
MIT OpenCourseWare 
http://ocw.mit.edu 

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. 
Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. 

Please use the following citation format: 

Haus, Hermann A., and James R. Melcher, Electromagnetic Fields and 
Energy. (Massachusetts Institute of Technology: MIT 
OpenCourseWare). http://ocw.mit.edu (accessed [Date]). License: 
Creative Commons Attribution-NonCommercial-Share Alike. 

Also available from Prentice-Hall: Englewood Cliffs, NJ, 1989. ISBN: 
9780132490207. 

Note: Please use the actual date you accessed this material in your citation. 

For more information about citing these materials or our Terms of Use, visit: 
http://ocw.mit.edu/terms 

http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms


2
 

MAXWELL’S
 
DIFFERENTIAL LAWS
 
IN FREE SPACE
 

2.0 INTRODUCTION 

Maxwell’s integral laws encompass the laws of electrical circuits. The transition from 
fields to circuits is made by associating the relevant volumes, surfaces, and contours 
with electrodes, wires, and terminal pairs. Begun in an informal way in Chap. 1, this 
use of the integral laws will be formalized and examined as the following chapters 
unfold. Indeed, many of the empirical origins of the integral laws are in experiments 
involving electrodes, wires and the like. 

The remarkable fact is that the integral laws apply to any combination of 
volume and enclosing surface or surface and enclosing contour, whether associated 
with a circuit or not. This was implicit in our use of the integral laws for deducing 
field distributions in Chap. l. 

Even though the integral laws can be used to determine the fields in highly 
symmetric configurations, they are not generally applicable to the analysis of re­
alistic problems. Reasons for this lie beyond the geometric complexity of practical 
systems. Source distributions are not generally known, even when materials are 
idealized as insulators and “perfect” conductors. In actual materials, for example, 
those having finite conductivity, the self­consistent interplay of fields and sources, 
must be described. 

Because they apply to arbitrary volumes, surfaces, and contours, the integral 
laws also contain the differential laws that apply at each point in space. The dif­
ferential laws derived in this chapter provide a more broadly applicable basis for 
predicting fields. As might be expected, the point relations must involve informa­
tion about the shape of the fields in the neighborhood of the point. Thus it is that 
the integral laws are converted to point relations by introducing partial derivatives 
of the fields with respect to the spatial coordinates. 

The plan in this chapter is first to write each of the integral laws in terms of 
one type of integral. For example, in the case of Gauss’ law, the surface integral is 
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2 Maxwell’s Differential Laws In Free Space Chapter 2 

converted to one over the volume V enclosed by the surface. 

div(�oE)dv = �oE da (1) 
V S 

· 

Here div is some combination of spatial derivatives of �oE to be determined in the 
next section. With this mathematical theorem accepted for now, Gauss’ integral 
law, (1.3.1), can be written in terms of volume integrals. 

div(�oE)dv = ρdv (2) 
V V 

The desired differential form of Gauss’ law is obtained by equating the integrands 
in this expression. 

div(�oE) = ρ (3) 

Is it true that if two integrals are equal, their integrands are as well? In general, 
the answer is no! For example, if x2 is integrated from 0 to 1, the result is the same 
as for an integration of 2x/3 over the same interval. However, x2 is hardly equal to 
2x/3 for every value of x. 

It is because the volume V is arbitrary that we can equate the integrands in 
(1). For a one­dimensional integral, this is equivalent to having endpoints that are 
arbitrary. With the volume arbitrary (the endpoints arbitrary), the integrals can 
only be equal if the integrands are as well. 

The equality of the three­dimensional volume integration on the left in (1) 
and the two­dimensional surface integration on the right is analogous to the case of 
a one­dimensional integral being equal to the function evaluated at the integration 
endpoints. That is, suppose that the operator der operates on f(x) in such a way 
that 

x2 

der(f)dx = f(x2)− f(x1) (4) 
x1 

The integration on the left over the “volume” interval between x1 and x2 is reduced 
by this “theorem” to an evaluation on the “surface,” where x = x1 and x = x2. 

The procedure for determining the operator der in (4) is analogous to that 
used to deduce the divergence and curl operators in Secs. 2.1 and 2.4, respectively. 
The point x at which der is to be evaluated is taken midway in the integration 
interval, as in Fig. 2.0.1. Then the interval is taken as incremental (Δx = x2 − x1) 
and for small Δx, (4) becomes 

Fig. 2.0.1 General function of x defined between endpoints x1 and x2. 

[der(f)]Δx = f(x2)− f(x1) (5) 
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Fig. 2.1.1 Incremental volume element for determination of divergence op­
erator. 

It follows that 
Δ Δx� 

f
�
x + x

� − f
�
x − 

��
der = lim 2 2 (6)

Δx 0 Δx→ 

Thus, as we knew to begin with, der is the derivative of f with respect to x. 
Byproducts of the derivation of the divergence and curl operators in Secs. 2.1 

and 2.4 are the integral theorems of Gauss and Stokes, derived in Secs. 2.2 and 2.5, 
respectively. A theorem is a mathematical relation and must be distinguished from 
a physical law, which establishes a physical relation among physical variables. The 
differential laws, together with the operators and theorems that are the point of 
this chapter, are summarized in Sec. 2.8. 

2.1 THE DIVERGENCE OPERATOR 

If Gauss’ integral theorem, (1.3.1), is to be written with the surface integral replaced 
by a volume integral, then it is necessary that an operator be found such that 

divAdv = A da (1) 
V S 

· 

With the objective of finding this divergence operator, div, (1) is applied to an 
incremental volume ΔV . Because the volume is small, the volume integral on the left 
can be taken as the product of the integrand and the volume. Thus, the divergence 
of a vector A is defined in terms of the limit of a surface integral. 

