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13
 

ELECTRODYNAMIC
 
FIELDS: THE
 
BOUNDARY VALUE
 
POINT OF VIEW
 

13.0 INTRODUCTION 

In the treatment of EQS and MQS systems, we started in Chaps. 4 and 8, re­
spectively, by analyzing the fields produced by specified (known) sources. Then we 
recognized that in the presence of materials, at least some of these sources were 
induced by the fields themselves. Induced surface charge and surface current den­
sities were determined by making the fields satisfy boundary conditions. In the 
volume of a given region, fields were composed of particular solutions to the gov­
erning quasistatic equations (the scalar and vector Poisson equations for EQS and 
MQS systems, respectively) and those solutions to the homogeneous equations (the 
scalar and vector Laplace equation, respectively) that made the total fields satisfy 
appropriate boundary conditions. 

We now embark on a similar approach in the analysis of electrodynamic fields. 
Chapter 12 presented a study of the fields produced by specified sources (dipoles, 
line sources, and surface sources) and obeying the inhomogeneous wave equation. 
Just as in the case of EQS and MQS systems in Chap. 5 and the last half of Chap. 
8, we shall now concentrate on solutions to the homogeneous source­free equations. 
These solutions then serve to obtain the fields produced by sources lying outside 
(maybe on the boundary) of the region within which the fields are to be found. In 
the region of interest, the fields generally satisfy the inhomogeneous wave equation. 
However in this chapter, where there are no sources in the volume of interest, 
they satisfy the homogeneous wave equation. It should come as no surprise that, 
following this systematic approach, we shall reencounter some of the previously 
obtained solutions. 

In this chapter, fields will be determined in some limited region such as the 
volume V of Fig. 13.0.1. The boundaries might be in part perfectly conducting 
in the sense that on their surfaces, E is perpendicular and the time­varying H is 
tangential. The surface current and charge densities implied by these conditions 

1 



2 Electrodynamic Fields: The Boundary Value Point of View Chapter 13 

Fig. 13.0.1 Fields in a limited region are in part due to sources induced on 
boundaries by the fields themselves. 

are not known until after the fields have been found. If there is material within the 
region of interest, it is perfectly insulating and of piece­wise uniform permittivity � 
and permeability µ. 1 Sources J and ρ are specified throughout the volume and ap­
pear as driving terms in the inhomogeneous wave equations, (12.6.8) and (12.6.32). 
Thus, the H and E fields obey the inhomogeneous wave­equations. 

∂2H � 2H− µ� 
∂t2 

= −� × J (1) 

2E− µ�
∂2E 

= �� ρ� 
+ µ

∂J 
(2)� 

∂t2 � ∂t 

As in earlier chapters, we might think of the solution to these equations as 
the sum of a part satisfying the inhomogeneous equations throughout V (partic­
ular solution), and a part satisfying the homogeneous wave equation throughout 
that region. In principle, the particular solution could be obtained using the su­
perposition integral approach taken in Chap. 12. For example, if an electric dipole 
were introduced into a region containing a uniform medium, the particular solution 
would be that given in Sec. 12.2 for an electric dipole. The boundary conditions are 
generally not met by these fields. They are then satisfied by adding an appropriate 
solution of the homogeneous wave equation.2 

In this chapter, the source terms on the right in (1) and (2) will be set equal 
to zero, and so we shall be concentrating on solutions to the homogeneous wave 
equation. By combining the solutions of the homogeneous wave equation that satisfy 
boundary conditions with the source­driven fields of the preceding chapter, one can 
describe situations with given sources and given boundaries. 

In this chapter, we shall consider the propagation of waves in some axial 
direction along a structure that is uniform in that direction. Such waves are used 
to transport energy along pairs of conductors (transmission lines), and through 

1 If the region is one of free space, � �o and µ µo.→ →
2 As pointed out in Sec. 12.7, this is essentially what is being done in satisfying boundary 

conditions by the method of images. 
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waveguides (metal tubes at microwave frequencies and dielectric fibers at optical 
frequencies). We confine ourselves to the sinusoidal steady state. 

Sections 13.1­13.3 study two­dimensional modes between plane parallel con­
ductors. This example introduces the mode expansion of electrodynamic fields that 
is analogous to the expansion of the EQS field of the capacitive attenuator (in Sec. 
5.5) in terms of the solutions to Laplace’s equation. The principal and higher order 
modes form a complete set for the representation of arbitrary boundary conditions. 
The example is a model for a strip transmission line and hence serves as an intro­
duction to the subject of Chap. 14. The higher­order modes manifest properties 
much like those found in Sec. 13.4 for hollow pipe guides. 

The dielectric waveguides considered in Sec. 13.5 explain the guiding prop­
erties of optical fibers that are of great practical interest. Waves are guided by a 
dielectric core having permittivity larger than that of the surrounding medium but 
possess fields extending outside this core. Such electromagnetic waves are guided 
because the dielectric core slows the effective velocity of the wave in the guide to 
the point where it can match the velocity of a wave in the surrounding region that 
propagates along the guide but decays in a direction perpendicular to the guide. 

The fields considered in Secs. 13.1–13.3 offer the opportunity to reinforce the 
notions of quasistatics. Connections between the EQS and MQS fields studied in 
Chaps. 5 and 8, respectively, and their corresponding electrodynamic fields are 
made throughout Secs. 13.1–13.4. 

13.1 INTRODUCTION TO TEM WAVES 

The E and H fields of transverse electromagnetic waves are directed transverse to 
the direction of propagation. It will be shown in Sec. 14.2 that such TEM waves 
propagate along structures composed of pairs of perfect conductors of arbitrary 
cross­section. The parallel plates shown in Fig. 13.1.1 are a special case of such a 
pair of conductors. The direction of propagation is along the y axis. With a source 
driving the conductors at the left, the conductors can be used to deliver electrical 
energy to a load connected between the right edges of the plates. They then function 
as a parallel plate transmission line. 

We assume that the plates are wide in the z direction compared to the spacing, 
a, and that conditions imposed in the planes y = 0 and y = −b are independent of 
z, so that the fields are also z independent. In this section, discussion is limited to 
either “open” electrodes at y = 0 or “shorted” electrodes. Techniques for dealing 
with arbitrarily terminated transmission lines will be introduced in Chap. 14. The 
“open” or “shorted” terminals result in standing waves that serve to illustrate the 
relationship between simple electrodynamic fields and the EQS and MQS limits. 
These fields will be generalized in the next two sections, where we find that the 
TEM wave is but one of an infinite number of modes of propagation along the y 
axis between the plates. 

If the plates are open circuited at the right, as shown in Fig. 13.1.1, a voltage 
is applied at the left at y = −b, and the fields are EQS, the E that results is x 
directed. (The plates form a parallel plate capacitor.) If they are “shorted” at the 
right and the fields are MQS, the H that results from applying a current source at 
the left is z directed. (The plates form a one­turn inductor.) We are now looking 



4 Electrodynamic Fields: The Boundary Value Point of View Chapter 13 

Fig. 13.1.1 Plane parallel plate transmission line. 

for solutions to Maxwell’s equations (12.0.7)–(12.0.10) that are similarly transverse 
to the y axis. 

E = Exix; H = Hziz (1) 

Fields of this form automatically satisfy the boundary conditions of zero tan­
gential E and normal H (normal B) on the surfaces of the perfect conductors. These 
fields have no divergence, so the divergence laws for E and H [(12.0.7) and (12.0.10)] 
are automatically satisfied. Thus, the remaining laws, Ampère’s law (12.0.8) and 
Faraday’s law (12.0.9) fully describe these TEM fields. We pick out the only com­
ponents of these laws that are not automatically satisfied by observing that ∂Ex/∂t 
drives the x component of Ampère’s law and ∂Hz/∂t is the source term of the z 
component of Faraday’s law. 

∂Hz ∂Ex = � 
∂y ∂t (2) 

∂Ex ∂Hz = µ
∂y ∂t (3) 

The other components of these laws are automatically satisfied if it is assumed that 
the fields are independent of the transverse coordinates and thus depend only on y. 

The effect of the plates is to terminate the field lines so that there are no fields 
in the regions outside. With Gauss’ continuity condition applied to the respective 
plates, Ex terminates on surface charge densities of opposite sign on the respective 
electrodes. 

σs(x = 0) = �Ex; σs(x = a) = −�Ex (4) 

These relationships are illustrated in Fig. 13.1.2a. 
The magnetic field is terminated on the plates by surface current densities. 

With Ampère’s continuity condition applied to each of the plates, 

Ky(x = 0) = −Hz; Ky(x = a) = Hz (5) 

http:13.1.2a
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Fig. 13.1.2 (a) Surface charge densities terminating E of TEM field between 
electrodes of Fig. 13.1.1. (b) Surface current densities terminating H. 

these relationships are represented in Fig. 13.1.2b. 
We shall be interested primarily in the sinusoidal steady state. Between the 

plates, the fields are governed by differential equations having constant coefficients. 
We therefore assume that the field response takes the form 

Hz = Re Ĥ 
z(y)ejωt; Ex = Re Ê 

x(y)ejωt (6) 

where ω can be regarded as determined by the source that drives the system at one 
of the boundaries. Substitution of these solutions into (2) and (3) results in a pair 
of ordinary constant coefficient differential equations describing the y dependence 
of Ex and Hz. Without bothering to write these equations out, we know that they 
too will be satisfied by exponential functions of y. Thus, we proceed to look for 
solutions where the functions of y in (6) take the form exp(−jkyy). 

Hz = Re ĥ 
ze

j(ωt−kyy); Ex = Re ˆ exej(ωt−kyy) (7) 

Once again, we have assumed a solution taking a product form. Substitution into 
(2) then shows that 

êx = 
ky 

ĥz (8)− 
ω� 

and substitution of this expression into (3) gives the dispersion equation 

ky = ±β; β ≡ ω
√

µ� = 
ω 

(9) 
c 

For a given frequency, there are two values of ky. A linear combination of the 
solutions in the form of (7) is therefore 

Hz = Re [A+ e−jβy + A−ejβy ]ejωt (10) 

The associated electric field follows from (8) evaluated for the ± waves, respectively, 
using ky = ±β. 

e−jβy jβy]ejωt Ex = −Re 
�

µ/�[A+ − A−e (11) 

The amplitudes of the waves, A+ and A−, are determined by the boundary 
conditions imposed in planes perpendicular to the y axis. The following example 

http:13.1.2b
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Fig. 13.1.3 (a) Shorted transmission line driven by a distributed cur­
rent source. (b) Standing wave fields with E and H shown at times 
differing by 90 degrees. (c) MQS fields in limit where wavelength is long 
compared to length of system. 

illustrates how the imposition of these longitudinal boundary conditions determines 
the fields. It also is the first of several opportunities we now use to place the EQS 
and MQS approximations in perspective. 

