respective regions can be pictured as a translation of these distributions 
in the ±y directions with the phase velocities ω/ky. 

Transverse Electric (TE) Fields. Consider the case of a z­directed surface 
current density K = kziz. Then, the surface charge density σs is zero. It follows from 
the superposition integral for Φ, (12.3.1), that Φ = 0 and from the superposition 
integral for A, (12.3.2), that A = Aziz. Equation (12.1.3) then shows that E is 
in the z direction, E = Eziz. The electric field is transverse to the x and y axes, 
while the magnetic field lines are in x − y planes. These are the field directions 
summarized in the second part of Fig. 12.6.1. 

In the sinusoidal steady state, it is convenient to use Ez as the function from 
which all other quantities can be derived, for it follows from Faraday’s law that the 
two components of H can be written in terms of Ez. 

1 ∂Ê 
z

Ĥ 
x = − 

jωµ ∂y (29) 

Ĥ 
y 

1 ∂Ê 
z = 

jωµ ∂x (30) 
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Fig. 12.6.3 TM waves due to standing wave of sources in y = 0 plane. 

In the free space regions to either side of the sheet, each of the Cartesian 
components of E and H satisfies the wave equation. We have already seen this for 
H. To obtain an expression playing a similar role for E, we could again return to 
the wave equations for A and Φ. A more direct derivation begins by taking the curl 
of Faraday’s law. 

∂µH ∂ �×�× E = −� × 
∂t 

⇒ �(� · E)−� 2E = −µ
∂t

(�× H) (31) 

On the left, a vector identity has been used, while on the right the order of taking 
the time derivative and the curl has been reversed. Now, if we substitute for the 
divergence on the left using Gauss’ law, and for the curl on the right using Ampère’s 
law, it follows that 

2E− µ�
∂2E 

= �� ρ� 
+ µ

∂J � 
∂t2 � ∂t (32) 

In the free space regions, the driving terms on the right are absent. In the case of 
transverse electric fields, Ê 

z is the only field component. From (32), an assumed 
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time dependence of the form E = Re[Ê 
ziz exp(jωt)] leads to the Helmholtz equation 

for Êz 

� 
∂2 ∂2 

� 
ˆ+ Ez + ω2µ�Ê 

z = 0 
∂x2 ∂y2 (33) 

In retrospect, we see that the TE field relations are obtained from those for 
the TM fields by replacing H → −E, E H, � µ and µ �. This could → → →
have been expected, because in the free space regions to either side of the source 
sheet, Maxwell’s equations are replicated by such an exchange of variables. The 
discussion of product solutions to the Helmholtz equation, given following (9), is 
equally applicable here. 

Example 12.6.2. Traveling­Wave TE Fields 

This example has two objectives. One is to illustrate the TE fields, while the other is 
to provide further insights into the nature of electrodynamic fields that are periodic 
in time and in one space dimension. In Example 12.6.1, these fields were induced 
by a standing wave of surface sources. Here the source takes the form of a wave 
traveling in the x direction. 

Kz = ReK̂ 
oe

j(ωt−kxx) (34) 

Again, the frequency of the source current, ω, and its spatial dependence, 
exp(−jkxx), are prescribed. The traveling­wave x, t dependence of the source sug­
gests that solutions take the form of (17). 

� 
ˆˆ Ae−jβye−jkxx; y > 0Ez = 
Bejβye−jkxx (35)
ˆ ; y < 0 

Faraday’s continuity condition, (12.1.16), requires that 

Ê 
z
a = Ê 

z
b at y = 0 (36) 

and this provides the first of two conditions on the coefficients in (35). 

Â = B̂ (37) 

Ampère’s continuity condition, (12.1.15), further requires that 

−(Ĥ 
x
a − Ĥ 

x
b) = K̂ 

z at y = 0 (38) 

With Hx found by substituting (35) into (29), this condition shows that 

ωµK̂ 
o

Â = B̂ = (39)− 
2β 
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Fig. 12.6.4 TE fields induced by traveling­wave source in the y = 0 plane. 

With the substitution of these coefficients into (35), we have 

Ez = Re− 
ωµ 

K̂ 
oe

j(ωt−kxx)
� 
e−jβy; y > 0 (40)

2β ejβy; y < 0 

Provided that β is as defined by (13), these relations are valid regardless of the 
frequency. However, to emphasize the effect on the field when the frequency is such 
that ω2µ� < kx

2, these expressions are written for that case as 

Ez = Re− 
jωµ

K̂ 
oe

j(ωt−kxx)

� 
e−|β|y; y > 0 (41)

2|β| e|β|y; y < 0 

The space time dependence of Ez, and H as found by using (40) to evaluate (29) 
and (30), is illustrated in Fig. 12.6.4. For ω2µ� > kx

2, the response to the traveling 
wave of surface current is waves with lines of constant amplitude given by 

kxx ± kyy = constant + ωt (42) 