1 
�

divA ≡ lim A da (2)
ΔV 0 ΔV S 

· 
→ 

Once evaluated, it is a function of r. That is, in the limit, the volume shrinks to 
zero in such a way that all points on the surface approach the point r. With this 
condition satisfied, the actual shape of the volume element is arbitrary. 

In Cartesian coordinates, a convenient incremental volume is a rectangular 
parallelepiped ΔxΔyΔz centered at (x, y, z), as shown in Fig. 2.1.1. With the limit 
where ΔxΔyΔz 0 in view, the right­hand side of (2) is approximated by → 
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� 
A da � ΔyΔz

�
Ax

�
x +

Δx
, y, z

� − Ax

�
x − 

Δx
, y, z

�� 

S 

· 
2 2 

+ ΔzΔx
�
Ay

�
x, y +

Δy
, z

� − Ay

�
x, y − 

Δy
, z

�� 
(3)

2	 2 

+ ΔxΔy
�
Az

�
x, y, z +

Δz � − Az

�
x, y, z − 

Δz ��
2	 2 

With the above expression used to evaluate (2), along with ΔV = ΔxΔyΔz, 

Δx Δx
� 

Ax

�
x + 2	 , y, z

� − Ax

�
x − , y, z

�� 

divA = lim 2 

Δx 0	 Δx→ 

Δy Δy
� 

Ay

�
x, y + , z

� − Ay

�
x, y − , z

�� 

+ lim 2	 2 (4)
Δy 0	 Δy→

Δz
� 

Az

�
x, y, z + Δz 

� − Az

�
x, y, z − 

�� 

+ lim 2	 2 

Δz 0	 Δz→ 

It follows that in Cartesian coordinates, the divergence operator is 

divA = 
∂Ax + 

∂Ay + 
∂Az 

∂x ∂y ∂z (5) 

This result suggests an alternative notation. The del operator is defined as 

∂ ∂ ∂ � ≡ ix 
∂x 

+ iy
∂y 

+ iz 
∂z (6) 

so that (5) can be written as 

divA = (7)� · A 

The div notation suggests that this combination of derivatives describes the outflow 
of A from the neighborhood of the point of evaluation. The definition (2) is inde­
pendent of the choice of a coordinate system. On the other hand, the del notation 
suggests the mechanics of the operation in Cartesian coordinates. We will have it 
both ways by using the del notation in writing equations in Cartesian coordinates, 
but using the name divergence in the text. 

Problems 2.1.4 and 2.1.6 lead to the divergence operator in cylindrical and 
spherical coordinates, respectively (summarized in Table I at the end of the text), 
and provide the opportunity to develop the connection between the general defini­
tion, (2), and specific representations. 
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Fig. 2.2.1 (a) Three mutually perpendicular slices define an incremental 
volume in the volume V shown in cross­section. (b) Adjacent volume elements 
with common surface. 

2.2 GAUSS’ INTEGRAL THEOREM 

The operator that is required for (2.1.1) to hold has been identified by considering 
an incremental volume element. But does the relation hold for volumes of finite 
size? 

The volume enclosed by the surface S can be subdivided into differential 
elements, as shown in Fig. 2.2.1. Each of the elements has a surface of its own with 
the i­th being enclosed by the surface Si. We now prove that the surface integral 
of the vector A over the surface S is equal to the sum of the surface integrals over 
each surface S � 

A da = 
� � � 

A da
� 

(1) 
S 

· 
i Si 

· 

Note first that the surface normals of two surfaces between adjacent volume el­
ements are oppositely directed, while the vector A has the same value for both 
surfaces. Thus, as illustrated in Fig. 2.2.1, the fluxes through surfaces separating 
two volume elements in the interior of S cancel. 

The only contributions to the summation in (1) which do not cancel are the 
fluxes through the surfaces which do not separate one volume element from another, 
i.e., those surfaces that lie on S. But because these surfaces together form S, (1) 
follows. Finally, with the right­hand side rewritten, (1) is 

� 
A da = 

���
Si 

A · da�
ΔVi (2) 

S 

· 
i 

ΔVi 

where ΔVi is the volume of the i­th element. Because these volume elements are 
differential, what is in brackets on the right in (2) can be represented using the 
definition of the divergence operator, (2.1.2). 

A da = (3) 
S 

· 
�

(� · A)iΔVi 

i 

Gauss’ integral theorem follows by replacing the summation over the differential 
volume elements by an integration over the volume. 
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Fig. 2.2.2 Volume between planes x = x1 and x = x2 having unit area in 
y − z planes. 

� 

S 

A · da = 
� 

V 

� · Adv 
(4) 

Example 2.2.1. One­Dimensional Theorem 

If the vector A is one­dimensional so that 

A = f(x)ix (5) 

what does Gauss’ integral theorem say about an integration over a volume V between 
the planes x = x1 and x = x2 and of unit cross­section in any y − z plane between 
these planes? The volume V and surface S are as shown in Fig. 2.2.2. Because 
A is x directed, the only contributions are from the right and left surfaces. These 
respectively have da = ixdydz and da = −ixdydz. Hence, substitution into (4) gives 
the familiar form, 

x2
� 

∂f 
f(x2)− f(x1) = dx (6)

∂x 
x1 

which is a reminder of the one­dimensional analogy discussed in the introduction. 
Gauss’ theorem extends into three dimensions the relationship that exists between 
the derivative and integral of a function. 

2.3 GAUSS’ LAW, MAGNETIC FLUX CONTINUITY, AND 
CHARGE CONSERVATION 

Of the five integral laws summarized in Table 1.8.1, three involve integrations over 
closed surfaces. By Gauss’ theorem, (2.2.4), each of the surface integrals is now 
expressed as a volume integral. Because the volume is arbitrary, the integrands 
must vanish, and so the differential laws are obtained. 