Example 13.1.1.	 Standing Waves on a Shorted Parallel Plate Transmission 
Line 

In Fig. 13.1.3a, the parallel plates are terminated at y = 0 by a perfectly conducting 
plate. They are driven at y = −b by a current source Id distributed over the width 
w. Thus, there is a surface current density Ky = Id/w ≡ Ko imposed on the lower 
plate at y = −b. Further, in this example we will assume that a distribution of 
sources is used in the plane y = −b to make this driving surface current density 
uniform over that plane. In summary, the longitudinal boundary conditions are 

Ex(0, t) = 0	 (12) 

Hz(−b, t) = −Re K̂	 
oe

jωt	 (13) 

To make Ex as given by (11) satisfy the first of these boundary conditions, we 
must have the amplitudes of the two traveling waves equal. 

A+ = A−	 (14) 

With this relation used to eliminate A+ in (10), it follows from (13) that 

A+ K̂ 
o 

= (15)− 
2 cos βb 

We have found that the fields between the plates take the form of standing waves. 

−Re ˆ cos βy jωt Hz = Ko	 e	 (16) 
cos βb 

http:13.1.3a
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Ex = −Re jK̂ 
o

�
µ/� 

sin βy 
ejωt (17) 

cos βb 

Note that E and H are 90◦ out of temporal phase.3 When one is at its peak, the 
other is zero. The distributions of E and H shown in Fig. 13.1.3b are therefore at 
different instants in time. 

Every half­wavelength π/β from the short, E is again zero, as sketched in 
Fig. 13.1.3b. Beginning at a distance of a quarter­wavelength from the short, the 
magnetic field also exhibits nulls at half­wavelength intervals. Adjacent peaks in a 
given field are 180 degrees out of temporal phase. 

The MQS Limit. If the driving frequency is so low that a wavelength is 
much longer than the length b, we have 

2πb 
= βb � 1 (18)

λ 

In this limit, the fields are those of a one­turn inductor. That is, with sin(βy) ≈ βy 
and cos(βy) ≈ 1, (16) and (17) become 

Hz → −Re K̂ 
oe

jωt (19) 

Ex → −Re K̂ 
ojωµyejωt (20) 

The magnetic field intensity is uniform throughout and the surface current density 
circulates uniformly around the one­turn loop. The electric field increases in a linear 
fashion from zero at the short to a maximum at the source, where the source voltage 
is 

a� 
jωt dλ 

v(t) = Ex(−b, t)dx = Re K̂ 
ojωµbae = (21)

dt
0 

To make it clear that these are the fields of a one­turn solenoid (Example 8.4.4), the 
flux linkage λ has been identified as 

λ = L 
di 

dt 
; i = Re K̂owejωt; L = 

abµ 

w 
(22) 

where L is the inductance. 

The MQS Approximation. In Chap. 8, we would have been led to these 
same limiting fields by assuming at the outset that the displacement current, the 
term on the right in (2), is negligible. Then, this one­dimensional form of Ampère’s 
law and (1) requires that 

∂Hz �× H ≈ 0 ⇒ 
∂y 

≈ 0 ⇒ Hz = Hz(t) = −Re K̂ 
oe

jωt (23) 

If we now use this finding in Faraday’s law, (3), integration on y and use of the 
boundary condition of (12) gives the same result for E as found taking the low­
frequency limit, (20). 

3 In making this and the following deductions, it is helpful to take K̂ 
o as being real. 

http:13.1.3b
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Fig. 13.1.4 (a) Open circuit transmission line driven by voltage source. (b) 
E and H at times that differ by 90 degrees. (c) EQS fields in limit where 
wavelength is long compared to b. 

In the previous example, the longitudinal boundary conditions (conditions 
imposed at planes of constant y) could be satisfied exactly using the TEM mode 
alone. The short at the right and the distributed current source at the left each 
imposed a condition that was, like the TEM fields, independent of the transverse 
coordinates. In almost all practical situations, longitudinal boundary conditions 
which are independent of the transverse coordinates (used to describe transmission 
lines) are approximate. The open circuit termination at y = 0, shown in Fig. 13.1.4, 
is a case in point, as is the source which in this case is not distributed in the x 
direction. 

If a longitudinal boundary condition is independent of z, the fields are, in 
principle, still two dimensional. Between the plates, we can therefore think of sat­
isfying the longitudinal boundary conditions using a superposition of the modes to 
be developed in the next section. These consist of not only the TEM mode con­
sidered here, but of modes having an x dependence. A detailed evaluation of the 
coefficients specifying the amplitudes of the higher­order modes brought in by the 
transverse dependence of a longitudinal boundary condition is illustrated in Sec. 
13.3. There we shall find that at low frequencies, where these higher­order modes 
are governed by Laplace’s equation, they contribute to the fields only in the vicinity 
of the longitudinal boundaries. As the frequency is raised beyond their respective 
cutoff frequencies, the higher­order modes begin to propagate along the y axis and 
so have an influence far from the longitudinal boundaries. 

Here, where we wish to restrict ourselves to situations that are well described 
by the TEM modes, we restrict the frequency range of interest to well below the 
lowest cutoff frequency of the lowest of the higher­order modes. 

Given this condition, “end effects” are restricted to the neighborhood of a 
longitudinal boundary. Approximate boundary conditions then determine the dis­
tribution of the TEM fields, which dominate over most of the length. In the open 
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Fig. 13.1.5 The surface current density, and hence, Hz go to zero in the 
vicinity of the open end. 

circuit example of Fig. 13.1.4a, application of the integral charge conservation law 
to a volume enclosing the end of one of the plates, as illustrated in Fig. 13.1.5, 
shows that Ky must be essentially zero at y = 0. For the TEM fields, this implies 
the boundary condition4 

Hz(0, t) = 0	 (24) 

At the left end, the vertical segments of perfect conductor joining the voltage 
source to the parallel plates require that Ex be zero over these segments. We shall 
show later that the higher­order modes do not contribute to the line integral of E 
between the plates. Thus, in so far as the TEM fields are concerned, the requirement 
is that �	 a	 Vd

Vd(t) = Ex(−b, t)dx Ex(−b, t) = (25) 
0 

⇒ 
a 

Example 13.1.2.	 Standing Waves on an Open­Circuit Parallel Plate 
Transmission Line 

Consider the parallel plates “open” at y = 0 and driven by a voltage source at 
y = −b. Boundary conditions are then 

Hz(0, t) = 0; Ex(−b, t) = Re V̂d
	 ejωt/a	 (26) 

Evaluation of the coefficients in (10) and (11) so that the boundary conditions in 
(26) are satisfied gives 

V̂d
A+ = −A− = − 

2a cos βb 

�
�/µ	 (27) 

It follows that the TEM fields between the plates, (10) and (11), are 

V̂d sin βy jωt Hz = Re j 
�

�/µ e	 (28) 
a cos βb 

V̂d cos βy jωt Ex = Re e	 (29) 
a cos βb 

These distributions of H and E are shown in Fig. 13.1.4 at times that differ by 
90 degrees. The standing wave is similar to that described in the previous example, 
except that it is now E rather than H that peaks at the open end. 

4 In the region outside, the fields are not confined by the plates. As a result, there is actually 
some radiation from the open end of the line, and this too is not represented by (24). This effect 
is small if the plate spacing is small compared to a wavelength. 

http:13.1.4a
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The EQS Limit. In the low frequency limit, where the wavelength is much 
longer than the length of the plates so that βb � 1, the fields given by (28) and (29) 
become 

V̂d jωt Hz Re j ω�ye (30)→ 
a 

V̂d jωt Ex Re e (31)→ 
a 

At low frequencies, the fields are those of a capacitor. The electric field is uniform 
and simply equal to the applied voltage divided by the spacing. The magnetic field 
varies in a linear fashion from zero at the open end to its peak value at the voltage 
source. Evaluation of −Hz at z = −b gives the surface current density, and hence 
the current i, provided by the voltage source. 

i = Re jω 
�bw

V̂dejωt (32) 
a 

Note that this expression implies that 

dq �bw 
i = ; q = CVd; C = (33)

dt a 

so that the limiting behavior is indeed that of a plane parallel capacitor. 

EQS Approximation. How would the quasistatic fields be predicted in 
terms of the TEM fields? If quasistatic, we expect the system to be EQS. Thus, the 
magnetic induction is negligible, so that the right­hand side of (3) is approximated 
as being equal to zero. 

∂Ex �× E ≈ 0 ⇒ 
∂y 

≈ 0 (34) 

It follows from integration of this expression and using the boundary condition of 
(26b) that the quasistatic E is 

Vd
Ex = (35) 

a 

In turn, this result provides the displacement current density in Ampère’s law, the 
right­hand side of (2). 

∂Hz d � Vd 
� 

(36)
∂y 

� �
dt a 

The right­hand side of this expression is independent of y. Thus, integration 
with respect to y, with the “constant” of integration evaluated using the boundary 
condition of (26a), gives 

d y
Hz � � Vd (37)

dt a 

For the sinusoidal voltage drive assumed at the outset in the description of the TEM 
waves, this expression is consistent with that found in taking the quasistatic limit, 
(30). 
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Demonstration 13.1.1. Visualization of Standing Waves 

A demonstration of the fields described by the two previous examples is shown in 
Fig. 13.1.6. A pair of sheet metal electrodes are driven at the left by an oscillator. 
A fluorescent lamp placed between the electrodes is used to show the distribution 
of the rms electric field intensity. 

The gas in the tube is ionized by the oscillating electric field. Through the 
field­induced acceleration of electrons in this gas, a sufficient velocity is reached so 
that collisions result in ionization and an associated optical radiation. What is seen 
is a time average response to an electric field that is oscillating far more rapidly 
than can be followed by the eye. 

Because the light is proportional to the magnitude of the electric field, the 
observed 0.75 m distance between nulls is a half­wavelength. It can be inferred that 
the generator frequency is f = c/λ = 3× 108/1.5 = 200 MHz. Thus, the frequency 
is typical of the lower VHF television channels. 

With the right end of the line shorted, the section of the lamp near that end 
gives evidence that the electric field there is indeed as would be expected from Fig. 
13.1.3b, where it is zero at the short. Similarly, with the right end open, there is a 
peak in the light indicating that the electric field near that end is maximum. This 
is consistent with the picture given in Fig. 13.1.4b. In going from an open to a 
shorted condition, the positions of peak light intensity, and hence of peak electric 
field intensity, are shifted by λ/4. 

http:13.1.3b
http:13.1.4b
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Fig. 13.2.1 (a) Plane parallel perfectly conducting plates. (b) Coaxial ge­
ometry in which z­independent fields of (a) might be approximately obtained 
without edge effects. 