Thus, points of constant phase are lines of slope �kx/ky. The velocity of these 
lines in the x direction, ω/kx, is called the phase velocity of the wave in the x 
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direction. The respective waves also have phase velocities in the ±y directions, in 
this case ±ω/ky. The response to the traveling­current sheet in this high­frequency 
regime is a pair of uniform plane waves. Their direction of propagation is along the 
gradient of (42), and it is sometimes convenient to describe such plane waves by a 
vector wave number k having the direction of propagation of the planes of constant 
phase. The waves in the half­plane Y > 0 possess the k vector 

k = kxix + kyiy (43) 

At frequencies low enough so that ω2µ� < kx
2, points of constant phase lie on 

lines perpendicular to the x axis. At a given location along the x axis, the fields 
vary in synchronism but decay in the ±y directions. In the limit when ω2µ� � kx 

2 

(or f � c/λx, where ω ≡ 2πf), the H fields given by (29) and (30) become the 
MQS fields of a spatially periodic current sheet that happens to be traveling in 
the x direction. These “waves” are similar to those predicted by Laplace’s equation 
except that for a given wavelength 2π/kx in the x direction, they reach out further in 
the y direction. (A standing­wave version of this MQS field is exemplified by Prob. 
8.6.9.) In recognition of the decay in the y direction, they are sometimes called 
nonuniform plane waves or evanescent waves. Note that the frequency demarcating 
propagation in the ±y directions from evanescence or decay in the ±y directions is 
f = c/λx or the frequency at which the spatial period of the imposed current sheet 
is equal to one wavelength for a plane wave propagating in free space. 

12.7 ELECTRODYNAMIC FIELDS IN THE PRESENCE OF 
PERFECT CONDUCTORS 

The superposition integral approach is directly applicable to the determination of 
electrodynamic fields from sources specified throughout all space. In the presence of 
materials, sources are induced as well as imposed. These sources cannot be specified 
in advance. For example, if a perfect conductor is introduced, surface currents and 
charges are induced on its surface in just such a way as to insure that there is 
neither a tangential electric field at its surface nor a magnetic flux density normal 
to its surface. 

We have already seen how the superposition integral approach can be used 
to find the fields in the vicinity of perfect conductors, for EQS systems in Chap. 4 
and for MQS systems in Chap. 8. Fictitious sources are located in regions outside 
that of interest so that they add to those from the actual sources in such a way as 
to satisfy the boundary conditions. The approach is usually used to provide simple 
analytical descriptions of fields, in which case its application is a bit of an art– but 
it can also be the basis for practical numerical analyses involving complex systems. 

We begin with a reminder of the boundary conditions that represent the 
influence of the sources induced on the surface of a perfect conductor. Such a 
conductor is defined as one in which E 0 because σ →∞. Because the tangential →
electric field must be continuous across the boundary, it follows from Faraday’s 
continuity condition that just outside the surface of the perfect conductor (having 
the unit normal n) 

n × E = 0 (1) 
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In Sec. 8.4, and again in Sec. 12.1, it was argued that (1) implies that the normal 
magnetic flux density just outside a perfectly conducting surface must be constant. 

∂ 
(n µH) = 0 (2)

∂t 
· 

The physical origins and limitations of this boundary condition were one of the 
subjects of Chap. 10. 

Method of Images. The symmetry considerations used to satisfy boundary 
conditions in Secs. 4.7 and 8.6 on certain planes of symmetry are equally applicable 
here, even though the fields now suffer time delays under transient conditions and 
phase delays in the sinusoidal steady state. We shall illustrate the method of images 
for an incremental dipole. It follows by superposition that the same method can be 
used with arbitrary source distributions. 

Suppose that we wished to determine the fields associated with an electric 
dipole over a perfectly conducting ground plane. This dipole is the upper one of 
the two shown in Fig. 12.7.1. The associated electric and magnetic fields were 
determined in Sec. 12.2, and will be called Ep and Hp, respectively. To satisfy 
the condition that there be no tangential electric field on the perfectly conducting 
plane, that plane is made one of symmetry in an equivalent configuration in which 
a second “image” dipole is mounted, having a direction and intensity such that at 
any instant, its charges are the negatives of those of the first dipole. That is, the 
+ charge of the upper dipole is imaged by a negative charge of equal magnitude 
with the plane of symmetry perpendicular to and bisecting a line joining the two. 
The second dipole has been arranged so that at each instant in time, it produces 
a tangential E = Eh that just cancels that of the first at each location on the 
symmetry plane. With 

E = Eh + Ep (3) 

we have made E satisfy (1) and hence (2) on the ground plane. 
There are two ways of conceptualizing the “method of images.” The one given 

here is consistent with the superposition integral point of view that is the theme 
of this chapter. The second takes the boundary value point of view of the next 
chapter. These alternative points of view are familiar from Chaps. 4 and 5 for 
EQS systems and from the first and second halves of Chap. 8 for MQS systems. 
From the boundary value point of view, in the upper half­space, Ep and Hp are 
particular solutions, satisfying the inhomogeneous wave equation everywhere in the 
volume of interest. In this region, the fields Eh and Hh due to the image dipole are 
then solutions to the homogeneous wave equation. Physically, they represent fields 
induced by sources on the perfectly conducting boundary. 

