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4
 

ELECTROQUASISTATIC 

FIELDS: THE 
SUPERPOSITION INTEGRAL 
POINT OF VIEW 

4.0 INTRODUCTION 

The reason for taking up electroquasistatic fields first is the relative ease with which 
such a vector field can be represented. The EQS form of Faraday’s law requires that 
the electric field intensity E be irrotational. 

�× E = 0 (1) 

The electric field intensity is related to the charge density ρ by Gauss’ law. 

� · �oE = ρ (2) 

Thus, the source of an electroquasistatic field is a scalar, the charge density ρ. 
In free space, the source of a magnetoquasistatic field is a vector, the current density. 
Scalar sources, are simpler than vector sources and this is why electroquasistatic 
fields are taken up first. 

Most of this chapter is concerned with finding the distribution of E predicted 
by these laws, given the distribution of ρ. But before the chapter ends, we will be 
finding fields in limited regions bounded by conductors. In these more practical 
situations, the distribution of charge on the boundary surfaces is not known until 
after the fields have been determined. Thus, this chapter sets the stage for the 
solving of boundary value problems in Chap. 5. 

We start by establishing the electric potential as a scalar function that uniquely 
represents an irrotational electric field intensity. Byproducts of the derivation are 
the gradient operator and gradient theorem. 

The scalar form of Poisson’s equation then results from combining (1) and 
(2). This equation will be shown to be linear. It follows that the field due to a 
superposition of charges is the superposition of the fields associated with the in­
dividual charge components. The resulting superposition integral specifies how the 
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potential, and hence the electric field intensity, can be determined from the given 
charge distribution. Thus, by the end of Sec. 4.5, a general approach to finding 
solutions to (1) and (2) is achieved. 

The art of arranging the charge so that, in a restricted region, the resulting 
fields satisfy boundary conditions, is illustrated in Secs. 4.6 and 4.7. Finally, more 
general techniques for using the superposition integral to solve boundary value 
problems are illustrated in Sec. 4.8. 

For those having a background in circuit theory, it is helpful to recognize that 
the approaches used in this and the next chapter are familiar. The solution of (1) 
and (2) in three dimensions is like the solution of circuit equations, except that for 
the latter, there is only the one dimension of time. In the field problem, the driving 
function is the charge density. 

One approach to finding a circuit response is based on first finding the response 
to an impulse. Then the response to an arbitrary drive is determined by superim­
posing responses to impulses, the superposition of which represents the drive. This 
response takes the form of a superposition integral, the convolution integral. The 
impulse response of Poisson’s equation that is our starting point is the field of a 
point charge. Thus, the theme of this chapter is a convolution approach to solving 
(1) and (2). 

In the boundary value approach of the next chapter, concepts familiar from 
circuit theory are again exploited. There, solutions will be divided into a particular 
part, caused by the drive, and a homogeneous part, required to satisfy boundary 
conditions. It will be found that the superposition integral is one way of finding the 
particular solution. 

4.1 IRROTATIONAL	 FIELD REPRESENTED BY SCALAR POTENTIAL: 
THE GRADIENT OPERATOR AND GRADIENT INTEGRAL THEOREM 

The integral of an irrotational electric field from some reference point rref to the 
position r is independent of the integration path. This follows from an integration 
of (1) over the surface S spanning the contour defined by alternative paths I and 
II, shown in Fig. 4.1.1. Stokes’ theorem, (2.5.4), gives 

S 

�× E · da = 
C 

E · ds = 0	 (1) 

Stokes’ theorem employs a contour running around the surface in a single 
direction, whereas the line integrals of the electric field from r to rref , from point 
a to point b, run along the contour in opposite directions. Taking the directions of 
the path increments into account, (1) is equivalent to 

� � b � b 

C 

E · ds = 
apath I 

E · ds − 
apath II 

E · ds� = 0 (2) 

and thus, for an irrotational field, the EMF between two points is independent of 
path. � b � b 

E ds = E ds�	 (3)· ·
apath I apath II 
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Fig. 4.1.1 Paths I and II between positions r and rref are spanned by surface 
S. 

A field that assigns a unique value of the line integral between two points 
independent of path of integration is said to be conservative. 

With the understanding that the reference point is kept fixed, the integral is 
a scalar function of the integration endpoint r. We use the symbol Φ(r) to define 
this scalar function 

rref 

Φ(r)− Φ(rref ) = 
r 

E · ds (4) 

and call Φ(r) the electric potential of the point r with respect to the reference 
point. With the endpoints consisting of “nodes” where wires could be attached, the 
potential difference of (1) would be the voltage at r relative to that at the reference. 
Typically, the latter would be the “ground” potential. Thus, for an irrotational 
field, the EMF defined in Sec. 1.6 becomes the voltage at the point a relative to 
point b. 

We shall show that specification of the scalar function Φ(r) contains the same 
information as specification of the field E(r). This is a remarkable fact because a 
vector function of r requires, in general, the specification of three scalar functions 
of r, say the three Cartesian components of the vector function. On the other hand, 
specification of Φ(r) requires one scalar function of r. 

Note that the expression Φ(r) = constant represents a surface in three dimen­
sions. A familiar example of such an expression describes a spherical surface having 
radius R. 

x 2 + y 2 + z 2 = R2 (5) 

Surfaces of constant potential are called equipotentials. 
Shown in Fig. 4.1.2 are the cross­sections of two equipotential surfaces, one 

passing through the point r, the other through the point r + Δr. With Δr taken 
as a differential vector, the potential at the point r + Δr differs by the differential 
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Fig. 4.1.2 Two equipotential surfaces shown cut by a plane containing their 
normal, n. 

amount ΔΦ from that at r. The two equipotential surfaces cannot intersect. Indeed, 
if they intersected, both points r and r+ Δr would have the same potential, which 
is contrary to our assumption. 

Illustrated in Fig. 4.1.2 is the shortest distance Δn from the point r to the 
equipotential at r + Δr. Because of the differential geometry assumed, the length 
element Δn is perpendicular to both equipotential surfaces. From Fig. 4.1.2, Δn = 
cos θΔr, and we have 

ΔΦ ΔΦ
ΔΦ = cos θΔr = n Δr (6)

Δn Δn 
· 

The vector Δr in (6) is of arbitrary direction. It is also of arbitrary differential 
length. Indeed, if we double the distance Δn, we double ΔΦ and Δr; ΔΦ/Δn re­
mains unchanged and thus (6) holds for any Δr (of differential length). We conclude 
that (6) assigns to every differential vector length element Δr, originating from r, 
a scalar of magnitude proportional to the magnitude of Δr and to the cosine of the 
angle between Δr and the unit vector n. This assignment of a scalar to a vector is 
representable as the scalar product of the vector length element Δr with a vector 
of magnitude ΔΦ/Δn and direction n. That is, (6) is equivalent to 

ΔΦ = grad Φ Δr (7)· 
where the gradient of the potential is defined as 

ΔΦ 
grad Φ ≡ n (8)