The differential form of Gauss’ law follows from (1.3.1) in that table. 

� · �oE = ρ (1) 

Magnetic flux continuity in differential form follows from (1.7.1). 
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� · µoH = 0 (2) 

In the integral charge conservation law, (1.5.2), there is a time derivative. 
Because the geometry of the integral we are considering is fixed, the time derivative 
can be taken inside the integral. That is, the spatial integration can be carried out 
after the time derivative has been taken. But because ρ is not only a function of t 
but of (x, y, z) as well, the time derivative is taken holding (x, y, z) constant. Thus, 
the differential charge conservation law is stated using a partial time derivative. 

∂ρ � · J + = 0 
∂t (3) 

These three differential laws are summarized in Table 2.8.1. 

2.4 THE CURL OPERATOR 

If the integral laws of Ampère and Faraday, (1.4.1) and (1.6.1), are to be written 
in terms of one type of integral, it is necessary to have an operator such that the 
contour integrals are converted to surface integrals. This operator is called the curl. 

curl A da = A ds (1) 
S 

· 
C 

· 

The operator is identified by making the surface an incremental one, Δa. At 
the particular point r where the operator is to be evaluated, pick a direction n and 
construct a plane normal to n through the point r. In this plane, choose a contour 
C around r that encloses the incremental area Δa. It follows from (1) that 

1 
�

(curl A)n = lim A ds (2) 
Δa→0 Δa C 

· 

The shape of the contour C is arbitrary except that all its points are assumed to 
approach the point r under study in the limit Δa 0. Such an arbitrary elemental →
surface with its unit normal n is illustrated in Fig. 2.4.1a. The definition of the curl 
operator given by (2) is independent of the coordinate system. 

To express (2) in Cartesian coordinates, consider the incremental surface 
shown in Fig. 2.4.1b. The center of Δa is at the location (x, y, z), where the oper­
ator is to be evaluated. The contour is composed of straight segments at y ± Δy/2 
and z ± Δz/2. To first order in Δy and Δz, it follows that the n = ix component 
of (2) is 

(curl A)x = lim 
1 

��
Az

�
x, y +

Δy
, z

� − Az

�
x, y − 

Δy
, z

��
Δz 

ΔyΔz 0 ΔyΔz 2 2→ 

− 

�
Ay

�
x, y, z +

Δ
2 
z � − Ay

�
x, y, z − 

Δ
2 
z ��

Δy 

� (3) 
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Fig. 2.4.1 (a) Incremental contour for evaluation of the component of the 
curl in the direction of n. (b) Incremental contour for evaluation of x compo­
nent of curl in Cartesian coordinates. 

Here the first two terms represent integrations along the vertical segments, first in 
the +z direction and then in the −z direction. Note that integration on this second 
leg results in a minus sign, because there, A is oppositely directed to ds. 

In the limit, (3) becomes 

(curl A)x = 
∂Az ∂Ay (4)
∂y 

− 
∂z 

The same procedure, applied to elemental areas having normals in the y and z 
directions, result in three “components” for the curl operator. 

� 
∂Az ∂Ay

� � 
∂Ax ∂Az 

� 

curl A = 
∂y 

− 
∂z 

ix +
∂z 

− 
∂x 

iy 

� 
∂Ay ∂Ax 

� (5) 
+ 

∂x 
− 

∂y 
iz 

In fact, we should be able to select the surface for evaluating (2) as having a unit 
normal n in any arbitrary direction. For (5) to be a vector, its dot product with n 
must give the same result as obtained for the direct evaluation of (2). This is shown 
to be true in Appendix 2. 

The result of cross­multiplying A by the del operator, defined by (2.1.6), is 
the curl operator. This is the reason for the alternate notation for the curl operator. 

curl A = (6)�× A 

Thus, in Cartesian coordinates 

�����
ix iy iz 

�����= ∂/∂x ∂/∂y ∂/∂z�× A
Ax Ay Az (7) 

The problems give the opportunity to derive expressions having similar forms in 
cylindrical and spherical coordinates. The results are summarized in Table I at the 
end of the text. 
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Fig. 2.5.1 Arbitrary surface enclosed by contour C is subdivided into incre­
mental elements, each enclosed by a contour having the same sense as C. 

2.5 STOKES’ INTEGRAL THEOREM 

In Sec. 2.4, curlA was identified as that vector function which had an integral over 
a surface S that could be reduced to an integral on A over the enclosing contour C. 
This was done by applying (2.4.1) to an incremental surface. But does this relation 
hold for S and C of finite size and arbitrary shape? 

The generalization to an arbitrary surface begins by subdividing S into dif­
ferential area elements, each enclosed by a contour C . As shown in Fig. 2.5.1, each 
differential contour coincides in direction with the positive sense of the original 
contour. We shall now prove that 

� 
A ds = 

� � 
A ds (1) 

C 

· 
i Ci 

· 

where the sum is over all contours bounding the surface elements into which the 
surface S has been subdivided. 

Because the segments are followed in opposite senses when evaluated for the 
adjacent area elements, line integrals along those segments of the contours which 
separate two adjacent surface elements add to zero in the sum of (1). Only those 
line integrals remain which pertain to the segments coinciding with the original 
contour. Hence, (1) is demonstrated. 

Next, (1) is written in the slightly different form. 
� 

A ds = 
� � 

1 
� 

A ds 
�
Δai (2) 

C 

· 
i 

Δai Ci 

· 

We can now appeal to the definition of the component of the curl in the direction 
of the normal to the surface element, (2.4.2), and replace the summation by an 
integration. 