To emphasize that the symmetry arguments apply regardless of the temporal 
details of the excitations, the fields shown in Fig. 12.7.1 are those of the electric 
dipole during the turn­on transient discussed in Example 12.2.1. At an arbitrary 
point on the ground plane, the “real” dipole produces fields that are not necessarily 
in the plane of the paper or perpendicular to it. Yet symmetry requires that the 
tangential E due to the sum of the fields is zero on the ground plane, and Faraday’s 
law requires that the normal H is zero as well. 
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Fig. 12.7.1 Dipoles over a ground plane together with their images: (a) 
electric dipole; and (b) magnetic dipole. 

In the case of the magnetic dipole over a ground plane shown in Fig. 12.7.1b, 
finding the image dipole is easiest by nulling the magnetic flux density normal to 
the ground plane, rather than the electric field tangential to the ground plane. The 
fields shown are the dual [(12.2.33)–(12.2.34)] of those for the electric dipole turn­on 
transient of Example 12.2.1. If we visualize the dipole as due to magnetic charge, 
the image charge is now of the same sign, rather than opposite sign, as the source. 

Image methods are commonly used in extending the superposition integral 
techniques to antenna field patterns in order to treat the effects of a ground plane 
and of reflectors. 

Example 12.7.1. Ground Planes and Reflectors 

Quarter­Wave Antenna above a Ground Plane. The center­fed wire 
antenna of Example 12.4.1, shown in Fig. 12.7.2a, has a plane of symmetry, θ = 
π/2, on which there is no tangential electric field. Thus, provided the terminal 
current remains the same, the field in the upper half­space remains unaltered if a 
perfectly conducting ground plane is placed in this plane. The radiation electric 
field is therefore given by (12.4.2), (12.4.5), and (12.4.8). Note that the lower half 
of the wire antenna serves as an image for the top half. Whether used for AM 
broadcasting or as a microwave mobile antenna (on the roof of an automobile), the 
height is usually a quarter­wavelength. In this case, kl = π, and these relations give 

|Êθ| = 
1

4 

�
µ/�

I

r 
o |ψo(θ)| (4) 

http:12.7.1b
http:12.7.2a
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Fig. 12.7.2 Equivalent image systems for three physical systems. 

where the radiation intensity pattern is 

cos 
� 

π 
2 

cos θ
� 

ψo = (5) 
2 

π sin θ 

Although the radiation pattern for the quarter­wave ground plane is the same 
as that for the half­wave center­fed wire antenna, the radiation resistance is half as 
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much. This follows from the fact that the surface of integration in (12.5.9) is now a 
hemisphere rather than a sphere. 

Rrad =
1 �

µ/� 

� π/2 cos 2 
� 

π 
2 

cos θ
� 

dθ = 
�
µ/� 

0.61 
(6)

2π sin θ 2π
0 

The integral can be converted to a sine integral, which is tabulated. 9 In free 
space, this radiation resistance is 37Ω. 

Two­Element Array over Ground Plane. The radiation pattern from an 
array of elements vertical to a ground plane can be deduced using the same image 
arguments. The pair of center­fed half­wave elements shown in Fig. 12.7.2c have 
lower elements that serve as images for the quarter­wave vertical elements over a 
ground plane shown in Fig. 12.7.2d. 

If we consider elements with a half­wave spacing that are driven 180 degrees 
out of phase, the array factor is given by (12.4.15) with ka = π and α1 − αo = π. 
Thus, with ψo from (5), the electric radiation field is 

1 
Êθ = 

�
µ/�

Io 
ψo(θ)ψa(θ, φ) (7)| | 

4 r 
| | 

where
 

ψoψa = 
4 

cos 
� π 

(sin θ cos φ+ 1)
� cos 

� 
π 
2
 cos θ

� 

(8)
π 2 sin θ 

The radiation pattern is proportional to the square of this function and is sketched 
in Fig. 12.7.2d. The field initiated by one element arrives in the far field at φ = 0 
and φ = π with a phase that reinforces that from the second element. The fields 
produced from the elements arrive out of phase in the “broadside” directions, and 
so the pattern nulls in those directions (φ = ±π/2). 

Phased arrays of two or more verticals are often used by AM stations to provide 
directed broadcasting, with the ground plane preferably wet land, often with buried 
“radial” conductors to make the ground plane more nearly like a perfect conductor. 