Δn 

Because it is independent of any particular coordinate system, (8) provides 
the best way to conceptualize the gradient operator. The same equation provides 
the algorithm for expressing grad Φ in any particular coordinate system. Consider, 
as an example, Cartesian coordinates. Thus, 

r = xix + yiy + ziz; Δr = Δxix + Δyiy + Δziz (9) 

and an alternative to (6) for expressing the differential change in Φ is 

ΔΦ = Φ(x + Δx, y + Δy, z + Δz)− Φ(x, y, z) 
∂Φ ∂Φ ∂Φ (10) 

= Δx + Δy + Δz. 
∂x ∂y ∂z 
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In view of (9), this expression is 
� 

∂Φ ∂Φ ∂Φ
�

ΔΦ = ix 
∂x 

+ iy 
∂y 

+ iz 
∂z 

Δr = �Φ Δr (11)· · 

and it follows that in Cartesian coordinates the gradient operation, as defined by 
(7), is 

∂Φ ∂Φ ∂Φ 
grad Φ ≡ �Φ = 

∂x 
ix + 

∂y 
iy + 

∂z 
iz (12) 

Here, the del operator defined by (2.1.6) is introduced as an alternative way of 
writing the gradient operator. 

Problems at the end of this chapter serve to illustrate how the gradient is 
similarly determined in other coordinates, with results summarized in Table I at 
the end of the text. 

We are now ready to show that the potential function Φ(r) defines E(r) 
uniquely. According to (4), the potential changes from the point r to the point 
r + Δr by 

ΔΦ = Φ(r + Δr)− Φ(r) 
r+Δr r 

= − E ds + E · ds 
(13)

·
rref rref 

r+Δr 

= E ds− 
r 

· 

The first two integrals in (13) follow from the definition of Φ, (4). By recognizing 
that ds is Δr and that Δr is of differential length, so that E(r) can be considered 
constant over the length of the vector Δr, it can be seen that the last integral in 
(13) becomes 

ΔΦ = −E Δr (14)· 
The vector element Δr is arbitrary. Therefore, comparison of (14) to (7) shows that 

E = (15)−�Φ 

Given the potential function Φ(r), the associated electric field intensity is the 
negative gradient of Φ. 

Note that we also obtained a useful integral theorem, for if (15) is substituted 
into (4), it follows that 

r 

�Φ ds = Φ(r)− Φ(rref )·
rref (16) 

That is, the line integration of the gradient of Φ is simply the difference in potential 
between the endpoints. Of course, Φ can be any scalar function. 

In retrospect, we can observe that the representation of E by (15) guarantees 
that it is irrotational, for the vector identity holds 

�× (�Φ) = 0 (17) 
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The curl of the gradient of a scalar potential Φ vanishes. Therefore, given an electric 
field represented by a potential in accordance with (15), (4.0.1) is automatically 
satisfied. 

Because the preceding discussion shows that the potential Φ contains full 
information about the field E, the replacement of E by grad (Φ) constitutes a gen­
eral solution, or integral, of (4.0.1). Integration of a first­order ordinary differential 
equation leads to one arbitrary integration constant. Integration of the first­order 
vector differential equation curl E = 0 yields a scalar function of integration, Φ(r). 

Thus far, we have not made any specific assignment for the reference point rref . 
Provided that the potential behaves properly at infinity, it is often convenient to let 
the reference point be at infinity. There are some exceptional cases for which such 
a choice is not possible. All such cases involve problems with infinite amounts of 
charge. One such example is the field set up by a charge distribution that extends to 
infinity in the ±z directions, as in the second Illustration in Sec. 1.3. The field decays 
like 1/r with radial distance r from the charged region. Thus, the line integral of E, 
(4), from a finite distance out to infinity involves the difference of ln r evaluated at 
the two endpoints and becomes infinite if one endpoint moves to infinity. In problems 
that extend to infinity but are not of this singular nature, we shall assume that the 
reference is at infinity. 

Example 4.1.1. Equipotential Surfaces 

Consider the potential function Φ(x, y), which is independent of z: 

Φ(x, y) = Vo 
xy 

(18) 
a2 

Surfaces of constant potential can be represented by a cross­sectional view in any 
x − y plane in which they appear as lines, as shown in Fig. 4.1.3. For the potential 
given by (18), the equipotentials appear in the x − y plane as hyperbolae. The 
contours passing through the points (a, a) and (−a, −a) have the potential Vo, while 
those at (a, −a) and (−a, a) have potential −Vo. 

The magnitude of E is proportional to the spatial rate of change of Φ in 
a direction perpendicular to the constant potential surface. Thus, if the surfaces 
of constant potential are sketched at equal increments in potential, as is done in 
Fig. 4.1.3, where the increments are Vo/4, the magnitude of E is inversely propor­
tional to the spacing between surfaces. The closer the spacing of potential lines, the 
higher the field intensity. Field lines, sketched in Fig. 4.1.3, have arrows that point 
from high to low potentials. Note that because they are always perpendicular to the 
equipotentials, they naturally are most closely spaced where the field intensity is 
largest. 

Example 4.1.2. Evaluation of Gradient and Line Integral 

Our objective is to exemplify by direct evaluation the fact that the line integration 
of an irrotational field between two given points is independent of the integration 
path. In particular, consider the potential given by (18), which, in view of (12), 
implies the electric field intensity 

Vo
E = = (yix + xiy) (19)−�Φ − 

a2 
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Fig. 4.1.3 Cross­sectional view of surfaces of constant potential for 
two­dimensional potential given by (18). 

We integrate this vector function along two paths, shown in Fig. 4.1.3, which join 
points (1) and (2). For the first path, C1, y is held fixed at y = a and hence 
ds = dxix. Thus, the integral becomes 

a a� � � 
Vo

E ds = Ex(x, a)dx = adx = (20)· − 
a2 

−2Vo 

C1 −a −a 

For path C2, y− x 2/a = 0 and in general, ds = dxix +dyiy, so the required integral 
is 

E ds = (Exdx + Eydy) (21)· 
C2 C2 

However, for the path C2 we have dy − (2x)dx/a = 0, and hence (21) becomes 

a 
2x

� 
E ds = 

� �
Ex + Ey

�
dx 

a 
· 

C2 

a 2
�−a 

Vo 

� 
x 2x 2 

� (22) 

= − 
a a 

+ 
a 

dx = −2Vo2 
−a 

Because E is found by taking the negative gradient of Φ, and is therefore irrotational, 
it is no surprise that (20) and (22) give the same result. 

Example 4.1.3. Potential of Spherical Cloud of Charge 
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A uniform static charge distribution ρo occupies a spherical region of radius R. The 
remaining space is charge free (except, of course, for the balancing charge at infin­
ity). The following illustrates the determination of a piece­wise continuous potential 
function. 

The spherical symmetry of the charge distribution imposes a spherical symme­
try on the electric field that makes possible its determination from Gauss’ integral 
law. Following the approach used in Example 1.3.1, the field is found to be 

� rρo ; r < R 
3�oEr = R3ρo 

(23) 
2 ; r > R 

3�or 

The potential is obtained by evaluating the line integral of (4) with the reference 
point taken at infinity, r = ∞. The contour follows part of a straight line through 
the origin. In the exterior region, integration gives 

� ∞ 
4πR3 

ρo

� 1 �
;Φ(r) = Erdr = r > R (24)

3 4π�or r 

To find Φ in the interior region, the integration is carried through the outer region, 
(which gives (24) evaluated at r = R) and then into the radius r in the interior 
region. 