A ds = (curl A)nda (3) 
C 

· 
S 

Another way of writing this expression is to take advantage of the vector character 
of the curl and the definition of a vector area element, da = nda: 

C 

A · ds = 
S 

�× A · da 
(4) 
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This is Stokes’ integral theorem. If a vector function can be written as the curl of 
a vector A, then the integral of that function over a surface S can be reduced to 
an integral of A on the enclosing contour C. 

` 2.6 DIFFERENTIAL LAWS OF AMPERE AND FARADAY 

With the help of Stokes’ theorem, Ampère’s integral law (1.4.1) can now be stated 
as � � 

d 
� 

S 

�× H · da = 
S 

J · da + 
dt S 

�oE · da (1) 

That is, by virtue of (2.5.4), the contour integral in (1.4.1) is replaced by a surface 
integral. The surface S is fixed in time, so the time derivative in (1) can be taken 
inside the integral. Because S is also arbitrary, the integrands in (1) must balance. 

∂�oE �× H = J + 
∂t (2) 

This is the differential form of Ampère’s law. In the last term, which is called the 
displacement current density, a partial time derivative is used to make it clear that 
the location (x, y, z) at which the expression is evaluated is held fixed as the time 
derivative is taken. 

In Sec. 1.5, it was seen that the integral forms of Ampère’s and Gauss’ laws 
combined to give the integral form of the charge conservation law. Thus, we should 
expect that the differential forms of these laws would also combine to give the 
differential charge conservation law. To see this, we need the identity � (�×A) = 0 · 
(Problem 2.4.5). Thus, the divergence of (2) gives 

∂
0 = E) (3)� · J + 

∂t
(� · �o 

Here the time and space derivatives have been interchanged in the last term. By 
Gauss’ differential law, (2.3.1), the time derivative is of the charge density, and 
so (3) becomes the differential form of charge conservation, (2.3.3). Note that we 
are taking a differential view of the interrelation between laws that parallels the 
integral developments of Sec. 1.5. 

Finally, Stokes’ theorem converts Faraday’s integral law (1.6.1) to integrations 
over S only. It follows that the differential form of Faraday’s law is 

∂µoH 
= 

(4)
�× E − 

∂t 

The differential forms of Maxwell’s equations in free space are summarized in Table 
2.8.1. 
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Fig. 2.7.1 Construction of field line. 

2.7 VISUALIZATION OF FIELDS AND THE DIVERGENCE AND CURL 

A three­dimensional vector field A(r) is specified by three components that are, 
individually, functions of position. It is difficult enough to plot a single scalar func­
tion in three dimensions; a plot of three is even more difficult and hence less useful 
for visualization purposes. Field lines are one way of picturing a field distribution. 

A field line through a particular point r is constructed in the following way: 
At the point r, the vector field has a particular direction. Proceed from the point 
r in the direction of the vector A(r) a differential distance dr. At the new point 
r + dr, the vector has a new direction A(r + dr). Proceed a differential distance 
dr� along this new (differentially different) direction to a new point, and so forth as 
shown in Fig. 2.7.1. By this process, a field line is traced out. The tangent to the 
field line at any one of its points gives the direction of the vector field A(r) at that 
point. 

The magnitude of A(r) can also be indicated in a somewhat rough way by 
means of the field lines. The convention is used that the number of field lines drawn 
through an area element perpendicular to the field line at a point r is proportional 
to the magnitude of A(r) at that point. The field might be represented in three 
dimensions by wires. 

If it has no divergence, a field is said to be solenoidal. If it has no curl, it is 
irrotational. It is especially important to conceptualize solenoidal and irrotational 
fields. We will discuss the nature of irrotational fields in the following examples, 
but become especially in tune with their distributions in Chap. 4. Consider now 
the “wire­model” picture of the solenoidal field. 

Single out a surface with sides formed of a continuum of adjacent field lines, 
a “hose” of lines as shown in Fig. 2.7.2, with endfaces spanning across the ends of 
the hose. Then, because a solenoidal field can have no net flux out of this tube, 
the number of field lines entering the hose through one endface must be equal to 
the number of lines leaving the hose through the other end. Because the hose is 
picked arbitrarily, we conclude that a solenoidal field is represented by lines that 
are continuous; they do not appear or disappear within the region where they are 
solenoidal. 

The following examples begin to develop an appreciation for the attributes of 
the field lines associated with the divergence and curl. 

Example 2.7.1.	 Fields with Divergence but No Curl
 
(Irrotational but Not Solenoidal)
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Fig. 2.7.2 Solenoidal field lines form hoses within which the lines neither

begin nor end.


Fig. 2.7.3 Spherically symmetric field that is irrotational. Volume 
elements Va and Vc are used with Gauss’ theorem to show why field 
is solenoidal outside the sphere but has a divergence inside. Surface 
elements Cb and Cd are used with Stokes’ theorem to show why fields 
are irrotational everywhere. 

The spherical region r < R supports a charge density ρ = ρor/R. The exterior region 
is free of charge. In Example 1.3.1, the radially symmetric electric field intensity is 
found from the integral laws to be 

2 

E = ir 
ρo 

� 
r
R 
3 
; r < R 

(1)
4�o

R
2 ; r > R 

r

In spherical coordinates, the divergence operator is (from Table I) 

1 ∂ 2 1 ∂ 1 ∂Eφ � · E = 
r ∂r

(r Er) + 
r sin θ ∂θ

(sin θEθ) + 
r sin θ ∂φ 

(2)
2 

Thus, evaluation of Gauss’ differential law, (2.3.1), gives 

� ρor ; r < R 
�o� · E = 

0; 
R 

r > R 
(3) 

which of course agrees with the charge distribution used in the original derivation. 
This exercise serves to emphasize that the differential laws apply point by point 
throughout the region. 