13.2 TWO­DIMENSIONAL MODES BETWEEN PARALLEL PLATES 

This section treats the boundary value approach to finding the fields between the 
perfectly conducting parallel plates shown in Fig. 13.2.1a. Most of the mathematical 
ideas and physical insights that come from a study of modes on perfectly conducting 
structures that are uniform in one direction (for example, parallel wire and coaxial 
transmission lines and waveguides in the form of hollow perfectly conducting tubes) 
are illustrated by this example. In the previous section, we have already seen that 
the plates can be used as a transmission line supporting TEM waves. In this and the 
next section, we shall see that they are capable of supporting other electromagnetic 
waves. 

Because the structure is uniform in the z direction, it can be excited in such a 
way that fields are independent of z. One way to make the structure approximately 
uniform in the z direction is illustrated in Fig. 13.2.1b, where the region between 
the plates becomes the annulus of coaxial conductors having very nearly the same 
radii. Thus, the difference of these radii becomes essentially the spacing a and the 
z coordinate maps into the φ coordinate. Another way is to make the plates very 
wide (in the z direction) compared to their spacing, a. Then, the fringing fields 
from the edges of the plates are negligible. In either case, the understanding is that 
the field excitation is uniformly distributed in the z direction. The fields are now 
assumed to be independent of z. 

Because the fields are two dimensional, the classifications and relations given 
in Sec. 12.6 and summarized in Table 12.8.3 serve as our starting point. Cartesian 
coordinates are appropriate because the plates lie in coordinate planes. Fields either 
have H transverse to the x − y plane and E in the x − y plane (TM) or have E 
transverse and H in the x − y plane (TE). In these cases, Hz and Ez are taken as 
the functions from which all other field components can be derived. We consider 
sinusoidal steady state solutions, so these fields take the form 

jωt Hz = Re Ĥz(x, y)e (1) 
jωt Ez = Re Êz(x, y)e (2) 

http:13.2.1a
http:13.2.1b
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These field components, respectively, satisfy the Helmholtz equation, (12.6.9) and 
(12.6.33) in Table 12.8.3, and the associated fields are given in terms of these 
components by the remaining relations in that table. 

Once again, we find product solutions to the Helmholtz equation, where Hz 

and Ez are assumed to take the form X(x)Y (y). This formalism for reducing a 
partial differential equation to ordinary differential equations was illustrated for 
Helmholtz’s equation in Sec. 12.6. This time, we take a more mature approach, 
based on the observation that the coefficients of the governing equation are inde­
pendent of y (are constants). As a result, Y (y) will turn out to be governed by a 
constant coefficient differential equation. This equation will have exponential solu­
tions. Thus, with the understanding that ky is a yet to be determined constant (that 
will turn out to have two values), we assume that the solutions take the specific 
product forms 

Ĥ 
z = ĥ 

z(x)e−jkyy (3) 

Ê 
z = êz(x)e−jkyy (4) 

Then, the field relations of Table 12.8.3 become 

TM Fields: 
d2ĥz 2ˆ+ p hz = 0 (5)
dx2 

where p2 ≡ ω2µ� − k2 
y 

ky ˆêx = − 
ω� 

hz (6) 

1 dĥz 
êy = − 

jω� dx 
(7) 

TE Fields: 
d2êz 2+ q êz = 0 (8)
dx2 

where q2 ≡ ω2µ� − k2 
y 

ĥ 
x = 

ky 
êz (9)

ωµ 

1 dêz
ĥ 

y = 
jωµ dx 

(10) 

The boundary value problem now takes a classic form familiar from Sec. 5.5. 
What values of p and q will make the electric field tangential to the plates zero? For 
the TM fields, êy = 0 on the plates, and it follows from (7) that it is the derivative 
of Hz that must be zero on the plates. For the TE fields, Ez must itself be zero at 
the plates. Thus, the boundary conditions are 

TM Fields: 
dĥ 

z (0) = 0; 
dĥ 

z (a) = 0 (11)
dx dx 
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Fig. 13.2.2 Dependence of fundamental fields on x. 

TE Fields: 
êz(0) = 0; êz(a) = 0 (12) 

To check that all of the conditions are indeed met at the boundaries, note that if 
(11) is satisfied, there is neither a tangential E nor a normal H at the boundaries for 
the TM fields. (There is no normal H whether the boundary condition is satisfied 
or not.) For the TE field, Ez is the only electric field, and making Ez=0 on the 
boundaries indeed guarantees that Hx = 0 there, as can be seen from (9). 

Representing the TM modes, the solution to (5) is a linear combination of 
sin(px) and cos(px). To satisfy the boundary condition, (11), at x = 0, we must 
select cos(px). Then, to satisfy the condition at x = a, it follows that p = pn = 
nπ/a, n = 0, 1, 2, . . . 

ˆ (13)hz ∝ cos pnx 

nπ 
pn = , n = 0, 1, 2, . . . (14) 

a 

These functions and the associated values of p are called eigenfunctions and eigen­
values, respectively. The solutions that have been found have the x dependence 
shown in Fig. 13.2.2a. 

From the definition of p given in (5), it follows that for a given frequency ω 
(presumably imposed by an excitation), the wave number ky associated with the 
n­th mode is 

� �
ω2µ� − (nπ/a)2; ω2µ� > (nπ/a)2 

ky ≡ ±βn; βn ≡ −j
�

(nπ/a)2 − ω2µ�; ω2µ� < (nπ/a)2 
(15) 

Similar reasoning identifies the modes for the TE fields. Of the two solutions to 
(8), the one that satisfies the boundary condition at x = 0 is sin(qx). The second 
boundary condition then requires that q take on certain eigenvalues, qn. 

êz ∝ sin qnx (16) 

nπ 
qn = (17) 

a 

http:13.2.2a
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The x dependence of Ez is then as shown in Fig. 13.2.2b. Note that the case n = 0 
is excluded because it implies a solution of zero amplitude. 

For the TE fields, it follows from (17) and the definition of q given with (8) 
that5 � �

ω2µ� − (nπ/a)2; ω2µ� > (nπ/a)2 
ky ≡ ±βn; βn ≡ −j

�
(nπ/a)2 − ω2µ�; ω2µ� < (nπ/a)2 

(18) 

In general, the fields between the plates are a linear combination of all of the modes. 
In superimposing these modes, we recognize that ky = ±βn. Thus, with coefficients 
that will be determined by boundary conditions in planes of constant y, we have 
the solutions 

TM Modes: 

e−jβoy + A− jβoyHz =Re 
�
A+ 

o o e 
∞ 

e−jβny + A− nπ jωt 
(19)

+
� �

A+ 
n n e

jβny
� 
cos x

�
e

a 
n=1 

TE Modes: 

∞ 

e−jβny + C−e
nπ jωt Ez = Re 

� �
Cn 

+ 
n 

jβny
� 
sin x e (20) 

a 
n=1 

We shall refer to the n­th mode represented by these fields as the TMn or TEn 

mode, respectively. 
We now make an observation about the TM0 mode that is of far­reaching 

significance. Its distribution of Hz has no dependence on x [(13) with pn = 0]. As 
a result, Ey = 0 according to (7). Thus, for the TM0 mode, both E and H are 
transverse to the axial direction y. This special mode, represented by the n = 0 
terms in (19), is therefore the transverse electromagnetic (TEM) mode featured 
in the previous section. One of its most significant features is that the relation 
between frequency ω and wave number in the y direction, ky, [(15) with n = 0] 
is ky = ±ω

√
µ� = ±ω/c, the same as for a uniform electromagnetic plane wave. 

Indeed, as we saw in Sec. 13.1, it is a uniform plane wave. 
The frequency dependence of ky for the TEM mode and for the higher­order 

TMn modes given by (15) are represented graphically by the ω − ky plot of Fig. 
13.2.3. For a given frequency, ω, there are two values of ky which we have called ±βn. 
The dashed curves represent imaginary values of ky. Imaginary values correspond 
to exponentially decaying and “growing” solutions. An exponentially “growing” 
solution is in fact a solution that decays in the −y direction. Note that the switch 
from exponentially decaying to propagating fields for the higher­order modes occurs 
at the cutoff frequency 

1 � nπ 
ωcn = √

µ� a 

� 
(21) 

5 For the particular geometry considered here, it has turned out that the eigenvalues pn and 
qn are the same (with the exception of n = 0). This coincidence does not occur with boundaries 
having other geometries. 

http:13.2.2b
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Fig. 13.2.3 Dispersion relation for TM modes. 

Fig. 13.2.4 Dispersion relation for TE modes. 

The velocity of propagation of points of constant phase (for example, a point 
at which a field component is zero) is ω/ky. Figure 13.2.3 emphasizes that for all but 
the TEM mode, the phase velocity is a function of frequency. The equation relating 
ω to ky represented by this figure, (15), is often called the dispersion equation. 

The dispersion equation for the TE modes is shown in Fig. 13.2.4. Although 
the field distributions implied by each branch are very different, in the case of the 
plane parallel electrodes considered here, the curves are the same as those for the 
TMn=0 modes. 

The next section will provide greater insight into the higher­order TM and 
TE modes. 



� 
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13.3 TE AND TM STANDING WAVES BETWEEN PARALLEL PLATES 

In this section, we delve into the relationship between the two­dimensional higher­
order modes derived in Sec. 13.2 and their sources. The examples are chosen to 
relate directly to case studies treated in quasistatic terms in Chaps. 5 and 8. 

The matching of a longitudinal boundary condition by a superposition of 
modes may at first seem to be a purely mathematical process. However, even quali­
tatively it is helpful to think of the influence of an excitation in terms of the resulting 
modes. For quasistatic systems, this has already been our experience. For the pur­
pose of estimating the dependence of the output signal on the spacing b between 
excitation and detection electrodes, the EQS response of the capacitive attenuator 
of Sec. 5.5 could be pictured in terms of the lowest­order mode. In the electrody­
namic situations of interest here, it is even more common that one mode dominates. 
Above its cutoff frequency, a given mode can propagate through a waveguide to re­
gions far removed from the excitation. 

Modes obey orthogonality relations that are mathematically useful for the 
evaluation of the mode amplitudes. Formally, the mode orthogonality is implied by 
the differential equations governing the transverse dependence of the fundamental 
field components and the associated boundary conditions. For the TM modes, these 
are (13.2.5) and (13.2.11). 

TM Modes: 
d2ĥzn + p 2nĥ 

zn = 0 (1)
dx2 

where
 
dĥ
 

zn (a) = 0; 
dĥzn (0) = 0 

dx dx 

and for the TE modes, these are (13.2.8) and (13.2.12). 