Φ(r) =
4πR3 

ρo

� 1 � 
+ 

ρo 
(R2 − r 2) (25)

3 4π�oR 6�o 

Outside the charge distribution, where r ≥ R, the potential acquires the form of the 
coulomb potential of a point charge. 

q 4πR3 

Φ = ; ρo (26)
4π�or

q ≡ 
3 

Note that q is the net charge of the distribution. 

Visualization of Two­Dimensional Irrotational Fields. In general, equipo­
tentials are three­dimensional surfaces. Thus, any two­dimensional plot of the con­
tours of constant potential is the intersection of these surfaces with some given 
plane. If the potential is two­dimensional in its dependence, then the equipotential 
surfaces have a cylindrical shape. For example, the two­dimensional potential of (18) 
has equipotential surfaces that are cylinders having the hyperbolic cross­sections 
shown in Fig. 4.1.3. 

We review these geometric concepts because we now introduce a different 
point of view that is useful in picturing two­dimensional fields. A three­dimensional 
picture is now made in which the third dimension represents the amplitude of the 
potential Φ. Such a picture is shown in Fig. 4.1.4, where the potential of (18) is 
used as an example. The floor of the three­dimensional plot is the x − y plane, 
while the vertical dimension is the potential. Thus, contours of constant potential 
are represented by lines of constant altitude. 

The surface of Fig. 4.1.4 can be regarded as a membrane stretched between 
supports on the periphery of the region of interest that are elevated or depressed 
in proportion to the boundary potential. By the definition of the gradient, (8), the 
lines of electric field intensity follow contours of steepest descent on this surface. 
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Fig. 4.1.4 Two­dimensional potential of (18) and Fig. 4.1.3 represented in 
three dimensions. The vertical coordinate, the potential, is analogous to the 
vertical deflection of a taut membrane. The equipotentials are then contours 
of constant altitude on the membrane surface. 

Potential surfaces have their greatest value in the mind’s eye, which pictures 
a two­dimensional potential as a contour map and the lines of electric field intensity 
as the flow lines of water streaming down the hill. 

4.2 POISSON’S EQUATION 

Given that E is irrotational, (4.0.1), and given the charge density in Gauss’ law, 
(4.0.2), what is the distribution of electric field intensity? It was shown in Sec. 4.1 
that we can satisfy the first of these equations identically by representing the vector 
E by the scalar electric potential Φ. 

E = (1)−�Φ 

That is, with the introduction of this relation, (4.0.1) has been integrated. 
Having integrated (4.0.1), we now discard it and concentrate on the second 

equation of electroquasistatics, Gauss’ law. Introduction of (1) into Gauss’ law, 
(1.0.2), gives 

ρ 
=� · �Φ − 

�o 

which is identically 
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ρ � 2Φ = − 
�o (2) 

Integration of this scalar Poisson’s equation, given the charge density on the 
right, is the objective in the remainder of this chapter. 

By analogy to the ordinary differential equations of circuit theory, the charge 
density on the right is a “driving function.” What is on the left is the operator �2 , 
denoted by the second form of (2) and called the Laplacian of Φ. In Cartesian coor­
dinates, it follows from the expressions for the divergence and gradient operators, 
(2.1.5) and (4.1.12), that 

∂2Φ ∂2Φ ∂2Φ 
+ + = 

−ρ 
(3)

∂x2 ∂y2 ∂z2 �o 

The Laplacian operator in cylindrical and spherical coordinates is determined 
in the problems and summarized in Table I at the end of the text. In Cartesian 
coordinates, the derivatives in this operator have constant coefficients. In these 
other two coordinate systems, some of the coefficients are space varying. 

Note that in (3), time does not appear explicitly as an independent variable. 
Hence, the mathematical problem of finding a quasistatic electric field at the time 
to for a time­varying charge distribution ρ(r, t) is the same as finding the static field 
for the time­independent charge distribution ρ(r) equal to ρ(r, t = to), the charge 
distribution of the time­varying problem at the particular instant to. 

In problems where the charge distribution is given, the evaluation of a qua­
sistatic field is therefore equivalent to the evaluation of a succession of static fields, 
each with a different charge distribution, at the time of interest. We emphasize this 
here to make it understood that the solution of a static electric field has wider ap­
plicability than one would at first suppose: Every static field solution can represent 
a “snapshot” at a particular instant of time. Having said that much, we shall not 
indicate the time dependence of the charge density and field explicitly, but shall do 
so only when this is required for clarity. 

4.3 SUPERPOSITION PRINCIPLE 

As illustrated in Cartesian coordinates by (4.2.3), Poisson’s equation is a linear 
second­order differential equation relating the potential Φ(r) to the charge distri­
bution ρ(r). By “linear” we mean that the coefficients of the derivatives in the 
differential equation are not functions of the dependent variable Φ. An important 
consequence of the linearity of Poisson’s equation is that Φ(r) obeys the superpo­
sition principle. It is perhaps helpful to recognize the analogy to the superposition 
principle obeyed by solutions of the linear ordinary differential equations of circuit 
theory. Here the principle can be shown as follows. 

Consider two different spatial distributions of charge density, ρa(r) and ρb(r). 
These might be relegated to different regions, or occupy the same region. Suppose 
we have found the potentials Φa and Φb which satisfy Poisson’s equation, (4.2.3), 
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with the respective charge distributions ρa and ρb. By definition, 

2Φa(r) = 
ρa(r) 

(1)� − 
�o 

2Φb(r) = 
ρb(r) (2)� − 
�o 

Adding these expressions, we obtain 

1 � 2Φa(r) +� 2Φb(r) = − 
�o 

[ρa(r) + ρb(r)] (3) 

Because the derivatives called for in the Laplacian operation– for example, the 
second derivatives of (4.2.3)– give the same result whether they operate on the 
potentials and then are summed or operate on the sum of the potentials, (3) can 
also be written as 

1 � 2[Φa(r) + Φb(r)] = − 
�o 

[ρa(r) + ρb(r)] (4) 

The mathematical statement of the superposition principle follows from (1) and (2) 
and (4). That is, if


ρa Φa
⇒ 

ρb Φb (5)⇒ 

then 
ρa + ρb Φa + Φb (6)⇒ 

The potential distribution produced by the superposition of the charge distributions 
is the sum of the potentials associated with the individual distributions. 

4.4 FIELDS ASSOCIATED WITH CHARGE SINGULARITIES 

At least three objectives are set in this section. First, the superposition concept 
from Sec. 4.3 is exemplified. Second, we begin to deal with fields that are not 
highly symmetric. The potential proves invaluable in picturing such fields, and so we 
continue to develop ways of picturing the potential and field distribution. Finally, 
the potential functions developed will reappear many times in the chapters that 
follow. Solutions to Poisson’s equation as pictured here filling all of space will turn 
out to be solutions to Laplace’s equation in subregions that are devoid of charge. 
Thus, they will be seen from a second point of view in Chap. 5, where Laplace’s 
equation is featured. 