The field lines can be sketched as in Fig. 2.7.3. The magnitude of the charge 
density is represented by the density of + (or −) symbols. 
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Where in this plot does the field have a divergence? Because the charge density 
has already been pictured, we already know the answer to this question. The field 
has divergence only where there is a charge density. Thus, even though the field lines 
are thinning out with increasing radius in the exterior region, at any given point in 
this region the field has no divergence. The situation in this region is typified by 
the flux of E through the “hose” defined by the volume Va. The field does indeed 
decrease with radius, but the cross­sectional area of the hose increases so as to 
exactly compensate and maintain the net flux constant. 

In the interior region, a volume element having the shape of a tube with sides 
parallel to the radial field can also be considered, volume Vc. That the field is not 
solenoidal is evident from the fact that its intensity is least over the cross­section of 
the tube having the least area. That there must be a net outward flux is evidence 
of the net charge enclosed. Field lines originate inside the volume on the enclosed 
charges. 

Are the field lines in Fig. 2.7.3 irrotational? In spherical coordinates, the curl 
is 

1 
� 

∂ ∂Eθ 

� 
�× E =ir 

r sin θ	 ∂θ
(Eφ sin θ)− 

∂φ � 
1 ∂Er 1 ∂ 

� 
+ iθ 

r sin θ ∂φ 
− 

r ∂r 
(rEφ)	 (4) 

� 
1 ∂ 1 ∂Er 

� 
+ iφ (rEθ)−

r ∂r r ∂θ 

and it follows from a substitution of (1) that there is no curl, either inside or outside. 
This result is corroborated by evaluating the circulation of E for contours enclosing 
areas Δa having normals in any one of the coordinate directions. [Remember the 
definition of the curl, (2.4.2).] Examples are the contours enclosing the surfaces Sb 

and Sd in Fig. 2.7.3. Contributions to the C�� and C��� segments vanish because these 
are perpendicular to E, while (because E is independent of φ and θ) the contribution 
from one C� segment cancels that from the other. 

Example 2.7.2.	 Fields with Curl but No Divergence (Solenoidal but 
Not Irrotational) 

A wire having radius R carries an axial current density that increases linearly with 
radius. Ampère’s integral law was used in Example 1.4.1 to show that the associated 
magnetic field intensity is 

2Jo 
� 

r /R; r < R 
H = iφ 

3 R2/r; r > R 
(5) 

Where does this field have curl? The answer follows from Ampère’s law, (2.6.2), 
with the displacement current neglected. The curl is the current density, and hence 
restricted to the region r < R, where it tends to be concentrated at the periphery. 
Evaluation of the curl in cylindrical coordinates gives a result consistent with this 
expectation. 

= ir
� 1 ∂Hz ∂Hφ 

� 
+ iφ

� ∂Hr ∂Hz 
�

�× H 
r ∂φ 

− 
∂z ∂z 

− 
∂r 

+ iz
� 1 ∂ 

(rHφ)− 
1 ∂Hr 

�	 
(6)

r ∂r r ∂φ � 
Jor/Riz; r < R 

= 
0; r > R 
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Fig. 2.7.4 Cylindrically symmetric field that is solenoidal. Volume 
elements Va and Vc are used with Gauss’ theorem to show why the field 
has no divergence anywhere. Surface elements Sb and Sd are used with 
Stokes’ theorem to show that the field is irrotational outside the cylinder 
but does have a curl inside. 

The current density and magnetic field intensity are sketched in Fig. 2.7.4. In 
accordance with the “wire” representation, the spacing of the field lines indicates 
their intensity. A similar convention applies to the current density. When seen “end­
on,” a current density headed out of the paper is indicated by �, while ⊗ indicates 
the vector is headed into the paper. The suggestion is of the vector pictured as an 
arrow, with the symbols representing its tip and feathers, respectively. 

Can the azimuthally directed field vary with r (a direction perpendicular to 
φ) and still have no curl in the outer region? The integration of H around the 
contour Cb in Fig. 2.7.4 shows why it can. The contours Cb

� are arranged to make ds 
perpendicular to H, so that H ds = 0 there. Integrations on the segments Cb

��� and· 
Cb
�� cancel because the difference in the length of the segments just compensates the 

decrease in the field with radius. 
In the interior region, a similar integration surely gives a finite result. On the 

contour Cd, the field is larger on the outside leg where the contour length is larger, 
so it is clear that the curl must be finite. Of course, this field shape simply reflects 
the presence of the current density. 

The field is solenoidal everywhere. This can be checked by taking the diver­
gence of (5) in each of the regions. In cylindrical coordinates, Table I gives 

1 ∂ 1 ∂Hφ ∂Hz � · H = 
r ∂r 

(rHr) + 
r ∂φ 

+ 
∂z 

(7) 

The flux tubes defined as incremental volumes Va and Vc in Fig. 2.7.4, in the 
exterior and interior regions, respectively, clearly sustain no net flux through their 
surfaces. That the field lines circulate in tubes without originating or disappearing 
in certain regions is the hallmark of the solenoidal field. 

It is important to distinguish between fields “in the large” (in terms of the 
integral laws written for volumes, surfaces, and contours of finite size) and “in the 
small” (in terms of differential laws). To this end, consider some questions that 
might be raised. 
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Fig. 2.7.5 Volume element with sides tangential to field lines is used to 
interpret divergence from field coordinate system. 

Is it possible for a field that has no divergence at each point on a closed surface 
S to have a net flux through that surface? Example 2.7.1 illustrates that the answer 
is yes. At each point on a surface S that encloses the charged interior region, the 
divergence of �oE is zero. Yet integration of �oE da over such a surface gives a · 
finite value, indeed, the net charge enclosed. 