TE Modes: 
d2êzn + qn

2 êzn = 0 (2)
dx2 

where
 
êzn(a) = 0; êzn(0) = 0
 

The word “orthogonal” is used here to mean that 

a� 
ˆ ˆhznhzmdx = 0; n = m (3) 

0 

� 

a 

êznêzmdx = 0; n = m (4) 
0 

� 

These properties of the modes can be seen simply by carrying out the integrals, 
using the modes as given by (13.2.13) and (13.2.16). More fundamentally, they can 
be deduced from the differential equations and boundary conditions themselves, (1) 
and (2). This was illustrated in Sec. 5.5 using arguments that are directly applicable 
here [(5.5.20)–(5.5.26)]. 
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Fig. 13.3.1 Configuration for excitation of TM waves. 

The following two examples illustrate how TE and TM modes can be excited in 
waveguides. In the quasistatic limit, the configurations respectively become identical 
to EQS and MQS situations treated in Chaps. 5 and 8. 

Example 13.3.1. Excitation of TM Modes and the EQS Limit 

In the configuration shown in Fig. 13.3.1, the parallel plates lying in the planes x = 0 
and x = a are shorted at y = 0 by a perfectly conducting plate. The excitation is 
provided by distributed voltage sources driving a perfectly conducting plate in the 
plane y = b. These sources constrain the integral of E across narrow insulating gaps 
of length Δ between the respective edges of the upper plate and the adjacent plates. 
All the conductors are modeled as perfect. The distributed voltage sources maintain 
the two­dimensional character of the fields even as the width in the z direction 
becomes long compared to a wavelength. Note that the configuration is identical 
to that treated in Sec. 5.5. Therefore, we already know the field behavior in the 
quasistatic (low frequency) limit. 

In general, the two­dimensional fields are the sum of the TM and TE fields. 
However, here the boundary conditions can be met by the TM fields alone. Thus, 
we begin with Hz, (13.2.19), expressed as a single sum. 

�
(A+ e−jβny jβny nπ jωt Hz = Re 

� ∞ 

n + A−n e ) cos x
�
e (5) 

a 
n=0 

This field and the associated E satisfy the boundary conditions on the parallel plates 
at x = 0 and x = a. Boundary conditions are imposed on the tangential E at the 
longitudinal boundaries, where y = 0 

Ex(x, 0, t) = 0 (6) 
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and at the driving electrode, where y = b. We assume here that the gap lengths Δ 
are small compared to other dimensions of interest. Then, the electric field within 
each gap is conservative and the line integral of Ex across the gaps is equal to the 
gap voltages ±v. Over the region between x = Δ and x = a − Δ, the perfectly 
conducting electrode makes Ex = 0. 

a	 Δ�	 �
Ex(x, b, t)dx = v; Ex(x, b, t)dx = −v (7) 

a−Δ 0 

Because the longitudinal boundary conditions are on Ex, we substitute Hz 

as given by (5) into the x component of Faraday’s law [(12.6.6) of Table 12.8.3] to 
obtain 

∞ −βn 
(A+ e−jβny − A−e

nπ jωt Ex = Re 
��	 

n	 n 
jβny

� 
cos x

�
e (8)

ω�	 a 
n=0 

To satisfy the condition at the short, (6), A+ = nn A− and (8) becomes 

� 2jβn 
A+ nπ jωt Ex = Re 

� ∞
n sin βny cos x

�
e	 (9)

ω� a 
n=0 

This set of solutions satisfies the boundary conditions on three of the four 
boundaries. What we now do to satisfy the “last” boundary condition differs little 
from what was done in Sec. 5.5. The A+’s are adjusted so that the summation ofn 

product solutions in (9) matches the boundary condition at y = b summarized by 
(7). Thus, we write (9) with y = b on the right and with the function representing 
(7) on the left. This expression is multiplied by the m’th eigenfunction, cos(mπx/a), 
and integrated from x = 0 to x = a. 

a	 � a ∞ 
n

� 
Ê 

x(x, b) cos 
mπx 

dx = 
� 2jβnA+ 

sin βnb 
a	 ω� 

· 
0 0 n=0	 (10) 

nπ mπ 
cos x cos xdx 

a a 

Because the intervals where Ê 
x(x, b) is finite are so small, the cosine function can 

be approximated by a constant, namely ±1 as appropriate. On the right­hand side 
of (10), we exploit the orthogonality condition so as to pick out only one term in 
the infinite series. 

v̂[−1 + cos mπ] =
2jβm 

sin βmb
� a�

A+	 (11)
ω� 2 

m 

Of the infinite number of terms in the integral on the right in (10), only the term 
where n = m has contributed. The coefficients follow from solving (11) and replacing 
m 	n.→	 � 

0; n even

A+ −2ω�v̂ 


n = ; n odd	 (12) 
jβna sin βnb 
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With the coefficients A+ = A− now determined, we can evaluate all of the n n 

fields. Substitution into (5), and (8) and into the result using (12.6.7) from Table 
12.8.3 gives
 � ∞ 

4jω�v̂  cos βny nπ 
� 

jωt
Hz = Re 
� 

cos x e (13)
βna sin βnb a 

n=1 
odd 

� ∞ −4ˆ v sin βny nπ 
� 

jωt Ex = Re 
� 

cos x e (14) 
a sin βnb a 

n=1 
odd 

� ∞ 
4nπ v̂  cos βny nπ 

� 
jωt Ey = Re 

� 
sin x e (15) 

a (βna) sin βnb a 
n=1 
odd 

Note the following aspects of these fields (which we can expect to see in Demon­
stration 13.3.1). First, the magnetic field is directed perpendicular to the x−y plane. 
Second, by making the excitation symmetric, we have eliminated the TEM mode. 
As a result, the only modes are of order n = 1 and higher. Third, at frequencies 
below the cutoff for the TM1 mode, βy is imaginary and the fields decay in the y 
direction.6 Indeed, in the quasistatic limit where ω2µ� � (π/a)2, the electric field 
is the same as that given by taking the gradient of (5.5.9). In this same quasistatic 
limit, the magnetic field would be obtained by using this quasistatic E to evaluate 
the displacement current and then solving for the resulting magnetic field subject to 
the boundary condition that there be no normal flux density on the surfaces of the 
perfect conductors. Fourth, above the cutoff frequency for the n = 1 mode but below 
the cutoff for the n = 2 mode, we should find standing waves having a wavelength 
2π/β1. 

Finally, note that each of the expressions for the field components has sin(βnb) 
in its denominator. With the frequency adjusted such that βn = nπ/b, this function 
goes to zero and the fields become infinite. This resonance condition results in an 
infinite response, because we have pictured all of the conductors as perfect. It occurs 
when the frequency is adjusted so that a wave reflected from one boundary arrives 
at the other with just the right phase to reinforce, upon a second reflection, the 
wave currently being initiated by the drive. 

The following experiment gives the opportunity to probe the fields that have 
been found in the previous example. In practical terms, the structure considered 
might be a parallel plate waveguide. 

Demonstration 13.3.1. Evanescent and Standing TM Waves 

The experiment shown in Fig. 13.3.2 is designed so that the field distributions can 
be probed as the excitation is varied from below to above the cutoff frequency of 
the TM1 mode. The excitation structures are designed to give fields approximating 
those found in Example 13.3.1. For convenience, a = 4.8 cm so that the excitation 
frequency ranges above and below a cut­off frequency of 3.1 GHz. The generator is 
modulated at an audible frequency so that the amplitude of the detected signal is 
converted to “loudness” of the tone from the loudspeaker. 

In this TM case, the driving electrode is broken into segments, each insulated 
from the parallel plates forming the waveguide and each attached at its center to a 

6 sin(ju) = j sinh(u) and cos(ju) = cosh(u) 
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Fig. 13.3.2 Demonstration of TM evanescent and standing waves. 

coaxial line from the generator. The segments insure that the fields applied to each 
part of the electrode are essentially in phase. (The cables feeding each segment are 
of the same length so that signals arrive at each segment in phase.) The width of 
the structure in the z direction is of the order of a wavelength or more to make the 
fields two dimensional. (Remember, in the vicinity of the lowest cutoff frequency, 
a is about one­half wavelength.) Thus, if the feeder were attached to a contiguous 
electrode at one point, there would be a tendency for standing waves to appear on 
the excitation electrode, much as they did on the wire antennae in Sec. 12.4. In the 
experiment, the segments are about a quarter­wavelength in the z direction but, of 
course, about a half­wavelength in the x direction. 

In the experiment, H is detected by means of a one­turn coil. The voltage 
induced at the terminals of this loop is proportional to the magnetic flux perpendic­
ular to the loop. Thus, for the TM fields, the loop detects its greatest signal when it 
is placed in an x − y plane. To avoid interference with E, the coaxial line connected 
to the probe as well as the loop itself are kept adjacent to the conducting walls 
(where Hz peaks anyway). 

The spatial features of the field, implied by the normalized ω versus ky plot 
of Fig. 13.3.2, can be seen by moving the probe about. With the frequency below 
cutoff, the field decays in the −y direction. This exponential decay or evanescence 
decreases to a linear dependence at cutoff and is replaced above cutoff by standing 
waves. The value of ky at a given frequency can be deduced from the experiment by 
measuring the quarter­wave distance from the short to the first null in the magnetic 
field. Note that if there are asymmetries in the excitation that result in excitation 
of the TEM mode, the standing waves produced by this mode will tend to obscure 
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the TM1 mode when it is evanescent. The TEM waves do not have a cutoff! 

As we have seen once again, the TM fields are the electrodynamic generaliza­
tion of two­dimensional EQS fields. That is, in the quasistatic limit, the previous 
example becomes the capacitive attenuator of Sec. 5.5.7 

We have more than one reason to expect that the two­dimensional TE fields 
are the generalization of MQS systems. First, this was seen to be the case in Sec. 
12.6, where the TE fields associated with a given surface current density were 
found to approach the MQS limit as ω2µ� � k2. Second, from Sec. 8.6 we know y
that for every two­dimensional EQS configuration involving perfectly conducting 
boundaries, there is an MQS one as well.8 In particular, the MQS analog of the 
capacitor attenuator is the configuration shown in Fig. 13.3.3. The MQS H field 
was found in Example 8.6.3. 

In treating MQS fields in the presence of perfect conductors, we recognized 
that the condition of zero tangential E implied that there be no time­varying normal 
B. This made it possible to determine H without regard for E. We could then delay 
taking detailed account of E until Sec. 10.1. Thus, in the MQS limit, a system 
involving essentially a two­dimensional distribution of H can (and usually does) 
have an E that depends on the third dimension. For example, in the configuration 
of Fig. 13.3.3, a voltage source might be used to drive the current in the z direction 
through the upper electrode. This current is returned in the perfectly conducting �­
shaped walls. The electric fields in the vicinities of the gaps must therefore increase 
in the z direction from zero at the shorts to values consistent with the voltage 
sources at the near end. Over most of the length of the system, E is across the gap 
and therefore in planes perpendicular to the z axis. This MQS configuration does 
not excite pure TE fields. In order to produce (approximately) two­dimensional 
TE fields, provision must be made to make E as well as H two dimensional. The 
following example and demonstration give the opportunity to further develop an 
appreciation for TE fields. 