First, consider the potential associated with a point charge at the origin of a 
spherical coordinate system. The electric field was obtained using the integral form 
of Gauss’ law in Sec. 1.3, (1.3.12). It follows from the definition of the potential, 
(4.1.4), that the potential of a point charge q is 

Φ =
4π�

q 

or 
(1) 
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Fig. 4.4.1 Point charges of equal magnitude and opposite sign on the z axis. 

This “impulse response” for the three­dimensional Poisson’s equation is the starting 
point in derivations and problem solutions and is worth remembering. 

Consider next the field associated with a positive and a negative charge, lo­
cated on the z axis at d/2 and −d/2, respectively. The configuration is shown in 
Fig. 4.4.1. In (1), r is the scalar distance between the point of observation and the 
charge. With P the observation position, these distances are denoted in Fig. 4.4.1 
by r+ and r . It follows from (1) and the superposition principle that the potential −
distribution for the two charges is 

q 
� 

1 1 
�

Φ =
4π�o r+ 

− 
r

(2) 
− 

To find the electric field intensity by taking the negative gradient of this function, 
it is necessary to express r+ and r in Cartesian coordinates. − 

r+ = 

� 

x2 + y2 +
�
z − 

d�2; r = 

� 

x2 + y2 +
�
z + 

d�2 (3)
2 − 2 

Thus, in these coordinates, the potential for the two charges given by (2) is 

q 
� 

1 1 
� 

Φ = (4)
4π�o 

� 
x2 + y2 +

�
z − d

�2 
− � 

x2 + y2 +
�
z + d

�2 

2 2 

Equation (2) shows that in the immediate vicinity of one or the other of the 
charges, the respective charge dominates the potential. Thus, close to the point 
charges the equipotentials are spheres enclosing the charge. Also, this expression 
makes it clear that the plane z = 0 is one of zero potential. 

One straightforward way to plot the equipotentials in detail is to program 
a calculator to evaluate (4) at a specified coordinate position. To this end, it is 
convenient to normalize the potential and the coordinates such that (4) is 

1 1
Φ = (5)�

x2 + y2 +
�
z − 1

�2 
− �

x2 + y2 +
�
z + 1

�2 

2 2 
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where 
x y z Φ 

x = , y = , z = , Φ = 
d d d (q/4πd�o) 

By evaluating Φ for various coordinate positions, it is possible to zero in on the co­
ordinates of a given equipotential in an iterative fashion. The equipotentials shown 
in Fig. 4.4.2a were plotted in this way with x = 0. Of course, the equipotentials are 
actually three­dimensional surfaces obtained by rotating the curves shown about 
the z axis. 

Because E is the negative gradient of Φ, lines of electric field intensity are 
perpendicular to the equipotentials. These can therefore be easily sketched and are 
shown as lines with arrows in Fig. 4.4.2a. 

Dipole at the Origin. An important limit of (2) corresponds to a view of 
the field for an observer far from either of the charges. This is a very important 
limit because charge pairs of opposite sign are the model for polarized atoms or 
molecules. The dipole is therefore at center stage in Chap. 6, where we deal with 
polarizable matter. Formally, the dipole limit is taken by recognizing that rays 
joining the point of observation with the respective charges are essentially parallel 
to the r coordinate when r � d. The approximate geometry shown in Fig. 4.4.3 
motivates the approximations. 

d d 
r+ � r − 

2
cos θ; r− � r +

2
cos θ (6) 

Because the first terms in these expressions are very large compared to the 
second, powers of r+ and r can be expanded in a binomial expansion. − 

(a + b)n = a n + na n−1b + . . . (7) 

With n = −1, (2) becomes approximately 

d
Φ = 

q 
�� 1 

+ cos θ + . . . 
�

4π�o r 2r2 

d − 
� 1 

cos θ + . . . 
�� 

(8) 
r 
− 

2r2 

qd cos θ 
= 

4π�o r2 

Remember, the potential is pictured in spherical coordinates. 
Suppose the equipotential is to be sketched that passes through the z axis 

at some specified location. What is the shape of the potential as we move in the 
positive θ direction? On the left in (8) is a constant. With an increase in θ, the cosine 
function on the right decreases. Thus, to stay on the surface, the distance r from 
the origin must decrease. As the angle approaches π/2, the cosine decreases to zero, 
making it clear that the equipotential must approach the origin. The equipotentials 
and associated lines of E are shown in Fig. 4.4.2b. 
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Fig. 4.4.2 (a) Cross­section of equipotentials and lines of electric field inten­
sity for the two charges of Fig. 4.4.1. (b) Limit in which pair of charges form 
a dipole at the origin. (c) Limit of charges at infinity. 
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Fig. 4.4.3 Far from the dipole, rays from the charges to the point of obser­
vation are essentially parallel to r coordinate. 

The dipole model is made mathematically exact by defining it as the limit 
in which two charges of equal magnitude and opposite sign approach to within an 
infinitesimal distance of each other while increasing in magnitude. Thus, with the 
dipole moment p defined as 

p = lim qd (9)
d 0→
q→∞ 

the potential for the dipole, (8), becomes 

Φ = 
p cos 

2 

θ 
(10)

4π�o r

Another more general way of writing (10) with the dipole positioned at an 
arbitrary point r� and lying along a general axis is to introduce the dipole moment 
vector. This vector is defined to be of magnitude p and directed along the axis of 
the two charges pointing from the − charge to the + charge. With the unit vector 
ir�r defined as being directed from the point r� (where the dipole is located) to the 
point of observation at r, it follows from (10) that the generalized potential is 

p
Φ = 

· ir�r 
2 

(11)
4π�o|r − r�|

Pair of Charges at Infinity Having Equal Magnitude and Opposite Sign. Con­
sider next the appearance of the field for an observer located between the charges of 
Fig. 4.4.2a, in the neighborhood of the origin. We now confine interest to distances 
from the origin that are small compared to the charge spacing d. Effectively, the 
charges are at infinity in the +z and −z directions, respectively. 

With the help of Fig. 4.4.4 and the three­dimensional Pythagorean theorem, 
the distances from the charges to the observer point are expressed in spherical 
coordinates as 

r+ = 

�� d 

2 
− r cos θ

�2 + (r sin θ)2; r = 

�� d 
+ r cos θ

�2 + (r sin θ)2 (12)− 2 
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Fig. 4.4.4 Relative displacements with charges going to infinity. 

In these expressions, d is large compared to r, so they can be expanded by again 
using (7) and keeping only linear terms in r. 

2 4r 2 4r 
r−1 + cos θ; r−1 cos θ (13)+ � 

d d2 − � 
d 
− 

d2 

Introduction of these approximations into (2) results in the desired expression for 
the potential associated with charges that are at infinity on the z axis. 