Ground­Plane with Reflector. The radiation pattern for the pair of vertical 
elements has no electric field tangential to a vertical plane located midway between 
the elements. Thus, the effect of one of the elements is equivalent to that of a 
reflector having a distance of a quarter­wavelength from the vertical element. This 
is the configuration shown in Fig. 12.7.2f. 

The radiation resistance of the vertical quarter wave element with a reflector 
follows from (12.5.9), evaluated using (7). Now the integration is over the quarter­
sphere which, together with the ground plane and the reflector plane, encloses the 
element at a radius of many wavelengths. 

�
µ/� 

� π/2 � π/2 cos 2 
� 

π 
2 
(sin θ cos φ+ 1)

� 
cos 2 

� 
π 
2 

cos θ
� 

Rrad = dφdθ (9)
π2 sin θ

0 −π/2 

9 It is perhaps easiest to carry out the integral numerically, as can be done with a pro­
grammable calculator. Note that the integrand is zero at θ = 0. 

http:12.7.2d
http:12.7.2d
http:12.7.2f
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Demonstration 12.7.1. Ground­Planes, Phased Arrays, and Reflectors 

The experiment shown in Fig. 12.7.3 demonstrates the effect of the phase shift on 
the radiation pattern of the array considered in Example 12.7.1. The spacing and 
length of the vertical elements are 7.9 cm and 3.9 cm, respectively, which corresponds 
to λ/2 and λ/4 respectively at a frequency of 1.9 GHz. The ground plane consists 
of an aluminum sheet, with the array mounted on a section of the sheet that can 
be rotated. Thus, the radiation pattern in the plane θ = π/2 can be measured by 
rotating the array, keeping the receiving antenna, which is many wavelengths away, 
fixed. 

An audible tone can be used to indicate the amplitude of the received signal. 
To this end, the 1.9 GHz source is modulated at the desired audio frequency and 
detected at the receiver, amplified, and made audible through a loud speaker. 

The 180 degree phase shift between the drives for the two driven elements is 
obtained by inserting a “line stretcher” in series with the coaxial line feeding one 
of the elements. By effectively lengthening the transmission line, the delay in the 
transmission line wave results in the desired phase delay. (Chapter 14 is devoted to 
the dynamics of signals propagating on such transmission lines.) The desired 180 
degree phase shift is produced by rotating the array to a broadside position (the 
elements equidistant from the receiving antenna) and tuning the line stretcher so 
that the signals are nulled. With a further 90 degree rotation so that the elements 
are in the end­fire array position (in line with the receiving antenna), the detected 
signal should peak. 

One vertical element can be regarded as the image for the other in a physical 
situation in which one element is backed at a quarter­wavelength by a reflector. This 
quarter­wave ground plane with a reflector is demonstrated by introducing a sheet 
of aluminum halfway between the original elements, as shown in Fig. 12.7.3. With 
the introduction of the sheet, the “image” element is shielded from the receiving 
antenna. Nevertheless, the detected signal should be essentially unaltered. 

The experiment suggests many other interesting and practical configurations. 
For example, if the line stretcher is used to null the signal with the elements in end­
fire array position, the elements are presumably driven in phase. Then, the signal 
should peak if the array is rotated 90 degrees so that it is broadside to the receiver. 

Boundaries at the Nodes of Standing Waves. The TM fields found in 
Example 12.6.1 were those produced by a surface charge density taking the form of 
a standing wave in the y = 0 plane. Examination of the analytical expressions for 
E, (12.6.27)–(12.6.28), and of their graphical portrayal, Fig. 12.6.3, shows that at 
every instant in time, E was normal to the planes where kxx = nπ (n any integer), 
whether the waves were evanescent or propagating in the ±y directions. That is, the 
fields have nodal planes (of no tangential E) parallel to the y− z plane. These fields 
would therefore remain unaltered by the introduction of thin, perfectly conducting 
sheets in these planes. 

Example 12.7.2. TM Fields between Parallel Perfect Conductors 

To be specific, suppose that the fields found in Example 12.6.1 are to “fit” within 
a region bounded by perfectly conducting surfaces in the planes x = 0 and x = a. 
The configuration is shown in Fig. 12.7.4. We adjust kx so that 

nπ 
kxa = nπ kx = (10)⇒ 

a 
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Fig. 12.7.3 Demonstration of phase shift on radiation pattern. 