Example 13.3.2. Excitation of TE Modes and the MQS Limit 

An idealized configuration for exciting standing TE modes is shown in Fig. 13.3.4. 
As in Example 13.3.1, the perfectly conducting plates are shorted in the plane y = 0. 
In the plane y = b is a perfectly conducting plate that is segmented in the z direction. 
Each segment is driven by a voltage source that is itself distributed in the x direction. 
In the limit where there are many of these voltage sources and perfectly conducting 
segments, the driving electrode becomes one that both imposes a z­directed E and 
has no z component of B. That is, just below the surface of this electrode, wEz is 
equal to the sum of the source voltages. One way of approximately realizing this 
idealization is used in the next demonstration. 

Let Λ be defined as the flux per unit length (length taken along the z direction) 
into and out of the enclosed region through the gaps of width Δ between the driving 
electrode and the adjacent edges of the plane parallel electrodes. The magnetic field 

7 The example which was the theme of Sec. 5.5 might equally well have been called the 
“microwave attenuator,” for a section of waveguide operated below cutoff is used in microwave 
circuits to attenuate signals. 

8 The H satisfying the condition that n B = 0 on the perfectly conducting boundaries was · 
obtained by replacing Φ Az in the solution to the analogous EQS problem. → 
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Fig. 13.3.3 Two­dimensional MQS configuration that does not have TE

fields.


Fig. 13.3.4 Idealized configuration for excitation of TE standing waves. 

normal to the driving electrode between the gaps is zero. Thus, at the upper surface, 
Hy has the distribution shown in Fig. 13.3.5a. 

Faraday’s integral law applied to the contour C of Fig. 13.3.4 and to a similar 
contour around the other gap shows that 

Ez(x, b, t) = − 
d

dt 

Λ ⇒ Ê 
z = −jωΛ̂ (16) 

http:13.3.5a
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Fig. 13.3.5 Equivalent boundary conditions on normal H and tan­
gential E at y = b. 

Thus, either the normal B or the tangential E on the surface at y = b is specified. 
The two must be consistent with each other, i.e., they must obey Faraday’s law. It 
is perhaps easiest in this case to deal directly with Ez in finding the coefficients ap­
pearing in (13.2.20). Once they have been determined (much as in Example 13.3.1), 
H follows from Faraday’s law, (12.6.29) and (12.6.30) of Table 12.8.3. 

∞ 
4jΛ̂ω sin βmy mπx jωtEz = Re sin e (17)

� 
− 

mπ sin βmb a 
m=1 
odd 

∞ 
4βmΛ̂ cos βmy mπx jωt Hx = Re 

� 
sin e (18)

µmπ sin βmb a 
m=1 
odd 

∞ 
Λ sin βmy mπx jωt Hy = Re 

� −4ˆ
cos e (19) 

µa sin βmb a 
m=1 
odd 

In the quasistatic limit, ω2µ� � (mπ/a)2, this magnetic field reduces to that 
found in Example 8.6.3. 

A few observations may help one to gain some insights from these expressions. 
First, if the magnetic field is sensed, then the detection loop must have its axis in 
the x− y plane. For these TE modes, there should be no signal sensed with the axis 
of the detection loop in the z direction. This probe can also be used to verify that 
H normal to the perfectly conducting surfaces is indeed zero, while its tangential 
value peaks at the short. Second, the same decay of the fields below cutoff and 
appearance of standing waves above cutoff is predicted here, as in the TM case. 
Third, because E is perpendicular to planes of constant z, the boundary conditions 
on E, and hence H, are met, even if perfectly conducting plates are placed over the 
open ends of the guide, say in the planes z = 0 and z = w. In this case, the guide 
becomes a closed pipe of rectangular cross­section. What we have found are then a 
subset of the three­dimensional modes of propagation in a rectangular waveguide. 

Demonstration 13.3.2. Evanescent and Standing TE Waves 

The apparatus of Demonstration 13.3.1 is altered to give TE rather than TM waves 
by using an array of “one­turn inductors” rather than the array of “capacitor plates.” 
These are shown in Fig. 13.3.6. 
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Fig. 13.3.6 Demonstration of evanescent and standing TE waves. 

Each member of the array consists of an electrode of width a − 2Δ, driven at 
one edge by a common source and shorted to the perfectly conducting backing at its 
other edge. Thus, the magnetic flux through the closed loop passes into and out of 
the guide through the gaps of width Δ between the ends of the one­turn coil and the 
parallel plate (vertical) walls of the guide. Effectively, the integral of Ez created by 
the voltage sources in the idealized model of Fig. 13.3.4 is produced by the integral 
of Ez between the left edge of one current loop and the right edge of the next. 

The current loop can be held in the x − z plane to sense Hy or in the y − z 
plane to sense Hx to verify the field distributions derived in the previous example. 
It can also be observed that placing conducting sheets against the open ends of the 
parallel plate guide, making it a rectangular pipe guide, leaves the characteristics of 
these two­dimensional TE modes unchanged. 

13.4 RECTANGULAR WAVEGUIDE MODES 

Metal pipe waveguides are often used to guide electromagnetic waves. The most 
common waveguides have rectangular cross­sections and so are well suited for the 
exploration of electrodynamic fields that depend on three dimensions. Although we 
confine ourselves to a rectangular cross­section and hence Cartesian coordinates, the 
classification of waveguide modes and the general approach used here are equally 
applicable to other geometries, for example to waveguides of circular cross­section. 

The parallel plate system considered in the previous three sections illustrates 



Cite as: Markus Zahn, course materials for 6.641 Electromagnetic Fields, Forces, and Motion, Spring 2005. 
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD 
Month YYYY].

26 Electrodynamic Fields: The Boundary Value Point of View Chapter 13 

Fig. 13.4.1 Rectangular waveguide. 

much of what can be expected in pipe waveguides. However, unlike the parallel 
plates, which can support TEM modes as well as higher­order TE modes and TM 
modes, the pipe cannot transmit a TEM mode. From the parallel plate system, 
we expect that a waveguide will support propagating modes only if the frequency 
is high enough to make the greater interior cross­sectional dimension of the pipe 
greater than a free space half­wavelength. Thus, we will find that a guide having a 
larger dimension greater than 5 cm would typically be used to guide energy having 
a frequency of 3 GHz. 

We found it convenient to classify two­dimensional fields as transverse mag­
netic (TM) or transverse electric (TE) according to whether E or H was trans­
verse to the direction of propagation (or decay). Here, where we deal with three­
dimensional fields, it will be convenient to classify fields according to whether they 
have E or H transverse to the axial direction of the guide. This classification is 
used regardless of the cross­sectional geometry of the pipe. We choose again the y 
coordinate as the axis of the guide, as shown in Fig. 13.4.1. If we focus on solutions 
to Maxwell’s equations taking the form 

Hy = Re ĥy(x, z)ej(ωt−kyy) (1) 

Ey = Re êy(x, z)ej(ωt−kyy) (2) 

then all of the other complex amplitude field components can be written in terms 
of the complex amplitudes of these axial fields, Hy and Ey. This can be seen from 
substituting fields having the form of (1) and (2) into the transverse components 
of Ampère’s law, (12.0.8), 

−jkyĥz − 
∂ĥ 

y = jω�êx (3)
∂z 
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∂ĥ 
y + jkyĥ 

x = jω�êz (4)
∂x 

and into the transverse components of Faraday’s law, (12.0.9), 

−jky êz − 
∂êy = −jωµĥx (5)
∂z 

∂êy + jky êx = −jωµĥz (6)
∂x 

If we take ĥ 
y and ˆ ey as specified, (3) and (6) constitute two algebraic equations in 

the unknowns ˆ ex and ĥ 
z. Thus, they can be solved for these components. Similarly, 

ĥ 
x and êz follow from (4) and (5). 

� 
∂ĥ 

y ∂êy 

�
ĥ 

x = − jky 
∂x 

− jω� /(ω2µ� − k2) (7)
∂z y

ĥ 
z = 

� 

− jky 
∂ĥ 

y + jω� 
∂êy

�
/(ω2µ� − k2) (8)

∂z ∂x y

êx = 
�

jωµ 
∂ĥ 

y − jky 
∂êy 

�
/(ω2µ� − ky

2) (9)
∂z ∂x 

∂ĥy ∂ˆ 
êz = 

� 

− jωµ
∂x 

− jky 
ey

�
/(ω2µ� − ky

2) (10)
∂z 

We have found that the three­dimensional fields are a superposition of those 
associated with Ey (so that the magnetic field is transverse to the guide axis ), the 
TM fields, and those due to Hy, the TE modes. The axial field components now 
play the role of “potentials” from which the other field components can be derived. 

We can use the y components of the laws of Ampère and Faraday together 
with Gauss’ law and the divergence law for H to show that the axial complex 
amplitudes ˆ ey and ĥ 

y satisfy the two­dimensional Helmholtz equations. 

TM Modes (Hy = 0): 

∂2êy 

∂x2 
+ 

∂2êy 

∂z2 
+ p 2 êy = 0 (11) 

where 
2 p = ω2µ� − k2 

y 

and 

TE Modes (Ey = 0): 

∂2ĥy ∂2ĥ 
y+ + q 2ĥ 

y = 0 (12)
∂x2 ∂z2 
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where 
q 2 = ω2µ� − ky 

2 

These relations also follow from substitution of (1) and (2) into the y components 
of (13.0.2) and (13.0.1). 

The solutions to (11) and (12) must satisfy boundary conditions on the per­
fectly conducting walls. Because Ey is parallel to the perfectly conducting walls, it 
must be zero there. 

TM Modes: 

êy(0, z) = 0; êy(a, z) = 0; êy(x, 0) = 0; êy(x,w) = 0 (13) 

The boundary condition on Hy follows from (9) and (10), which express êx 

and ˆ ez in terms of ĥ 
y. On the walls at x = 0 and x = a, êz = 0. On the walls at 

z = 0, z = w, êx = 0. Therefore, from (9) and (10) we obtain 

TE Modes: 

∂hy (0, z) = 0; 
∂hy (a, z) = 0; 

∂hy (x, 0) = 0; 
∂hy (x, w) = 0 (14)

∂x ∂x ∂z ∂z 

The derivative of ĥy with respect to a coordinate perpendicular to the boundary 
must be zero. 

The solution to the Helmholtz equation, (11) or (12), follows a pattern that 
is familiar from that used for Laplace’s equation in Sec. 5.4. Either of the complex 
amplitudes representing the axial fields is represented by a product solution. 