2(q/d2)
Φ r cos θ (14)→ 

π�o 

Note that z = r cos θ, so what appears to be a complicated field in spherical coor­
dinates is simply 

2q/d2 

Φ z (15)→ 
π�o 

The z coordinate can just as well be regarded as Cartesian, and the electric field 
evaluated using the gradient operator in Cartesian coordinates. Thus, the surfaces 
of constant potential, shown in Fig. 4.4.2c, are horizontal planes. It follows that 
the electric field intensity is uniform and downward directed. Note that the electric 
field that follows from (15) is what is obtained by direct evaluation of (1.3.12) as 
the field of point charges q at a distance d/2 above and below the point of interest. 

Other Charge Singularities. A two­dimensional dipole consists of a pair of 
oppositely charged parallel lines, rather than a pair of point charges. Pictured in 
a plane perpendicular to the lines, and in polar coordinates, the equipotentials ap­
pear similar to those of Fig. 4.4.2b. However, in three dimensions the surfaces are 
cylinders of circular cross­section and not at all like the closed surfaces of revolu­
tion that are the equipotentials for the three­dimensional dipole. Two­dimensional 
dipole fields are derived in Probs. 4.4.1 and 4.4.2, where the potentials are given 
for reference. 
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Fig. 4.5.1 An elementary volume of charge at r� gives rise to a potential at 
the observer position r. 

There is an infinite number of charge singularities. One of the “higher order” 
singularities is illustrated by the quadrupole fields developed in Probs. 4.4.3 and 
4.4.4. We shall see these same potentials again in Chap. 5. 

4.5 SOLUTION	 OF POISSON’S EQUATION FOR SPECIFIED CHARGE 
DISTRIBUTIONS 

The superposition principle is now used to find the solution of Poisson’s equation 
for any given charge distribution ρ(r). The argument presented in the previous 
section for singular charge distributions suggests the approach. 

For the purpose of representing the arbitrary charge density distribution as a 
sum of “elementary” charge distributions, we subdivide the space occupied by the 
charge density into elementary volumes of size dx�dy�dz�. Each of these elements 
is denoted by the Cartesian coordinates (x�, y�, z�), as shown in Fig. 4.5.1. The 
charge contained in one of these elementary volumes, the one with the coordinates 
(x�, y�, z�), is 

dq = ρ(r�)dx�dy�dz� = ρ(r�)dv�	 (1) 
We now express the total potential due to the charge density ρ as the superpo­

sition of the potentials dΦ due to the differential elements of charge, (1), positioned 
at the points r�. Note that each of these elementary charge distributions has zero 
charge density at all points outside of the volume element dv� situated at r�. Thus, 
they represent point charges of magnitudes dq given by (1). Provided that |r − r�|
is taken as the distance between the point of observation r and the position of one
incremental charge r�, the potential associated with this incremental charge is given 
by (4.4.1). 

ρ(r�)dv�
dΦ(r, r�) =	 (2)

4π�o|r − r�|
where in Cartesian coordinates 

|r− r�| = 
�

(x − x�)2 + (y − y�)2 + (z − z�)2 

Note that (2) is a function of two sets of Cartesian coordinates: the (observer) 
coordinates (x, y, z) of the point r at which the potential is evaluated and the 
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(source) coordinates (x�, y�, z�) of the point r� at which the incremental charge is 
positioned. 

According to the superposition principle, we obtain the total potential pro­
duced by the sum of the differential charges by adding over all differential potentials, 
keeping the observation point (x, y, z) fixed. The sum over the differential volume 
elements becomes a volume integral over the coordinates (x�, y�, z�). 

� 
ρ(r�)dv�

Φ(r) = 
(3)V � 4π�o|r− r�| 

This is the superposition integral for the electroquasistatic potential. 
The evaluation of the potential requires that a triple integration be carried 

out. With the help of a computer, or even a programmable calculator, this is a 
straightforward process. There are few examples where the three successive inte­
grations are carried out analytically without considerable difficulty. 

There are special representations of (3), appropriate in cases where the charge 
distribution is confined to surfaces, lines, or where the distribution is two dimen­
sional. For these, the number of integrations is reduced to two or even one, and the 
difficulties in obtaining analytical expressions are greatly reduced. 

Three­dimensional charge distributions can be represented as the superposi­
tion of lines and sheets of charge and, by exploiting the potentials found analytically 
for these distributions, the numerical integration that might be required to deter­
mine the potential for a three­dimensional charge distribution can be reduced to 
two or even one numerical integration. 

Superposition Integral for Surface Charge Density. If the charge density is 
confined to regions that can be described by surfaces having a very small thickness 
Δ, then one of the three integrations of (3) can be carried out in general. The 
situation is as pictured in Fig. 4.5.2, where the distance to the observation point 
is large compared to the thickness over which the charge is distributed. As the 
integration of (3) is carried out over this thickness Δ, the distance between source 
and observer, |r− r�|, varies little. Thus, with ξ used to denote a coordinate that is 
locally perpendicular to the surface, the general superposition integral, (3), reduces 
to � 

da� 
� Δ 

Φ(r) = ρ(r�)dξ (4) 
A� 4π�o|r− r�| 0 

The integral on ξ is by definition the surface charge density. Thus, (4) becomes 
a form of the superposition integral applicable where the charge distribution can 
be modeled as being on a surface. 

� 
σs(r�)da�

Φ(r) = 
A� 4π�o|r − r�| (5) 

The following example illustrates the application of this integral. 
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Fig. 4.5.2 An element of surface charge at the location r� gives rise to a 
potential at the observer point r. 

Fig. 4.5.3 A uniformly charged disk with coordinates for finding the 
potential along the z axis. 

Example 4.5.1. Potential of a Uniformly Charged Disk 

The disk shown in Fig. 4.5.3 has a radius R and carries a uniform surface charge 
density σo. The following steps lead to the potential and field on the axis of the disk. 

The distance |r−r�| between the point r� at radius ρ and angle φ (in cylindrical 
coordinates) and the point r on the axis of the disk (the z axis) is given by 

= 2 + z2 (6)|r − r�| 
�

ρ� 

It follows that (5) is expressible in terms of the following double integral 

2π R
σo 

� � 
ρ�dρ�dφ�

Φ = 
4π�o 0 0 

�
ρ�2 + z2 

R
σo 

� 
ρ�dρ� (7)= 2π 

4π�o 0 

�
ρ�2 + z2 

σo 
=

2�o 

��
R2 + z2 − |z|

� 

where we have allowed for both positive z, the case illustrated in the figure, and 
negative z. Note that these are points on opposite sides of the disk. 
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The axial field intensity Ez can be found by taking the gradient of (7) in the 
z direction.
 