The divergence can be viewed as a weighted derivative along the direction of 
the field, or along the field “hose.” With δa defined as the cross­sectional area of 
such a tube having sides parallel to the field �oE, as shown in Fig. 2.7.5, it follows 
from (2.1.2) that the divergence is 

1 
� 

A δa ξ+Δξ − A δa ξ 

� 

� · A = lim 
0 δa 

· | 
δξ 

· |
(8)

δa 
δξ
→

0→ 

The minus sign in the second term results because da and δa are negatives on the 
left surface. Written in this form, the divergence is the derivative of eoE δa with · 
respect to a coordinate in the direction of E. Examples of such tubes are volumes 
Va and Vc in Fig. 2.7.3. That the divergence is zero in the exterior region of that 
example is equivalent to having a radial derivative of the displacement flux �oE δa · 
that is zero. 

A further observation returns to the distinction between fields as they are 
described “in the large” by means of the integral laws and as they are represented 
“in the small” by the differential laws. Is it possible for a field to have a circulation 
on some contour C and yet be irrotational at each point on C? Example 2.7.2 
shows that the answer is again yes. The exterior magnetic field encircles the center 
current­carrying region. Therefore, it has a circulation on any contour that encloses 
the center region. Yet at all exterior points, the curl of H is zero. 

The cross­product of two vectors is perpendicular to both vectors. Is the curl 
of a vector necessarily perpendicular to that vector? Example 2.7.2 would seem to 
say yes. There the current density is the curl of H and is in the z direction, while 
H is in the azimuthal direction. However, this time the answer is no. By definition 
we can add to H any irrotational field without altering the curl. If that irrotational 
field has a component in the direction of the curl, then the curl of the combined 
fields is not perpendicular to the combined fields. 
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Fig. 2.7.6 Three surfaces, having orthogonal normal vectors, have geometry 
determined by the field hose. Thus, the curl of the field is interpreted in terms 
of a field coordinate system. 

Illustration. A Vector Field Not Perpendicular to Its Curl 

In the interior of the conductor shown in Fig. 2.7.4, the magnetic field intensity 
and its curl are 

Jo r 
2 Jor 

H =
3 R 

iφ; �× H = J = 
R 

iz (9) 

Suppose that we add to this H a field that is uniform and z directed. 

Jor 
2 

H = iφ + Hoiz (10)
3R 

Then the new field has a component in the z direction and yet has the same z­
directed curl as given by (9). Note that the new field lines are helixes having in­
creasingly tighter pitches as the radius is increased. 

The curl can also be viewed in terms of a field hose. The definition, (2.4.2), is 
applied to any one of the three contours and associated surfaces shown in Fig. 2.7.6. 
Contours Cξ and Cη are perpendicular and across the hose while (Cζ) is around 
the hose. The former are illustrated by contours Cb and Cd in Fig. 2.7.4. 

The component of the curl in the ξ direction is the limit in which the area 
2δrδl goes to zero of the circulation around the contour Cξ divided by that area. 
The contributions to this line integration from the segments that are perpendicular 
to the ζ axis are by definition zero. Thus, for this component of the curl, transverse 
to the field, (2.4.2) becomes 

H δη − δl H δη 

(�× H)ξ = lim 
0 δl 

1
� δl · |η+ 2 

δη 

· |η− 2 

� 

(11)
δl 
δξ
→

0→ 

The transverse components of the curl can be regarded as derivatives with respect 
to transverse directions of the vector field weighted by incremental line elements δl. 
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At its center, the surface enclosed by the contour Cζ has its normal in the 
direction of the field. It would seem that the curl in the ζ direction would therefore 
have to be zero. However, the previous discussion and illustration give a warning 
that the contour integral around Cζ is not necessarily zero. 

Even though, to zero order in the diameter of the hose, the field is perpendic­
ular to the contour, to higher order it can have components parallel to the contour. 
This means that if the contour Cζ were actually perpendicular to the field at each 
point, it would not close on itself. An equivalent contour, shown by the inset to 
Fig. 2.7.6, begins and terminates on the central field line. With the exception of 
the segment in the ζ direction used to close this contour, each segment is now by 
definition perpendicular to ζ. The contribution to the circulation around the con­
tour now comes from the ζ­directed segment. Remember that the length of this 
segment is determined by the shape of the field lines. Thus, it is proportional to 
(δr)2, and therefore so also is the circulation. The limit defined by (2.1.2) can result 
in a finite value in the ζ direction. The “cross­product” of an operator with a vector 
has properties that are not identical with the cross­product of two vectors. 

2.8 SUMMARY OF MAXWELL’S DIFFERENTIAL LAWS AND INTEGRAL 
THEOREMS 

In this chapter, the divergence and curl operators have been introduced. A third, 
the gradient, is naturally defined where it is put to use, in Chap. 4. A summary of 
these operators in the three standard coordinate systems is given in Table I at the 
end of the text. The problems for Secs. 2.1 and 2.4 outline the derivations of the 
gradient and curl operators in cylindrical and spherical coordinates. 

The integral theorems of Gauss and Stokes are two of three theorems sum­
marized in Table II at the end of the text. Gauss’ theorem states how the volume 
integral of any scalar that can be represented as the divergence of a vector can be 
reduced to an integration of the normal component of that vector over the surface 
enclosing that volume. A volume integration is reduced to a surface integration. 
Similarly, Stokes’ theorem reduces the surface integration of any vector that can be 
represented as the curl of another vector to a contour integration of that second 
vector. A surface integral is reduced to a contour integral. 