� 
êy 

� 

ˆ ∝ X(x)Z(z) (15)
hy 

Substitution into (11) or (12) and separation of variables then gives 

d2X 
+ γ2X = 0 (16)

dx2 

d2Z 
+ δ2Z = 0 

dz2 

where 

−γ2 − δ2 +
� 

p
2

2 
� 

= 0 (17)
q 

Solutions that satisfy the TM boundary conditions, (13), are then 

TM Modes: 

mπ 
X ∝ sin γmx; γm = , m = 1, 2, . . . (18) 

a 
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nπ 
Z ∝ sin δnz; δn = , n = 1, 2, . . . 

w 

so that 
pmn 
2 = 

� mπ �2 +
� nπ �2; m = 1, 2, . . . , n = 1, 2, . . . (19) 

a w 

When either m or n is zero, the field is zero, and thus m and n must be equal to 
an integer equal to or greater than one. For a given frequency ω and mode number 
(m,n), the wave number ky is found by using (19) in the definition of p associated 
with (11) 

ky = ±βmn 

with ⎧ �
ω2µ� − 

� 
mπ 

�2 − 
� 

nπ 
�2 �2 +

� 
nπ 

�2⎨ 
w ; ω2µ� > 

� 
mπ 

w (20)βmn
a a ≡ ⎩ −j

�� 
mπ 

�2 +
� 

nπ 
�2 − ω2µ�; ω2µ� < 

� 
mπ 

�2 +
� 

nπ 
�2 

a w a w 

Thus, the TM solutions are 

∞ ∞ 
mπ nπ 

Ey = Re 
� �

(A+ e−jβmn y + A− ejβmn y) sin x sin z ejωt (21)mn mn a w 
m=1 n=1 

For the TE modes, (14) provides the boundary conditions, and we are led to the 
solutions 

TE Modes: 

mπ 
X ∝ cos γmx; γm = ; m = 0, 1, 2, . . . (22) 

a 

nπ 
Z ∝ cos δnz; δn = ; n = 0, 1, 2, . . . 

a 

Substitution of γm and δn into (17) therefore gives 

q 2 = 
� mπ �2 +

� nπ �2; m = 0, 1, 2, . . . , n = 0, 1, 2, . . . , (23)mn a w 

(m,n) = (0, 0) 

The wave number ky is obtained using this eigenvalue in the definition of q asso­
ciated with (12). With the understanding that either m or n can now be zero, the 
expression is the same as that for the TM modes, (20). However, both m and n 
cannot be zero. If they were, it follows from (22) that the axial H would be uniform 
over any given cross­section of the guide. The integral of Faraday’s law over the 
cross­section of the guide, with the enclosing contour C adjacent to the perfectly 
conducting boundaries as shown in Fig. 13.4.2, requires that 

� 
E ds = −µA

dHy (24)· 
dt 
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Fig. 13.4.2 Cross­section of guide with contour adjacent to perfectly con­
ducting walls. 

where A is the cross­sectional area of the guide. Because the contour on the left 
is adjacent to the perfectly conducting boundaries, the line integral of E must be 
zero. It follows that for the m = 0, n = 0 mode, Hy = 0. If there were such a mode, 
it would have both E and H transverse to the guide axis. We will show in Sec. 14.2, 
where TEM modes are considered in general, that TEM modes cannot exist within 
a perfectly conducting pipe. 

Even though the dispersion equations for the TM and TE modes only differ in 
the allowed lowest values of (m,n), the field distributions of these modes are very 
different.9 The superposition of TE modes gives 

∞ ∞ 
mπ nπ

Re 
� �

(C+ e−jβmn y + C− jβmn y) jωt Hy = mn mne cos x cos z e (25) 
a w 

· 
m=0 n=0 

where m n = 0. The frequency at which a given mode switches from evanescence · �
to propagation is an important parameter. This cutoff frequency follows from (20) 
as 

1 
�� mπ �2 +

� nπ �2 
ωc = √

µ� a w 
(26) 

TM Modes: 
m = 0, n = 0 

TE Modes: 
m and n not both zero 

Rearranging this expression gives the normalized cutoff frequency as functions 
of the aspect ratio a/w of the guide. 

ωcw 
ωc ≡ 

cπ 
= 

�
(w/a)2m2 + n2 (27) 

These normalized cutoff frequencies are shown as functions of w/a in Fig. 13.4.3. 
The numbering of the modes is standardized. The dimension w is chosen as 

w ≤ a, and the first index m gives the variation of the field along a. The TE10 

9 In other geometries, such as a circular waveguide, this coincidence of pmn and qmn is not 
found. 
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Fig. 13.4.3 Normalized cutoff frequencies for lowest rectangular waveguide 
modes as a function of aspect ratio. 

mode then has the lowest cutoff frequency and is called the dominant mode. All 
other modes have higher cutoff frequencies (except, of course, in the case of the 
square cross­section for which TE01 has the same cutoff frequency). Guides are 
usually designed so that at the frequency of operation only the dominant mode is 
propagating, while all higher­order modes are “cutoff.” 

In general, an excitation of the guide at a cross­section y = constant excites 
all waveguide modes. The modes with cutoff frequencies higher than the frequency 
of excitation decay away from the source. Only the dominant mode has a sinusoidal 
dependence upon y and thus possesses fields that are periodic in y and “dominate” 
the field pattern far away from the source, at distances larger than the transverse 
dimensions of the waveguide. 

Example 13.4.1. TE10 Standing Wave Fields 

The section of rectangular guide shown in Fig. 13.4.4 is excited somewhere to the 
right of y = 0 and shorted by a conducting plate in the plane y = 0. We presume 
that the frequency is above the cutoff frequency for the TE10 mode and that a > w 
as shown. The frequency of excitation is chosen to be below the cutoff frequency for 
all higher order modes and the source is far away from y = 0 (i.e., at y � a). The 
field in the guide is then that of the TE10 mode. Thus, Hy is given by (25) with 
m = 1 and n = 0. What is the space­time dependence of the standing waves that 
result from having shorted the guide? 

Because of the short, Ez(x, y = 0, z) = 0. In order to relate the coefficients 

C+ and C− , we must determine ˆ ez from ĥ 
y as given by (25) using (10) 10 10

a 
10e

−jβ10y jβ10y πx jωt 
10eEz = Re jωµ (C+ + C− ) sin e (28)

π a 

and because êz = 0 at the short, it follows that 

C+ = −C− (29)10 10 



32 Electrodynamic Fields: The Boundary Value Point of View Chapter 13 

Fig. 13.4.4 Fields and surface sources for TE10 mode. 

so that � 
a π jωt

� 
Ez = 2ωµ C+ xe (30)Re 10 sin β10y sin 

π a 

and this is the only component of the electric field in this mode. We can now use 
(29) to evaluate (25). 

� 
π jωt

� 
Hy = −Re 2jC+ cos xe (31)10 sin β10y

a 

In using (7) to evaluate the other component of H, remember that in the C+ termmn 

of (25), ky = βmn, while in the C− term, ky = −βmn.mn 

� 
a π jωt

� 
C+Hx = Re 2jβ10 10 cos β10y sin xe (32)

π a 

To sketch these fields in the neighborhood of the short and deduce the associ­
ated surface charge and current densities, consider C+ to be real. The j in (31) and 10 

(32) shows that Hx and Hy are 90 degrees out of phase with the electric field. Thus, 
in the field sketches of Fig. 13.4.4, E and H are shown at different instants of time, 
say E when ωt = π and H when ωt = π/2. The surface charge density is where Ez 

terminates and originates on the upper and lower walls. The surface current density 
can be inferred from Ampère’s continuity condition. The temporal oscillations of 
these fields should be pictured with H equal to zero when E peaks, and with E 
equal to zero when H peaks. At planes spaced by multiples of a half­wavelength 
along the y axis, E is always zero. 
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Fig. 13.4.5 Slotted line for measuring axial distribution of TE10 fields. 

The following demonstration illustrates how a movable probe designed to cou­
ple to the electric field is introduced into a waveguide with minimal disturbance of 
the wall currents. 

Demonstration 13.4.1. Probing the TE10 Mode. 

A waveguide slotted line is shown in Fig. 13.4.5. Here the line is shorted at y = 0 
and excited at the right. The probe used to excite the guide is of the capacitive 
type, positioned so that charges induced on its tip couple to the lines of electric 
field shown in Fig. 13.4.4. This electrical coupling is an alternative to the magnetic 
coupling used for the TE mode in Demonstration 13.3.2. 

The y dependence of the field pattern is detected in the apparatus shown in 
Fig. 13.4.5 by means of a second capacitive electrode introduced through a slot so 
that it can be moved in the y direction and not perturb the field, i.e., the wall is cut 
along the lines of the surface current K. From the sketch of K given in Fig. 13.4.4, 
it can be seen that K is in the y direction along the center line of the guide. 

The probe can be used to measure the wavelength 2π/ky of the standing waves 
by measuring the distance between nulls in the output signal (between nulls in Ez). 
With the frequency somewhat below the cutoff of the TE10 mode, the spatial decay 
away from the source of the evanescent wave also can be detected. 

13.5 DIELECTRIC WAVEGUIDES: OPTICAL FIBERS 

Waves can be guided by dielectric rods or slabs and the fields of these waves 
occupy the space within and around these dielectric structures. Especially at optical 
wavelengths, dielectric fibers are commonly used to guide waves. In this section, we 
develop the properties of waves guided by a planar sheet of dielectric material. The 
waves that we find are typical of those found in integrated optical systems and in 
the more commonly used optical fibers of circular cross­section. 

A planar version of a dielectric waveguide is pictured in Fig. 13.5.1. A dielectric 
of thickness 2d and permittivity �i is surrounded by a dielectric of permittivity 
� < �i. The latter might be free space with � = �o. We are interested in how this 
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Fig. 13.5.1 Dielectric slab waveguide. 

structure might be used to guide waves in the y direction and will confine ourselves 
to fields that are independent of z. 

With a source somewhere to the left (for example an antenna imbedded in the 
dielectric), there is reason to expect that there are fields outside as well as inside 
the dielectric. We shall look for field solutions that propagate in the y direction and 
possess fields solely inside and near the layer. The fields external to the layer decay 
to zero in the ±x directions. Like the waves propagating along waveguides, those 
guided by this structure have transverse components that take the form 

Ez = Re ˆ ez(x)ej(ωt−kyy) (1) 

both inside and outside the dielectric. That is, the fields inside and outside the 
dielectric have the same frequency ω, the same phase velocity ω/ky, and hence 
the same wavelength 2π/ky in the y direction. Of course, whether such fields can 
actually exist will be determined by the following analysis. 