∂Φ σo d
 
Ez = − 

∂z 
= − 

2�o dz 

��
R2 + z2 − |z|

� 

σo 

� 
z 

� (8) 

= − 
2�o 

√
R2 + z2 

� 1 

The upper sign applies to positive z, the lower sign to negative z. 
The potential distribution of (8) can be checked in two limiting cases for which 

answers are easily obtained by inspection: the potential at a distance z � R, and 
the field at |z|
� R.
 

| | 

(a) At a very large distance z of the point of observation from the disk, the| |
radius of the disk R is small compared to z , and the potential of the disk | |
must approach the potential of a point charge of magnitude equal to the total 
charge of the disk, σoπR2 . The potential given by (7) can be expanded in 
powers of R/z �

R2 + z2 − |z| = |z| 
� 

1 +	 
1

2 

R

z

2 
� 

(9)
2 

to find that Φ indeed approaches the potential function 

σo 2	 1 
Φ � 

4π�o 
πR

z
(10) | | 

of a point charge at distance z from the observation point. | | 
(b) At	|z| � R, on either side of the disk, the field of the disk must approach that 

of a charge sheet of very large (infinite) extent. But that field is ±σo/2�o. We 
find, indeed, that in the limit z 0, (8) yields this limiting result. | | → 

Superposition Integral for Line Charge Density. Another special case of 
the general superposition integral, (3), pertains to fields from charge distributions 
that are confined to the neighborhoods of lines. In practice, dimensions of interest 
are large compared to the cross­sectional dimensions of the area A� of the charge 
distribution. In that case, the situation is as depicted in Fig. 4.5.4, and in the 
integration over the cross­section the distance from source to observer is essentially 
constant. Thus, the superposition integral, (3), becomes 

� 
dl� 

�
Φ(r) = ρ(r�)da�	 (11)

4π�o r − r�L� | | A� 

In view of the definition of the line charge density, (1.3.10), this expression 
becomes 

� 
λl(r�)dl�

Φ(r) = 
4π�o r − r�L�	 (12)| | 

Example 4.5.2. Field of Collinear Line Charges of Opposite Polarity 



Sec. 4.5 Solution of Poisson’s Equation 21 

Fig. 4.5.4 An element of line charge at the position r� gives rise to a potential

at the observer location r.


Fig. 4.5.5 Collinear positive and negative line elements of charge sym­
metrically located on the z axis. 

A positive line charge density of magnitude λo is uniformly distributed along the z 
axis between the points z = d and z = 3d. Negative charge of the same magnitude 
is distributed between z = −d and z = −3d. The axial symmetry suggests the use 
of the cylindrical coordinates defined in Fig. 4.5.5. 

The distance from an element of charge λodz� to an arbitrary observer point 
(r, z) is 

|r − r�| = 
�

r2 + (z − z�)2 (13) 

Thus, the line charge form of the superposition integral, (12), becomes 

3d 
λo 

�� 
dz� 

� −d 
dz� 

� 
Φ = (14)

4π�o d 

�
(z − z�)2 + r2 

− 
−3d 

�
(z − z�)2 + r2 

These integrations are carried out to obtain the desired potential distribution 

�
3− z + 

�
(3 − z)2 + r2

��
z + 1 + 

�
(z + 1)2 + r2

� 

Φ = ln (15)�
1− z + 

�
(1 − z)2 + r2

��
z + 3 + 

�
(z + 3)2 + r2

� 
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Fig. 4.5.6 Cross­section of equipotential surfaces and lines of electric 
field intensity for the configuration of Fig. 4.5.5. 

Here, lengths have been normalized to d, so that z = z/d and r = r/d. Also, the 
potential has been normalized such that 

Φ 
Φ ≡ 

(λo/4π�o) 
(16) 

A programmable calculator can be used to evaluate (15), given values of (r, z). 
The equipotentials in Fig. 4.5.6 were, in fact, obtained in this way, making it possible 
to sketch the lines of field intensity shown. Remember, the configuration is axisym­
metric, so the equipotentials are surfaces generated by rotating the cross­section 
shown about the z axis. 

Two­Dimensional Charge and Field Distributions. In two­dimensional con­
figurations, where the charge distribution uniformly extends from z = −∞ to 
z = +∞, one of the three integrations of the general superposition integral is 
carried out by representing the charge by a superposition of line charges, each ex­
tending from z = −∞ to z = +∞. The fundamental element of charge, shown in 
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Fig. 4.5.7 For two­dimensional charge distributions, the elementary charge 
takes the form of a line charge of infinite length. The observer and source 
position vectors, r and r�, are two­dimensional vectors. 

Fig. 4.5.7, is not the point charge of (1) but rather an infinitely long line charge. 
The associated potential is not that of a point charge but rather of a line charge. 

With the line charge distributed along the z axis, the electric field is given by 
(1.3.13) as 

∂Φ λl
Er = − 

∂r 
=

2π�or 
(17) 

and integration of this expression gives the potential 

Φ =
2
−
π�

λl

o 
ln 

� 

r

r 

o 

� 
(18) 

where ro is a reference radius brought in as a constant of integration. Thus, with da 
denoting an area element in the plane upon which the source and field depend and 
r and r� the vector positions of the observer and source respectively in that plane, 
the potential for the incremental line charge of Fig. 4.5.7 is written by making the 
identifications 

λl → ρ(r�)da�; r → |r− r�| (19) 

Integration over the given two­dimensional source distribution then gives as 
the two­dimensional superposition integral 

Φ = 
� 

ρ(r�)da� ln |r − r�|− 
S� 2π�o (20) 

In dealing with charge distributions that extend to infinity in the z direction, the 
potential at infinity can not be taken as a reference. The potential at an arbitrary 
finite position can be defined as zero by adding an integration constant to (20). 

The following example leads to a result that will be found useful in solving 
boundary value problems in Sec. 4.8. 

Example 4.5.3. Two­Dimensional Potential of Uniformly Charged Sheet 



24 Electroquasistatic Fields: The Superposition Integral Point of View Chapter 4 

Fig. 4.5.8 Strip of uniformly charged material stretches to infinity in 
the ±z directions, giving rise to two­dimensional potential distribution. 

A uniformly charged strip lying in the y = 0 plane between x = x2 and x = x1 

extends from z = +∞ to z = −∞, as shown in Fig. 4.5.8. Because the thickness of 
the sheet in the y direction is very small compared to other dimensions of interest, 
the integrand of (20) is essentially constant as the integration is carried out in the 
y direction. Thus, the y integration amounts to a multiplication by the thickness Δ 
of the sheet 

ρ(r�)da� = ρ(r�)Δdx = σsdx (21) 

and (20) is written in terms of the surface charge density σs as 

� 
σs(x

�)dx� ln r − r�
Φ = − 

2π�o 

| | 
(22) 

If the distance between source and observer is written in terms of the Cartesian 
coordinates of Fig. 4.5.8, and it is recognized that the surface charge density is 
uniform so that σs = σo is a constant, (22) becomes 

Φ = 
σo 

� x1 

ln
�

(x − x�)2 + y2dx� (23)− 
2π�o x2 

Introduction of the integration variable u = x − x� converts this integral to an 
expression that is readily integrated. 