These generally useful theorems are the basis for moving from the integral 
law point of view of Chap. 1 to a differential point of view. This transition from a 
global to a point­wise view of fields is summarized by the shift from the integral 
laws of Table 1.8.1 to the differential laws of Table 2.8.1. 

The aspects of a vector field encapsulated in the divergence and curl can 
always be recalled by returning to the fundamental definitions, (2.1.2) and (2.4.2), 
respectively. The divergence is indeed defined to represent the net outward flux 
through a closed surface. But keep in mind that the surface is incremental, and 
that the divergence describes only the neighborhood of a given point. Similarly, the 
curl represents the circulation around an incremental contour, not around one that 
is of finite size. 

What should be committed to memory from this chapter? The theorems of 
Gauss and Stokes are the key to relating the integral and differential forms of 
Maxwell’s equations. Thus, with these theorems and the integral laws in mind, 
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MAXWELL’S 

TABLE 2.8.1 

DIFFERENTIAL LAWS IN FREE SPACE 

NAME DIFFERENTIAL LAW EQ. NUMBER 

Gauss’ Law 

Ampère’s Law 

Faraday’s Law 

Magnetic Flux 
Continuity 

Charge 
Conservation 

� · �oE = ρ 

� × H = J + (∂�oE)/(∂t) 

� × E = −(∂µoH)/(∂t) 

� · µoH = 0 

� · J + ∂ρ 
∂t 

= 0 

2.3.1 

2.6.2 

2.6.4 

2.3.2 

2.3.3 

it is easy to remember the differential laws. Applied to differential volumes and 
surfaces, the theorems also provide the definitions (and hence the significances) of 
the divergence and curl operators independent of the coordinate system. Also, the 
evaluation in Cartesian coordinates of these operators should be remembered. 
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P R O B L E M S 

2.1 The Divergence Operator 

2.1.1∗	 In Cartesian coordinates, A = (Ao/d2)(x2ix + y2iy + z2iz), where Ao and 
d are constants. Show that divA = 2Ao(x + y + z)/d2 . 

2.1.2∗	 In Cartesian coordinates, three vector functions are 

A = (Ao/d)(yix + xiy)	 (a) 

A = (Ao/d)(xix − yiy)	 (b) 

A = Aoe
−ky(cos kxix − sin kxiy)	 (c) 

where Ao, k, and d are constants. 

(a) Show that the divergence of each is zero. 
(b) Devise three vector functions that have a finite divergence and eval­

uate their divergences. 

2.1.3	 In cylindrical coordinates, the divergence operator is given in Table I at the 
end of the text. Evaluate the divergence of the following vector functions. 

A = (Ao/d)(r cos 2φir − r sin 2φiφ)	 (a) 

A = Ao(cos φir − sin φiφ)	 (b) 
2A = (Aor /d2)ir	 (c) 

2.1.4∗	 In cylindrical coordinates, unit vectors are as defined in Fig. P2.1.4a. An 
incremental volume element having sides (Δr, rΔφ, Δz) is as shown in 
Fig. P2.1.4b. Determine the divergence operator by evaluating (2), using 
steps analogous to those leading from (3) to (5). Show that the result is as 
given in Table I at the end of the text. (Hint: In carrying out the integra­
tions over the surface elements in Fig. P2.1.4b having normals ±ir, note 
that not only is Ar evaluated at r = r ± 12Δr, but so also is r. For this 
reason, it is most convenient to group Ar and r together in manipulating 
the contributions from this surface.) 

2.1.5	 The divergence operator is given in spherical coordinates in Table I at 
the end of the text. Use that operator to evaluate the divergence of the 
following vector functions. 

A = (Ao/d3)r 3ir	 (a) 

A = (Ao/d2)r 2iφ	 (b) 

http:P2.1.4a
http:P2.1.4b
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Fig. P2.1.4 

A = Ao(cos θir − sin θiθ)	 (c) 

2.1.6∗	 In spherical coordinates, an incremental volume element has sides Δr, rΔθ, 
r sin θΔφ. Using steps analogous to those leading from (3) to (5), determine 
the divergence operator by evaluating (2.1.2). Show that the result is as 
given in Table I at the end of the text. 

2.2 Gauss’ Integral Theorem 

2.2.1∗	 Given a well­behaved vector function A, Gauss’ theorem shows that the 
same result will be obtained by integrating its divergence over a volume V 
or by integrating its normal component over the surface S that encloses that 
volume. The following steps exemplify this fact. Consider the particular 
vector function A = (Ao/d)(xix+yiy) and a cubical volume having surfaces 
in the planes x = ±d, y = ±d, and z = ±d. 

(a) Show that the area elements on these surfaces are respectively da = 
±ixdydz, ±iydxdz, and ±izdydx. 

(b) Show that evaluation of the left­hand side of (4) gives 
� 

Ao 

� � d � d � d � d 

S 

A · da = 
d −d −d 

(d)dydz − 
−d −d 

(−d)dydz 

� d � d � d � d �
+ (d)dxdz − (−d)dxdz 

−d −d −d −d 

= 16 Aod
2 

(c) Evaluate the divergence of A and the right­hand side of (4) and show 
that it gives the same result. 

2.2.2	 With A = (Ao/d3)(xy2ix + x2yiy), carry out the steps in Prob. 2.2.1. 
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2.3 Differential	 Forms of Gauss’ Law, Magnetic Flux 
Continuity, and Charge Conservation 

2.3.1∗	 For a line charge along the z axis of Prob. 1.3.1, E was written in Cartesian 
coordinates as (a). 

(a) Use Gauss’ differential law in Cartesian coordinates to show that the 
charge density is indeed zero everywhere except along the z axis. 

(b) Obtain the same result by evaluating Gauss’ law using	 E as given 
by (1.3.13) and the divergence operator from Table I in cylindrical 
coordinates. 