Fig. 12.7.4 The n = 1 TM fields between parallel plates (a) evanes­
cent in y direction and (b) propagating in y direction. 

where n indicates the number of half­wavelengths in the x direction of the fields 
shown in Fig. 12.6.3 that have been made to fit between the perfect conductors. 
To make the fields satisfy the wave equation, ky must be given by (12.6.14) and 
(12.6.13). Thus, from this expression and (10), we see that for the n­th mode of the 
TM fields between the plates, the wave number in the y direction is related to the 
frequency by 

ω2

ky = β = (11) −j
�

(nπ/a)2 − ω2µ�; µ� < (nπ/a)2 

��
ω2µ� − (nπ/a)2; µ� > (nπ/a)2 

ω2
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We shall encounter these modes and this dispersion equation again in Chap. 
13, where waves propagating between parallel plates will be considered from the 
boundary value point of view. There we shall superimpose these modes and, if need 
be, comparable TM field modes, to satisfy arbitrary source conditions in the plane 
y = 0. The sources in the plane y = 0 will then represent an antenna driving a 
parallel plate waveguide. 

The standing­wave fields of Example 12.6.1 are the superposition of two trav­
eling waves that exactly cancel at the nodal planes to form the standing wave in the 
x direction. To see this, observe that a standing wave, such as that for the surface 
charge distribution given by (12.6.18), can be written as the sum of two traveling 
waves.10 

σs = Re 
�
σ̂o sin kxxe

jωt
� 

= Re 
� 
jσ

2
ˆo 
ej(ωt−kxx) − 

jσ

2
ˆo 
ej(ωt+kxx)

� 

(12) 

By superposition, the field responses therefore must take this same form. For ex­
ample, Ey as given by (12.6.28) can be written as 

Ey = Re � 
4
σ̂ 
�j 
o �
ej(ωt�βy−kxx) − ej(ωt�βy+kxx)

� 
(13) 

where the upper and lower signs again refer to the regions above and below the sheet 
of charge density. The first term represents the response to the component of the 
surface current density that travels to the right while the second is the response from 
the component traveling to the left. The planes of constant phase for the component 
waves traveling to the right, as well as their respective directions of propagation, 
are as for the TE fields of Fig. 12.6.4. Because the traveling wave components of the 
standing wave have phases that advance in the y direction with the same velocity, 
have the same wavelength in the x direction and the same frequency, their electric 
fields in the y­direction exactly cancel in the planes x = 0 and x = a at each instant 
in time. With this recognition, we may construct TE modes of the parallel plate 
conductor structure of Fig. 12.7.4 by superposition of two countertraveling waves, 
one of which was studied in Example 12.6.2. 

12.8 SUMMARY 

This chapter has been concerned with the determination of the electrodynamic fields 
associated with given distributions of current density J(r, t) and charge density 
ρ(r, t). We began by extending the vector potential A and scalar potential Φ to 
situations where both the displacement current density and the magnetic induction 
are important. The resulting field­potential relations, the first two equations in 
Table 12.8.1, are familiar from quasistatics, except that −∂A/∂t is added to −�Φ. 
As defined here, with A and Φ related by the gauge condition of (12.1.7) in the table, 
the current density J is the source of A, while the charge density ρ is the source of 

10 sin u = (exp(ju)− exp(−ju))/2j 
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TABLE 12.8.1 

ELECTRODYNAMIC SOURCE­POTENTIAL RELATIONS 

B = µH = � × A (12.1.1) E = −�Φ− 
∂A 

∂t 
(12.1.3) 

� 2A− µ� 
∂2A 

∂t2 
= −µJ (12.1.8) A = µ 

� 

V � 

J
�
r�, t − 

|r − r�| 
c 

� 

4π|r − r�| dv� (12.3.2) 

� 2Φ− µ� 
∂2Φ 

∂t2 
= − 

ρ 

� 
(12.1.10) Φ = 

� 

V � 

ρ
�
r�, t − 

|r − r�| 
c 

� 

4π�|r − r�| dv� (12.3.1) 

� · A + µ� 
∂Φ 

∂t 
= 0 (12.1.7) � · J + 

∂ρ 

∂t 
= 0 (12.1.20) 

Φ. This is evident from the finding that, written in terms of A and Φ, Maxwell’s 
equations imply the inhomogeneous wave equations summarized by (12.1.8) and 
(12.1.10) in Table 12.8.1. 

Given the sources everywhere, solutions to the inhomogeneous wave equations 
are given by the respective superposition integrals of Table 12.8.1. As a reminder 
that the sources in these integrals are related, the charge conservation law, (12.1.20), 
is included. The relation between J and ρ in the superposition integrals implied by 
charge conservation underlies the gauge relation between A and ρ, (12.1.7). 

The derivation of the superposition integrals began in Sec. 12.2 with the iden­
tification of the potentials, and hence fields, associated with dipoles. Here, in re­
markably simple terms, it was seen that the effect on the field at r of the source at 
r� is delayed by the time required for a wave to propagate through the intervening 
distance at the velocity of light, c. In the quasistatic limit, where times of interest 
are long compared to this delay time, the electric and magnetic dipoles considered 
in Sec. 12.2 are those familiar from electroquasistatics (Sec. 4.4) and magnetoqua­
sistatics (Sec. 8.3), respectively. With the complete description of electromagnetic 
radiation from these dipoles, we could place the introduction to quasistatics of Sec. 
3.3 on firmer ground. 