Φ = 
σo 

� x−x1 

ln
�

u2 + y2du 
2π�o 

σo 

� 
x−x2 

= (x − x1)ln
�

(x − x1)2 + y2 

2π�o (24) 

− (x − x2)ln
�

(x − x2)2 + y2 + y tan−1 
� x − x1 

� 

y 

− y tan−1 
� x − x2 

� 
+ (x1 − x2) 

� 

y 

Two­dimensional distributions of surface charge can be piece­wise approximated by 
uniformly charged planar segments. The associated potentials are then represented 
by superpositions of the potential given by (24). 
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Potential of Uniform Dipole Layer. The potential produced by a dipole of 
charges ±q spaced a vector distance d apart has been found to be given by (4.4.11) 

Φ = 
p · ir� r 1 

(25)
4π�o |r − r�|2 

where 
p ≡ qd 

A dipole layer, shown in Fig. 4.5.9, consists of a pair of surface charge distributions 
±σs spaced a distance d apart. An area element da of such a layer, with the 
direction of da (pointing from the negative charge density to the positive one), 
can be regarded as a differential dipole producing a (differential) potential dΦ 

(σsd)da ir�r 1 
dΦ = 

· 
(26)

4π�o |r − r�|2 

Denote the surface dipole density by πs where 

πs ≡ σsd (27) 

and the potential produced by a surface dipole distribution over the surface S is 
given by 

1 
� 

πsir�rΦ = da
4π�o (28)S |r − r�|2 · 

This potential can be interpreted particularly simply if the dipole density is con­
stant. Then πs can be pulled out from under the integral, and there Φ is equal to 
πs/(4π�o) times the integral 

Ω ≡ 
� 

S 

i
|r
r�r 

−
· 
r
d
� 
a
|2 
� 

(29) 

This integral is dimensionless and has a simple geometric interpretation. As shown 
in Fig. 4.5.9, ir� r da is the area element projected into the direction connecting the · 
source point to the point of observation. Division by |r− r�|2 reduces this projected 
area element onto the unit sphere. Thus, the integrand is the differential solid angle 
subtended by da as seen by an observer at r. The integral, (29), is equal to the 
solid angle subtended by the surface S when viewed from the point of observation 
r. In terms of this solid angle, 

πsΦ = Ω
4π�o (30) 

Next consider the discontinuity of potential in passing through the surface 
S containing the dipole layer. Suppose that the surface S is approached from the 
+ side; then, from Fig. 4.5.10, the surface is viewed under the solid angle Ωo. 
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Fig. 4.5.9 The differential solid angle subtended by dipole layer of area da. 

Fig. 4.5.10 The solid angle from opposite sides of dipole layer. 

Approached from the other side, the surface subtends the solid angle −(4π − Ωo). 
Thus, there is a discontinuity of potential across the surface of 

πs πs πsΔΦ =
4π�o 

Ωo − 
4π�o 

(Ωs − 4π) = 
�o 

(31) 

Because the dipole layer contains an infinite surface charge density σs, the field 
within the layer is infinite. The “fringing” field, i.e., the external field of the dipole 
layer, is finite and hence negligible in the evaluation of the internal field of the 
dipole layer. Thus, the internal field follows directly from Gauss’ law under the 
assumption that the field exists solely between the two layers of opposite charge 
density (see Prob. 4.5.12). Because contributions to (28) are dominated by πs in 
the immediate vicinity of a point r as it approaches the surface, the discontinuity 
of potential is given by (31) even if πs is a function of position. In this case, the 
tangential E is not continuous across the interface (Prob. 4.5.12). 

4.6 ELECTROQUASISTATIC FIELDS IN THE PRESENCE OF PERFECT 
CONDUCTORS 

In most electroquasistatic situations, the surfaces of metals are equipotentials. In 
fact, if surrounded by insulators, the surfaces of many other conducting materials 



� 

� � 
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Fig. 4.6.1 Once the superposition principle has been used to determine the 
potential, the field in a volume V confined by equipotentials is just as well 
induced by perfectly conducting electrodes having the shapes and potentials 
of the equipotentials they replace. 

also tend to form equipotential surfaces. The electrical properties and dynamical 
conditions required for representing a boundary surface of a material by an equipo­
tential will be identified in Chap. 7. 

Consider the situation shown in Fig. 4.6.l, where three surfaces Si, i = 1, 2, 3 
are held at the potentials Φ1,Φ2, and Φ3, respectively. These are presumably the 
surfaces of conducting electrodes. The field in the volume V surrounding the sur­
faces Si and extending to infinity is not only due to the charge in that volume 
but due to charges outside that region as well. Fields normal to the boundaries 
terminate on surface charges. Thus, as far as the fields in the region of interest 
are concerned, the sources are the charge density in the volume V (if any) and the 
surface charges on the surrounding electrodes. 

The superposition integral, which is a solution to Poisson’s equation, gives the 
potential when the volume and surface charges are known. In the present statement 
of the problem, the volume charge densities are known in V , but the surface charge 
densities are not. The only fact known about the latter is that they must be so 
distributed as to make the Si’s into equipotential surfaces at the potentials Φi. 

The determination of the charge distribution for the set of specified equipo­
tential surfaces is not a simple matter and will occupy us in Chap. 5. But many 
interesting physical situations are uncovered by a different approach. Suppose we 
are given a potential function Φ(r). Then any equipotential surface of that poten­
tial can be replaced by an electrode at the corresponding potential. Some of the 
electrode configurations and associated fields obtained in this manner are of great 
practical interest. 

Suppose such a procedure has been followed. To determine the charge on the 
i­th electrode, it is necessary to integrate the surface charge density over the surface 
of the electrode. 

qi = σsda = �oE da (1) 
Si Si 

· 

In the volume V , the contributions of the surface charges on the equipoten­
tial surfaces are exactly equivalent to those of the charge distribution inside the 
regions enclosed by the surface Si causing the original potential function. Thus, an 
alternative to the use of (1) for finding the total charge on the electrode is 

qi = ρdv (2) 
Vi 



� 
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Fig. 4.6.2 Pair of electrodes used to define capacitance. 

where Vi is the volume enclosed by the surface Si and ρ is the charge density inside 
Si associated with the original potential. 

Capacitance. Suppose the system consists of only two electrodes, as shown 
in Fig. 4.6.2. The charges on the surfaces of conductors (1) and (2) can be evaluated 
from the assumedly known solution by using (1). 

q1 = �oE da; q2 = �oE da (3) 
S1 

· 
S2 

· 

Further, there is a charge at infinity of 

q∞ = 
S 

�oE · da = −q1 − q2 (4) 
∞ 

The charge at infinity is the negative of the sum of the charges on the two electrodes. 
This follows from the fact that the field is divergence free, and all field lines origi­
nating from q1 and q2 must terminate at infinity. Instead of the charges, one could 
specify the potentials of the two electrodes with respect to infinity. If the charge on 
electrode 1 is brought to it by a voltage source (battery) that takes charge away 
from electrode 2 and deposits it on electrode 1, the normal process of charging up 
two electrodes, then q1 = −q2. A capacitance C between the two electrodes can be 
defined as the ratio of charge on electrode 1 divided by the voltage between the two 
electrodes. In terms of the fields, this definition becomes 

� 
�oE da 

C = � 
S1 

(2) 

· 
(5)

E ds
(1) 

· 

In order to relate this definition to the capacitance concept used in circuit theory, 
one further observation must be made. The capacitance relates the charge of one 
electrode to the voltage between the two electrodes. In general, there may also 
exist a voltage between electrode 1 and infinity. In this case, capacitances must 
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also be assigned to relate the voltage with regard to infinity to the charges on the 
electrodes. If the electrodes are to behave as the single terminal­pair element of 
circuit theory, these capacitances must be negligible. Returning to (5), note that 
C is independent of the magnitude of the field variables. That is, if the magnitude 
of the charge distribution is doubled everywhere, it follows from the superposition 
integral that the potential doubles as well. Thus, the electric field in the numerator 
and denominator of (3) is doubled everywhere. Each of the integrals therefore also 
doubles, their ratio remaining constant. 