2.3.2∗	 Show that at each point r < a, E and ρ as given respectively by (b) and 
(a) of Prob. 1.3.3 are consistent with Gauss’ differential law. 

2.3.3∗	 For the flux linkage λf to be independent of S, (2) must hold. Return to 
Prob. 1.6.6 and check to see that this condition was indeed satisfied by the 
magnetic flux density. 

2.3.4∗	 Using H expressed in cylindrical coordinates by (1.4.10), show that the 
magnetic flux density of a line current is indeed solenoidal (has no diver­
gence) everywhere except at r = 0. 

2.3.5	 Use the differential law of magnetic flux continuity, (2), to answer Prob. 
1.7.2. 

2.3.6∗	 In Prob. 1.3.5, E and ρ are found for a one­dimensional configuration using 
the integral charge conservation law. Show that the differential form of this 
law is satisfied at each position − 1s < z < 1s.2 2 

2.3.7	 For J and ρ as found in Prob. 1.5.1, show that the differential form of 
charge conservation, (3), is satisfied. 

2.4 The Curl Operator 

2.4.1∗	 Show that the curls of the three vector functions given in Prob. 2.1.2 are 
zero. Devise three such functions that have finite curls (are rotational) and 
give their curls. 

2.4.2	 Vector functions are given in cylindrical coordinates in Prob. 2.1.3. Using 
the curl operator as given in cylindrical coordinates by Table I at the end 
of the text, show that all of these functions are irrotational. Devise three 
functions that are rotational and give their curls. 
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Fig. P2.4.3 

2.4.3∗	 In cylindrical coordinates, define incremental surface elements having nor­
mals in the r, φ and z directions, respectively, as shown in Fig. P2.4.3. 
Determine the r, φ, and z components of the curl operator. Show that the 
result is as given in Table I at the end of the text. (Hint: In integrating in the 
±φ directions on the outer and inner incremental contours of Fig. P2.4.3c, 
note that not only is Aφ evaluated at r = r± 2

1Δr, respectively, but so also 
is r. It is therefore convenient to treat Aφr as a single function.) 

2.4.4	 In spherical coordinates, incremental surface elements have normals in the 
r, θ, and φ directions, respectively, as described in Appendix 1. Determine 
the r, θ, and φ components of the curl operator and compare to the result 
given in Table I at the end of the text. 

2.4.5	 The following is an identity. 

� · (�× A) = 0	 (a) 

This can be shown in two ways. 

(a) Apply Stokes’ theorem to an arbitrary but closed surface S (one hav­
ing no edge, so C = 0) and then Gauss’ theorem to argue the identity. 

(b) Write out the the divergence of the curl in Cartesian coordinates and 
show that it is indeed identically zero. 

2.5 Stokes’ Integral Theorem 

2.5.1∗	 To exemplify Stokes’ integral theorem, consider the evaluation of (4) for 
the vector function A = (Ao/d2)x2iy and a rectangular contour consisting 
of the segments at x = g + Δ, y = h, x = g, and y = 0. The direction of 
the contour is such that da = izdxdy. 

http:P2.4.3c
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(a) Show that the left­hand side of (4) is hAo[(g + Δ)2 − g2]d2 . 
(b) Verify (4) by obtaining the same result integrating curlA over the 

area enclosed by C. 

2.5.2	 For the vector function A = (Ao/d)(−ixy + iyx), evaluate the contour and 
surface integrals of (4) on C and S as prescribed in Prob. 2.5.1 and show 
that they are equal. 

2.6 Differential Laws of Ampère and Faraday 

2.6.1∗	 In Prob. 1.4.2, H is given in Cartesian coordinates by (c). With ∂�oE/∂t = 
0, show that Ampère’s differential law is satisfied at each point r < a. 

2.6.2∗	 For the H and J given in Prob. 1.4.1, show that Ampère’s differential law, 
(2), is satisfied with ∂�oE/∂t = 0. 

2.7 Visualization	 of Fields and the Divergence 
and Curl 

2.7.1	 Using the conventions exemplified in Fig. 2.7.3, 

(a) Sketch the distributions of charge density ρ and electric field intensity 
E for Prob. 1.3.5 and with Eo = 0 and σo = 0. 

(b) Verify that E is irrotational. 
(c) From observation of the field sketch, why would you suspect that E 

is indeed irrotational? 

2.7.2	 Using Fig. 2.7.4 as a model, sketch J and H 

(a) For Prob. 1.4.1. 
(b) For Prob. 1.4.4. 
(c) Verify that in each case, H is solenoidal. 
(d) From observation of these field sketches, why would you suspect that 

H is indeed solenoidal? 

2.7.3	 Three two­dimensional vector fields are shown in Fig. P2.7.3. 

(a) Which of these is irrotational? 
(b) Which are solenoidal? 

2.7.4	 For the fields of Prob. 1.6.7, sketch E just above and just below the plane 
y = 0 and σs in the surface y = 0. Assume that E1 = E2 = σo/�o > 0 
and adhere to the convention that the field intensity is represented by the 
spacing of the field lines. 
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Fig. P2.7.3 

2.7.5	 For the fields of Prob. 1.7.3, sketch H just above and just below the plane 
y = 0 and K in the surface y = 0. Assume that H1 = H2 = Ko > 0 and 
represent the intensity of H by the spacing of the field lines. 

2.7.6	 Field lines in the vicinity of the surface y = 0 are shown in Fig. P2.7.6. 

(a) If the field lines represent E, there is a surface charge density σs on 
the surface. Is σs positive or negative? 

(b) If the field lines represent H, there is a surface current density K = 
Kziz on the surface. Is Kz positive or negative? 

Fig. P2.7.6 