The classification of two­dimensional fields introduced in Sec. 12.6 is applica­
ble here. The TM and TE fields can be made to independently satisfy the boundary 
conditions so that the resulting modes can be classified as TM or TE.10 Here we 
will confine ourselves to the transverse electric modes. In the exterior and interior 
regions, where the permittivities are uniform but different, it follows from substi­
tution of (1) into (12.6.33) (Table 12.8.3) that 

d2êz
 − α2 
xêz = 0; αx = 

�
ky 

2
 − ω2µ�; d < x and x < −d (2)
dx2 

d2êz + k2 êz = 0; kx = 
�

ω2µ�i − k2; −d < x < d (3)
dx2 x y 

A guided wave is one that is composed of a nonuniform plane wave in the 
exterior regions, decaying in the ±x directions and propagating with the phase 
velocity ω/ky in the y direction. In anticipation of this, we have written (2) in 

10 Circular dielectric rods do not support simple TE or TM waves; in that case, this classifi­
cation of modes is not possible. 
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terms of the parameter αx, which must then be real and positive. Through the 
continuity conditions, the exterior wave must match up to the interior wave at the 
dielectric surfaces. The solutions to (3) are sines and cosines if kx is real. In order 
to match the interior fields onto the nonuniform plane waves on both sides of the 
guide, it is necessary that kx be real. 

We now set out to find the wave numbers ky that not only satisfy the wave 
equations in each of the regions, represented by (2) and (3), but the continuity 
conditions at the interfaces as well. The configuration is symmetric about the x = 0 
plane so we can further divide the modes into those that have even and odd functions 
Ez(x). Thus, with A an arbitrary factor, appropriate even solutions to (2) and (3) 
are ⎧

⎪⎪⎨ 

⎪⎪⎩

Ae−αx(x−d); d < x 
cos kxx 

êz = A ; −d < x < d (4)
cos kxd 

Aeαx(x+d); x < −d 

To simplify the algebra, we have displaced the origin in the exterior solutions so 
that just the coefficient, A, is obtained when êz is evaluated at the respective 
interfaces. With a similar objective, the interior solution has been divided by the 
constant cos(kxd) so that at the boundaries, êz also becomes A. In this way, we 
have adjusted the interior coefficient so that êz is continuous at the boundaries. 

Because this transverse field is the only component of E, all of the continuity 
conditions on E are now satisfied. The permeabilities of all regions are presumed to 
be the same, so both tangential and normal components of H must be continuous 
at the boundaries. From (12.6.29), the continuity of normal µH is guaranteed by 
the continuity of Ez in any case. The tangential field is obtained using (12.6.30). 

ĥ 
y =

1 dêz (5)
jωµ dx 

Substitution of (4) into (5) gives 

ĥy = 
1 

jωµ 

⎧
⎨ 

⎩ 

−α Ae−αx(x−d); d < x 
−k 

x

A sin kxx ; −d < x < d (6)cos kxdx 

αxAeαx(x+d); x < −d 

The assumption that Ez is even in x has as a consequence the fact that the continu­
ity condition on tangential H is satisfied by the same relation at both boundaries. 

αx −αxA = −kxA tan kxd ⇒ 
kx 

= tan kxd (7) 

Our goal is to determine the propagation constant ky for a given ω. If we were 
to substitute the definitions of αx and kx into this expression, we would have this 
dispersion equation, D(ω,ky), implicitly relating ky to ω. It is more convenient to 
solve for αx and kx first, and then for ky. 

Elimination of ky between the expressions for αx and kx given with (2) and 
(3) gives a second expression for αx/kx. 

αx = 

� 
ω2µ�id2 �

1− 
� � − 1 (8)

kx (kxd)2 �i 
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Fig. 13.5.2 Graphical solution to (7) and (8). 

The solutions for the values of the normalized transverse wave numbers (kxd) can 
be pictured as shown in Fig. 13.5.2. Plotted as functions of kxd are the right­hand 
sides of (7) and (8). The points of intersection, kxd = γm, are the desired solutions. 
For the frequency used to make Fig. 13.5.2, there are two solutions. These are 
designated by even integers because the odd modes (Prob. 13.5.1) have roots that 
interleave these even modes. 

As the frequency is raised, an additional even TE­guided mode is found each 
time the curve representing (8) reaches a new branch of (7). This happens at fre­
quencies ωc such that αx/kx = 0 and kxd = mπ/2, where m = 0, 2, 4, . . . From 
(8), 

mπ 1 
ωc = (9)

2d 
�

µ(�i − �) 

The m = 0 mode has no cutoff frequency. 
To finally determine ky from these eigenvalues, the definition of kx given with 

(3) is used to write 
kyd = 

�
ω2µ�id2 − (kxd)2 (10) 

and the dispersion equation takes the graphical form of Fig. 13.5.3. To make Fig. 
13.5.2, we had to specify the ratio of permittivities, so that ratio is also implicit in 
Fig. 13.5.3. 

Features of the dispersion diagram, Fig. 13.5.3, can be gathered rather simply. 
Where a mode is just cutoff because ω = ωc, αx = 0, as can be seen from Fig. 
13.5.2. From (2), we gather that ky = ωc

√
µ�. Thus, at cutoff, a mode must have a 

propagation constant ky that lies on the straight broken line to the left, shown in 
Fig. 13.5.3. At cutoff, each mode has a phase velocity equal to that of a plane wave 
in the medium exterior to the layer. 

In the high­frequency limit, where ω goes to infinity, we see from Fig. 13.5.2 
that kxd approaches the constant kx (m + 1)π/2d. That is, in (3), kx becomes a →
constant even as ω goes to infinity and it follows that in this high frequency limit 
ky ω

√
µ�i. → 
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Fig. 13.5.3 Dispersion equation for even TE modes with �i/� = 6.6. 

Fig. 13.5.4 Distribution of transverse E for TE0 mode on dielectric waveg­
uide of Fig. 13.5.1. 

The physical reasons for this behavior follow from the nature of the mode 
pattern as a function of frequency. When αx 0, as the frequency approaches →
cutoff, it follows from (4) that the fields extend far into the regions outside of the 
layer. The wave approaches an infinite parallel plane wave having a propagation 
constant that is hardly affected by the layer. In the opposite extreme, where ω goes 
to infinity, the decay of the external field is rapid, and a given mode is well confined 
inside the layer. Again, the wave assumes the character of an infinite parallel plane 
wave, but in this limit, one that propagates with the phase velocity of a plane wave 
in a medium with the dielectric constant of the layer. 

The distribution of Ez of the m = 0 mode at one frequency is shown in Fig. 
13.5.4. As the frequency is raised, each mode becomes more confined to the layer. 
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Fig. 13.5.5 Dielectric waveguide demonstration. 

Demonstration 13.5.1. Microwave Dielectric Guided Waves 

In the experiment shown in Fig. 13.5.5, a dielectric slab is demonstrated to guide 
microwaves. To assure the excitation of only an m = 0 TE­guided wave, but one 
as well confined to the dielectric as possible, the frequency is made just under the 
cutoff frequency ωc2. (For a 2 cm thick slab having �i/�o = 6.6, this is a frequency 
just under 6 GHz.) The m = 0 wave is excited in the dielectric slab by means of 
a vertical element at its left edge. This assures excitation of Ez while having the 
symmetry necessary to avoid excitation of the odd modes. 

The antenna is mounted at the center of a metal ground plane. Thus, without 
the slab, the signal at the receiving antenna (which is oriented to be sensitive to Ez) 
is essentially the same in all directions perpendicular to the z axis. With the slab, a 
sharply increased signal in the vicinity of the right edge of the slab gives qualitative 
evidence of the wave guidance. The receiving antenna can also be used to probe the 
field decay in the x direction and to see that this decay increases with frequency.11 

13.6 SUMMARY 

There are two perspectives from which this chapter can be reviewed. First, it can 
be viewed as a sequence of specific examples that are useful for dealing with radio 
frequency, microwave, and optical systems. Secs. 13.1–13.3 are concerned with the 
propagation of energy along parallel plates, first acting as a transmission line and 
then as a waveguide. Practical systems to which the derived properties of the TEM 
and higher­order modes are directly applicable are strip lines used at frequencies 

11 To make the excitation independent of z, a collinear array of in­phase dipoles could be used 
for the excitation. This is not necessary to demonstrate the qualitative features of the guide. 
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that extend from dc to the microwave range. The rectangular waveguide of Sec. 13.4 
might well be a section of “plumbing” from a microwave communication system, and 
the dielectric waveguide of Sec. 13.5 has many of the properties of an optical fiber. 
Second, the mathematical analysis of waves exemplified in this chapter is generally 
applicable to other more complex systems that are uniform in one direction. 

When the structures described in this chapter are used to transport energy 
from one location to another, they are generally not terminated in “shorts” and 
“opens” and hence, generally, do not simply support standing waves. The object is 
usually to carry energy from an antenna to a receiver or from a generator to a load 
whether that be an antenna or a light bulb. Such energy transport is accomplished 
by the traveling waves featured in the next chapter. 
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P R O B L E M S 

13.1 Introduction to TEM Waves 

13.1.1∗ With a short at y = 0, it is possible to find the fields for Example 13.1.1 by 
recognizing at the outset that standing wave solutions meeting the homoge­
neous boundary condition of (12) are of the form Ex = Re A sin(βy) exp(jωt). 

(a) Use (13.1.2) and (13.1.3) to determine the associated	 Hz and the 
dispersion equation (relation between β and ω). 

(b) Now use the boundary condition at y = −b to show that the fields 
are as given by (13.1.16) and (13.1.17). 

13.1.2∗ Take the approach outlined in Prob. 13.1.1 for finding the fields [(13.1.28) 
and (13.1.29)] in Example 13.1.2. 

13.1.3	 Assume that K̂ 
o is real and express the standing wave of (13.1.17) so as 

to make it evident that it is the sum of equal­amplitude waves traveling in 
the ±y directions, each with a magnitude of phase velocity ω/β = c and 
wavelength 2π/β. 

13.1.4∗ Coaxial perfectly conducting circular cylinders having outer and inner radii 
a and b, respectively, form the transmission line shown in Fig. P13.1.4. 

(a) If the conductors were “open circuit” at z = 0 and driven by a voltage 
source V at z = −l, show that the EQS electric field is radial and 
given by V/[r ln(a/b)]. 

(b) If the conductors were “shorted” at z = 0 and driven by a current 
source I at z = −l, show that the MQS magnetic field intensity is φ 
directed and given by I/2πr. 

(c) With the motivation provided by these limiting solutions, show that 
solutions to all of Maxwell’s equations (in the region between the 
conductors) that satisfy the boundary conditions on the surfaces of 
the coaxial conductors are 

V (z, t) I(z, t)
E = ir 

ln
� 

a
b

�
r 
; H = iφ	 2πr 

(a) 

provided that V and I are now functions not only of t but of z as well 
that satisfy equations taking the same form as (13.1.2) and (13.1.3). 