For the purpose of determining the radiation pattern and radiation resistance 
of antennae, the radiation fields are of primary interest. For the sinusoidal steady 
state, Section 12.4 illustrated how the radiation fields could be superimposed to 
describe the radiation from given distributions of current elements representing an 
antenna, and how the fields from these elements could be combined to represent 
the radiation from an array. The elementary solutions from which these fields were 
constructed are those of an electric dipole, as summarized in Table 12.8.2. A similar 
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TABLE 12.8.2 

DIPOLE RADIATION FIELDS 

Ĥφ = j 
kd 

4π 
î sin θ 

e−jkr 

r 

k ≡ ω/c 

Êθ = 
�
µ/� Ĥφ 

(12.2.23) 

(12.2.24) 

Êφ = −
�
µ/� Ĥθ 

Ĥθ = − 
k2 

4π 
m̂ sin θ 

e−jkr 

r 

k ≡ ω/c 

(12.2.36) 

(12.2.35) 

use can be made of the magnetic dipole radiation fields, which are also summarized 
for reference in the table. 

The fields associated with planar sheet sources, the subject of Sec. 12.6, will 
be encountered again in the next chapter. In Sec. 12.6, the surface sources were 
taken as given. We found that sources having distributions that were dependent 
on (x, t) (independent of z) could be classified in accordance with the fields they 
produced, as summarized by the figures in Table 12.8.3. The TM and TE sources 
and fields, respectively, are described in terms of Hz and Ez by the relations given 
in the table. In the limit ω2µ� � k2, these source and field cases are EQS and MQS, x 
respectively. This condition on the frequency means that the period 2π/ω is much 
longer than the time λx/c for an electromagnetic wave to propagate a distance 
equal to a wavelength λx = 2π/kx in the x direction. 

In the form of uniform and nonuniform plane waves, the Cartesian coordinate 
solutions to the homogeneous wave equation for these two­dimensional fields are 
summarized by the last equations in Table 12.8.3. In this chapter, we have thought 
of kx as being imposed by the given source distribution. As the frequency is raised, 
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TABLE 12.8.3 

TWO­DIMENSIONAL ELECTRODYNAMIC FIELDS 

� 
∂2 

∂x2 + ∂2 

∂y2 

� ̂
Hz + ω2µ� Ĥz = 0 

Êx = 1 
jω� 

∂ Ĥz 
∂y 

Êy = −1 
jω� 

∂ Ĥz 
∂x 

(12.6.9) 

(12.6.6) 

(12.6.7) 

� 
∂2 

∂x2 + ∂2 

∂y2 

� ̂
Ez + ω2µ�Êz = 0 

Ĥx = − 1 
jωµ 

∂Êz 
∂y 

Ĥy = 1 
jωµ 

∂Êz 
∂x 

(12.6.33) 

(12.6.29) 

(12.6.30) 

� 
Ĥz 

Êz 

� 
∝ Re ej(ωt�βy−kxx); β ≡ 

� 
|
�
ω2µ� − k2 

x|, ω2µ� > k2 
x 

−j|
�
k2 

x − ω2µ�|, ω2µ� < k2 
x 

(12.6.13) 

with the wavelength along the x direction λx = 2π/kx fixed, the fields at first 
decay in the ±y directions (are evanescent in those directions) and are in temporal 
synchronism with the sources. These are the EQS and MQS limits. As the frequency 
is raised, the fields extend further and further in the ±y directions. At the frequency 
f = c/λx, the field decay in the ±y directions gives way to propagation. 

In the next chapter, these field solutions will be found fundamental to the 
description of fields in the presence of perfect conductors and dielectrics. 

R E F E R E N C E S 
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P R O B L E M S 

12.1 Electrodynamic Fields and Potentials 

12.1.1∗ In Sec. 10.1, the electric field in an MQS system was divided into a partic­
ular part Ep satisfying Faraday’s law, and an irrotational part Eh. The lat­
ter was adjusted to make the sum satisfy appropriate boundary conditions. 
Show that in terms of Φ and A, as defined in this section, Ep = −∂A/∂t 
and Eh = −�Φ, where these potentials satisfy (12.1.8) and (12.1.10) with 
the time derivatives neglected. 

12.1.2	 In Sec. 3.3, dimensional arguments were used to show that the quasistatic 
limits were valid in a system having a typical length L and time τ if L/c �
τ . Use similar arguments to show that the second term on the right in 
either (12.1.8) or (12.1.10) is negligible when this condition prevails. Note 
that the resulting equations are those for MQS (8.1.5) and EQS (4.2.2) 
systems. 

12.2 Electrodynamic Fields of Source Singularities 

12.2.1	 An electric dipole has q(t) = 0 for t < 0 and t > T . When 0 < t < T, q(t) = 
Q[1−cos(2πt/T )]/2. Use sketches similar to those of Figs. 12.2.5 and 12.2.6 
to show the field distributions when t < T and T < t. 

12.2.2∗ Use the “interchange of variables” property of Maxwell’s equations to show 
that the sinusoidal steady state far fields of a magnetic dipole, (12.2.35) 
and (12.2.36), follow directly from (12.2.23), (12.2.24), and (12.2.32). 

12.2.3∗ A magnetic dipole has a moment m(t) having the time dependence shown 
in Fig. 12.2.5a where dq(t) µm(t). Show that the fields are then much 
as shown in Fig. 12.2.6 with 

→
E H, H → −E, and � µ. → ↔ 

12.4 Antenna Radiation Fields in the Sinusoidal Steady State 

12.4.1	 An “end­fed” antenna consists of a wire stretching between z = 0, where 
it is driven by the current Io cos(ωt − αo), and z = l. At z = l, it is 
terminated in such a resistance that the current distribution over its length 
is a wave traveling with the velocity of light in the z direction; i(z, t) = 
Re [Io exp[j(ωt− kz + αo)]] where k ≡ ω/c. 

(a) Determine the radiation pattern, Ψ(θ). 
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(b) For a one­wavelength antenna (kl = 2π), use a plot of Ψ(θ) to show | |
that the lobes of the radiation pattern tend to be in the direction of 
the traveling wave. 

12.4.2∗ An antenna is modeled by a distribution of incremental magnetic dipoles, 
as shown in Fig. P12.4.2. Define M(z) as a dipole moment per unit length 
so that for an incremental dipole located at z�, m̂ →M(z�)dz�. Given M, 
show that 

Ê 
φ = 

k2l�
µ/�

e−jkr 

Moe
jαo ψo(θ) (a)

4π r

where
 

ψo(θ) ≡ 
sin θ 

� M(z�)
 
ej(kr�·ir−αo)dz�	 (b)

l Mo 

Fig. P12.4.2 

12.4.3	 A linear distribution of magnetic dipoles, described in general in Prob. 
12.4.2, is excited so that M(z�) = −Mo exp(jαo) sinβ(z − l)/ sin βl, 0 ≤
z ≤ l where β is a given parameter (not necessarily ω/c). Determine ψo(θ). 

12.4.4∗ For the three­element array shown in Fig. P12.4.4, the spacing is λ/4. 

(a) Show that the array factor is 

j
� 

π cos φ sin θ+α1−αoψa(θ, φ) = 
�
1 + e 2 ) + ej(π cos φ sin θ+α2−αo)

� 
(a) 

(b) Show that for an array of in­phase short dipoles, the “broadside” 
radiation intensity pattern is 

2 |ψo| 2 |ψ	 a| = 
�
1 + 2 cos

� π 
2 

cos φ sin θ
��2 sin2 θ (b) 
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(c) Show that for an array of short dipoles differing progressively by 90 
degrees so that α1− αo = π/2 and α2− αo = π, the end­fire radiation 
pattern is 

2	 2 |ψo| |ψa| = 
�
1 + 2 cos

� π 
2

(cos φ sin θ + 1)
��2 sin2 θ (c) 

Fig. P12.4.4 

12.4.5	 Collinear elements have the half­wave spacing and configuration shown in 
Fig. P12.4.5. 

(a) Determine the array factor ψa(θ). 
(b) What is the radiation pattern if the elements are “short” dipoles 

driven in phase? 
(c) What is the gain G(θ) for the array of part (b)? 

12.5 Complex Poynting’s Theorem and Radiation Resistance 

12.5.1∗ A center­fed wire antenna has a length of 3λ/2. Show that its radiation 
resistance in free space is 104Ω. (The definite integral can be evaluated 
numerically.) 

12.5.2	 The spherical coil of Example 8.5.1 is used as a magnetic dipole antenna. 
Its diameter is much less than a wavelength, and its equivalent circuit is an 
inductance L in parallel with a radiation resistance Rrad. In terms of the 
radius R, number of turns N , and frequency ω, what are L and Rrad? 

12.6 Periodic Sheet	 Source Fields: Uniform	 and Nonuniform Plane 
Waves 
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Fig. P12.4.5 

12.6.1∗ In the plane y = 0, Kz = 0 and the surface charge density is given as the 
traveling wave σs = Re σo exp[j(ωt− kxx)] = Re [σo exp(−jkxx) exp(jωt)], 
where σo, ω, and kx are given real numbers. 

(a) Show that the current density is 

ωσo j(ωt−kxx) 

� 
ωσoe

−jkxx 
� 

jωt Kx = Re e = Re e (a)
kx kx 

(b) Show that the fields are 

H = izRe
� ± 

ωσo 
e�jβyej(ωt−kxx)

� 
(b)

2kx 

� � −βσo 
e�jβy

� 
σo �

e�jβy

� 
j(ωt−kxx)E = Re ix	 + iy

� ± e (c)
2�kx	 2� 

where upper and lower signs, respectively, refer to the regions where 
0 < y and 0 > y. 