∂I ∂V 2π� 

∂z 
= −C 

∂t 
;	 C ≡ 

ln
� 

a
� (b) 

b 

∂V ∂I ln
� 

a
b

�
µ	 

∂z 
= −L

∂t 
; L ≡ 

2π 
(c) 
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Fig. P13.1.4 

13.1.5	 For the coaxial configuration of Prob. 13.1.4, there is a perfectly conducting 
“short” at z = 0, and the conductors are driven by a current source I = 
Re[Ioe

jωt] at z = −l. 

(a) Find I(z, t) and V (z, t) and hence E and H. 
(b) Take the low frequency limit where ω

√
µ�l � 1 and show that E and 

H are the same as for a coaxial inductor. 
(c) Find E and H directly from the MQS laws and show that they agree 

with the results of part (b). 

13.1.6	 For the coaxial configuration of Prob. 13.1.4, the conductors are “open 
circuited” at z = 0 and driven by a voltage source V = Re [Vo exp(jωt] at 
x = −l. 

(a) Find I(z, t) and V (z, t) and hence E and H. 
(b) Take the low­frequency limit where ω

√
µ�l � 1 and show that E and 

H are the same as for a coaxial capacitor. 
(c) Find E and H directly from the EQS laws and show that they agree 

with the results of (b). 

13.2 Two­Dimensional Modes Between Parallel Plates 

13.2.1∗ Show that each of the higher­order modes propagating in the +y direc­
tion, represented by A+ 

n	 and Cn 
+ in (13.2.19) and (13.2.20), respectively, 

can be regarded as the sum of plane waves propagating in the directions 
represented by the vector wave number 

nπ
k = + βn (a)± 

a 
ix iy 

and interfering in the planes x = 0 and x = a so as to satisfy the boundary 
conditions. 

13.2.2	 The TM and TE modes can themselves be classified into odd or even modes 
that, respectively, have ĥ 

z or ˆ ez odd or even functions of x. With this in 
mind, the origin of the coordinate system is moved so that it is midway 
between the perfectly conducting plates, as shown in Fig. P13.2.2. 
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Fig. P13.2.2 

(a) Find the odd TM and TE solutions. Note that when the boundary 
condition is met at x = d ≡ a/2 for these functions, it is automatically 
met at x = −d. 

(b) Find the even TM and TE solutions, again noting that if the condi­
tions are met at x = d, then they are at x = −d as well. 

13.3 TE and TM Standing Waves between Parallel Plates 

13.3.1∗ Starting with (13.3.1) (for TM modes) and (13.3.2) (for TE modes) use 
steps similar to those illustrated by (5.5.20)–(5.5.26) to obtain the orthog­
onality conditions of (13.3.3) and (13.3.4), respectively. 

13.3.2	 In the system of Example 13.3.1, the wall at y = 0 is replaced by that shown 
in Fig. P13.3.2. A strip electrode is embedded in, but insulated from, the 
wall at y = 0. The resistance R is low enough so that E tangential to the 
boundary at y = 0, even at the insulating gaps between the strip electrode 
and the surrounding wall, is negligible. 

(a) Determine the output voltage vo in terms of v. 
(b) For b/a = 2, describe the dependence of vo on frequency over the | |

range ω
√

µ� a = 0 π
�

5/4, specifying the low­frequency range 
where the response 

→
has a linear dependence on frequency and the 

resonance frequencies. 
(c) What is the distribution of Hz(x, y) at the resonance frequencies? 

13.3.3∗ In the two­dimensional system of Fig. P13.3.3, each driven electrode has 
the same nature as the one in Fig. 13.3.1. The origin of the y axis has been 
chosen to be in the plane of symmetry. 

(a) Use the symmetry to argue that Hz(y = 0) = 0. 



Sec. 13.3 Problems 43 

Fig. P13.3.2 

Fig. P13.3.3 

(b) Show that in the interior region, 

∞ −4jω�v̂ sin βny nπx jωt Hz = Re 
�	 

cos e (a)
βna cos βnb a 

n=1 
odd 

13.3.4	 The one­turn loop of Fig. P13.3.4 has dimensions that are small compared 
to a, b, or wavelengths of interest and has area A in the x − y plane. 

(a) It is used to detect the TM	 H field at the middle of the bottom 
electrode in Fig. 13.3.1. Assume that the resistance is large enough 
so that the current induced in this loop gives rise to a magnetic field 
that is negligible compared to that already found. In terms of Hz, 
what is vo? 

(b) At what locations x = X of the loop is a maximum? |vo|
(c) If the same loop were in the plate at y = 0 in the configuration of Fig. 

13.1.3 and used to detect Hz at y = 0 for the TEM fields of Example 
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Fig. P13.3.4 

13.1.1, what would be the dependence of vo on the location x = X 
of the loop? 

| | 

(d) If the loop were located in the plate at y = 0 in the TE configuration 
of Fig. 13.3.4, how should the loop be oriented to detect H? 

13.3.5	 In the system shown in Fig. P13.3.5, Δ � d and the driving sources v = 
Re[v̂ exp(jωt)] are uniformly distributed in the z direction so that the fields 
are two dimensional. Thus, the driving electrode is like that of Fig. 13.3.1 
except that it spans the width d rather than the full width a. Find H and 
E in terms of v. 

13.3.6	 In the system shown in Fig. P13.3.6, the excitation electrode is like that 
for Fig. 13.3.4 except that it has a width d rather than a. Find H and E 
in terms of Λ̂. 

13.4 Rectangular Waveguide Modes 

13.4.1∗ Show that an alternative method of exciting and detecting the TE10 mode 
in Demonstration 13.4.1 is to introduce one­turn loops as shown in Fig. 
P13.4.1. The excitation loop is inserted through a hole in the conducting 
wall while the detection loop passes through a slot, so that it can be moved 
in the y direction. The loops are each in the y − z plane. To minimize 
disturbance of the field, the detection loop is terminated in a high enough 
impedance so that the field from the current in the loop is negligible. Com­
pare the y dependence of the detected signal to that measured using the 
electric probe. 

13.4.2	 A rectangular waveguide has w/a = 0.75. Presuming that all TE and TM 
modes are excited in the guide, in what order do the lowest six modes begin 
to propagate in the y direction as the frequency is raised? 

13.4.3∗ The rectangular waveguide shown in Fig. P13.4.3 is terminated in a per­
fectly conducting plate at y = 0 that makes contact with the guide walls. 
An electrode at y = b has a gap of width Δ � a and Δ � w around its 
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Fig. P13.3.5 

Fig. P13.3.6 

Fig. P13.4.1 

edges. Distributed around this gap are sources that constrain the field from 
the edges of the plate to the guide walls to v(t)/Δ = Re(v̂/Δ) exp(jωt). 

(a) Argue that the fields should be TM and use the boundary condition 
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Fig. P13.4.3 

at y = 0 to show that 

∞ ∞	 
mπ nπˆ

� � 
2A+Ey = mn cos βmny sin x sin z (a) 

a	 w 
m=1 n=1 

[Hint: If (13.4.9) and (13.4.10) are used, remember that ky = +βmn 

for the A+ 
mn	 mode but ky = −βmn for the A− mode. ] mn 

(b) Show that, for m and n both odd, A+ = 8ˆ v(ω2µ�−β2 )/nmπ2βmn sin(kmnb),mn mn
while for either m or n even, A+ = 0.mn 

(c) Show that for these modes the resonance frequencies (normalized to 
1/
√

µ�a) are 

ω
√

µ�a = π 

� 

m2 +
� a

n
�2 +

� a
p
�2	 (b) 

w b 

where m, n, and p are integers, m and n odd. 
(d) Show that under quasistatic conditions, the field which has been found 

is consistent with that implied by the EQS potential given by (5.10.10) 
and (5.10.15). 

13.4.4	 The rectangular waveguide shown in Fig. P13.4.3 is terminated in a per­
fectly conducting plate at y = 0 that makes contact with the guide walls. 
However, instead of the excitation electrode shown, at y = b there is the 
perfectly conducting plate with a square hole cut in its center, shown in 
Fig. P13.4.4. In this hole, the pole faces of a magnetic circuit are flush with 
the plate and are used to excite fields within the guide. Approximate the 
normal fields over the surface of the pole faces as 

� 
Ĥ 

o for a	 < x < a+Δ and w−Δ < z < w+Δ 

Hy = 2 2 2 2 (a)
w+Δ−Ĥ	 

o for a−
2
Δ < x < a 

2 and w−
2
Δ < z < 2 
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Fig. P13.4.4 

where Ĥo is a complex constant. (Note that, if the magnetic circuit is driven 
by a one turn coil, the terminal voltage v = jω(Δ2/2)µĤ 

o.) Determine Hy, 
and hence E and H, inside the guide. 

13.5 Dielectric Waveguides: Optical Fibers 

13.5.1∗ For the dielectric slab waveguide of Fig. 13.5.1, consider the TE modes that 
have Ez an odd function of z. 

(a) Show that the dispersion relation between ω and ky is again found 
from (13.5.10), but with (kxd) found by simultaneously solving (13.5.8) 
and 

αx = − cot kxd (a)
kx 

(b) Sketch the graphical solution for kxd ≡ γm (m odd) and show that 
the cutoff frequency is again given by (13.5.9), but with m odd rather 
than even. 

(c) Show that these odd modes also have the asymptote of unity slope 
shown in Fig. 13.5.3. 

(d) Sketch the odd mode dispersion relation on that for the even modes 
(Fig. 13.5.3). 

13.5.2	 For the dielectric slab waveguide shown in Fig. 13.5.1, �i/� = 2.5, µ = µo, 
and d = 1 cm. In Hz, what is the highest frequency that can be used to 
guide only one TE mode. (Note the result of Prob. 13.5.1.) 

13.5.3∗ The dielectric slab waveguide of Fig. 13.5.1 is the same as that considered 
in this problem except that it now has a permeability µi that differs from 
that outside, where it is µ. 

(a) Show that (13.5.7) and (13.5.8), respectively, are replaced by 

αx = 
µ 

� 
tan kxd 

� 
; even	 (a)

kx µi − cot kxd ; odd 
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αx = 

� 
ω2µi�id2 �

1− 
µ� � − 1 

kx (kxd)2 µi�i 
(b) 

(b) Show that making µi > µ lowers the cutoff frequency. 
(c) For a given frequency, does making µi/µ > 1 increase or decrease the 

wavelength λ ≡ 2π/ky? 

13.5.4	 The dielectric slab of Fig. 13.5.1 has permittivity �i and permeability µi, 
while in the surrounding regions these are � and µ, respectively. Consider 
the TM modes. 

(a) Determine expressions analogous to (13.5.7), (13.5.8), and (13.5.10) 
that can be used to determine the dispersion relation ω = ω(ky) for 
modes that have Hz even and odd functions of x. 

(b) What are the cutoff frequencies? 
(c) For µi = µ and �i = � = 2.5, draw the dispersion plot for the lowest 

three modes that is analogous to that of Fig. 13.5.3. 