(c) Sketch the field distributions at a given instant in time for β imaginary 
and β real. 

12.6.2	 In the plane y = 0, the surface current density is a standing wave, K = 
Re[izKo 

sin(kxx) exp(jωt)], and there is no surface charge density. 

(a) Determine E and H. 
(b) Sketch these fields at a given instant in time for β real and β imagi­

nary. 
(c) Show that these fields can be decomposed into waves traveling in the 

±x directions with the phase velocities ±ω/kx. 
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12.6.3∗ In the planes y = ±d/2, shown in Fig. P12.6.3, there are surface current 
densities Kz = Re K̂ exp[j(ωt − kxx)], where K̂ = K̂a at y = d/2 and 
K̂ = K̂b at y = −d/2. The surface charge density is zero in each plane. 

(a) Show that 

d� ⎡ 
exp 

� − jβ
�
y − 

�� ⎤
2 

Ez = Re 
−ωµ 

K̂a exp 
�
jβ

�
y − d 

2

�� ⎦+
2β 

⎣ 

exp 
�
jβ

�
y − d 

2

�� 

d⎡ 
exp 

� − jβ 
�
y + 2

�� ⎤� ; d 
2 < y 

(a) 

d j(ωt−kxx)K̂b exp 
� − jβ 

�
y + 

�� 
e ; d < y < d 

2 2 2
⎣ 

exp 
�
jβ 

�
y + d 

2

�� 
⎦ 

; 
− 
y < − d 

2 

(b) Show that if K̂b =	 K̂a exp(−jβd), the fields cancel in region (b) 
where (y 

−
< −d/2), so that the combined radiation is unidirectional. 

(c) Show that under this condition, the field in the region y > d/2 is 

Ez = Re 
−ωµj 

K̂a e−jβd(sin βd)ej
�
ωt−β(y− d 

2 )−kxx
�
; 

d 
< y (b)

β 2 

(d) With the structure used to impose the surface currents such that kx 

is fixed, show that to maximize the wave radiated in region (a), the 
frequency should be 

1 
� 

+
� (2n + 1)π �2	 

ω = √
µ� 

k2 

2d 
(c)x 

and that under this condition, the direction of the radiated wave is 
k = kxix + [(2n + 1)π/2d]iy where n = 0, 1, 2, . . .. 

12.6.4	 Surface charges in the planes y = ±d/2 shown in Fig. P12.6.3 have the 
densities σs = Re ˆ σ exp[j(ωt− kxx)] where ˆ σ = σ̂a at y = d/2 and ˆ σ = σ̂b 

at y = −d/2. 

(a) How should σ̂	a	 and ˆ σb be related to produce field cancellation in 
region (b)? 

(b) Under this condition, what is Hz in region (a)? 
(c) What frequencies give a maximum Hz in region (a), and what is the 

direction of propagation under this condition? 

12.7 Electrodynamic Fields in the Presence of Perfect Conductors 

12.7.1∗ An antenna consists of a ground plane with a 3λ/4 vertical element in 
which a “quarter­wave stub” is used to make the current in the top half­
wavelength in phase with that in the bottom quarter­wavelength. In each 
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Fig. P12.6.3 

section, the current has the sinusoidal distribution shown in Fig. P12.7.1. 
Show that the radiation intensity factor is 

|ψo| 2	 |ψa| 2 = (2/π)2 | cos[(π/2) cos θ]| 2 |1 + 2 cos(π cos θ)| 2/| sin θ| 2 

Fig. P12.7.1 

Fig. P12.7.2 

12.7.2	 A vertical half­wave antenna with a horizontal perfectly conducting ground 
plane is shown in Fig. P12.7.2. What is its radiation resistance? 
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Fig. P12.7.3 

12.7.3	 Plane parallel perfectly conducting plates in the planes x = ±a/2 form 
the walls of a waveguide, as shown in Fig. 12.7.3. Waves in the free­
space region between are excited by a sheet of surface charge density 
σs = Re σo cos(πx/a) exp(jωt) and Kz = 0. 

(a) Find the fields in regions 0	 < y and 0 > y. (Guess solutions that 
meet both the continuity conditions at the sheet and the boundary 
conditions on the perfectly conducting plates.) Are they TE or TM? 

(b) What are the distributions of σs and K on the perfectly conducting 
plates? 

(c) What is the “dispersion equation” relating ω to β? 
(d) Sketch E and H for β imaginary and real. 

12.7.4	 Consider the configuration of Prob. 12.7.3, but with σs = 0 andKz = Re K̂o 

cos(πx/a) exp(jωt) in the plane y = 0. Complete parts (a)­(d) of Prob. 
12.7.3. 