Example 4.6.1. Capacitance of Isolated Spherical Electrodes 

A spherical electrode having radius a has a well­defined capacitance C relative to an 
electrode at infinity. To determine C, note that the equipotentials of a point charge 
q at the origin 

Φ = 
q 

(6)
4π�or 

are spherical. In fact, the equipotential having radius r = a has a voltage with 
respect to infinity of 

Φ = v = 
q 

(7)
4π�oa 

The capacitance is defined as the the net charge on the surface of the electrode per 
unit voltage, (5). But the net charge found by integrating the surface charge density 
over the surface of the sphere is simply q, and so the capacitance follows from (7) as 

C = 
q 

= 4π�oa (8) 
v 

By way of illustrating the conditions necessary for the capacitance to be well 
defined, consider a pair of spherical electrodes. Electrode (1) has radius a while 
electrode (2) has radius R. If these are separated by many times the larger of these 
radii, the potentials in their vicinities will again take the form of (6). Thus, with the 
voltages v1 and v2 defined relative to infinity, the charges on the respective spheres 
are 

q1 = 4π�oav1; q2 = 4π�oRv2 (9) 

With all of the charge on sphere (1) taken from sphere (2), 

q1 = −q2 av1 = −Rv2 (10)⇒ 

Under this condition, all of the field lines from sphere (1) terminate on sphere (2). To 
determine the capacitance of the electrode pair, it is necessary to relate the charge 
q1 to the voltage difference between the spheres. To this end, (9) is used to write 

q1 q2 

4π�oa 
− 

4π�oR 
= v1 − v2 ≡ v (11) 

and because q1 = −q2, it follows that 

4π�o 
q1 = vC; C ≡ 

1 
(12)� 

a 
1 + 

R

� 

where C is now the capacitance of one sphere relative to the other. 
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Fig. 4.6.3 The Φ = 1 and Φ = 0 equipotentials of Fig. 4.5.6 are turned 
into perfectly conducting electrodes having the capacitance of (4.6.16). 

Note that in order to maintain no net charge on the two spheres, it follows 
from (9), (10), and (12) that the average of the voltages relative to infinity must be 
retained at 

1 
1 1

� 
q1 q2 

� 
1 

� 
a 
1 − 

R

� 

2
(v1 + v2) =

2 4π�oa 
+

4π�oR 
=

2 
v � 

1 + 
� (13)

1 
a R 

Thus, the average potential must be raised in proportion to the potential difference 
v. 

Example 4.6.2. Field and Capacitance of Shaped Electrodes 

The field due to oppositely charged collinear line charges was found to be (4.5.15) 
in Example 4.5.2. The equipotential surfaces, shown in cross­section in Fig. 4.5.6, 
are melon shaped and tend to enclose one or the other of the line charge elements. 

Suppose that the surfaces on which the normalized potentials are equal to 1 
and to 0, respectively, are turned into electrodes, as shown in Fig. 4.6.3. Now the 
field lines originate on positive surface charges on the upper electrode and terminate 
on negative charges on the ground plane. By contrast with the original field from 
the line charges, the field in the region now inside the electrodes is zero. 

One way to determine the net charge on one of the electrodes requires that the 
electric field be found by taking the gradient of the potential, that the unit normal 
vector to the surface of the electrode be determined, and hence that the surface 
charge be determined by evaluating �oE da on the electrode surface. Integration of · 
this quantity over the electrode surface then gives the net charge. A far easier way 
to determine this net charge is to recognize that it is the same as the net charge 
enclosed by this surface for the original line charge configuration. Thus, the net 
charge is simply 2dλl, and if the potentials of the respective electrodes are taken as 
±V , the capacitance is 

q 2dλl
C ≡ = (14) 

v V 
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Fig. 4.6.4 Definition of coordinates for finding field from line charges 
of opposite sign at x = ±a. The displacement vectors are two dimen­
sional and hence in the x − y plane. 

For the surface of the electrode in Fig. 4.6.3, 

V λl 

λl/4π�o 
= 1 ⇒ 

V	
= 4π�o (15) 

It follows from these relations that the desired capacitance is simply 

C = 8π�od	 (16) 

In these two examples, the charge density is zero everywhere between the 
electrodes. Thus, throughout the region of interest, Poisson’s equation reduces to 
Laplace’s equation. 

� 2Φ = 0	 (17) 

The solution to Poisson’s equation throughout all space is tantamount to solving 
Laplace’s equation in a limited region, subject to certain boundary conditions. A 
more direct approach to finding such solutions is taken in the next chapter. Even 
then, it is well to keep in mind that solutions to Laplace’s equation in a limited 
region are solutions to Poisson’s equation throughout the entire space, including 
those regions that contain the charges. 

The next example leads to an often­used result, the capacitance per unit length 
of a two­wire transmission line. 

Example 4.6.3.	 Potential of Two Oppositely Charged 
Conducting Cylinders 

The potential distribution between two equal and opposite parallel line charges has 
circular cylinders for its equipotential surfaces. Any pair of these cylinders can be 
replaced by perfectly conducting surfaces so as to obtain the solution to the potential 
set up between two perfectly conducting parallel cylinders of circular cross­section. 

We proceed in the following ways: (a) The potentials produced by two oppo­
sitely charged parallel lines positioned at x = +a and x = −a, respectively, as shown 
in Fig. 4.6.4, are superimposed. (b) The intersections of the equipotential surfaces 
with the x− y plane are circles. The above results are used to find the potential dis­
tribution produced by two parallel circular cylinders of radius R with their centers 
spaced by a distance 2l. (c) The cylinders carry a charge per unit length λl and have 
a potential difference V , and so their capacitance per unit length is determined. 

(a) The potential associated with a single line charge on the z axis is most 
easily obtained by integrating the electric field, (1.3.13), found from Gauss’ integral 
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Fig. 4.6.5 Cross­section of equipotentials and electric field lines for 
line charges. 

law. It follows by superposition that the potential for two parallel line charges of 
charge per unit length +λl and −λl, positioned at x = +a and x = −a, respectively, 
is 

Φ = 
−λl 

ln r1 + 
λl 

ln r2 = 
−λl 

ln 
r1 

(18)
2π�o 2π�o 2π�o r2 

Here r1 and r2 are the distances of the field point P from the + and − line charges, 
respectively, as shown in Fig. 4.6.4. 

(b) On an equipotential surface, Φ = U is a constant and the equation for 
that surface, (18), is 

r2 
= exp 

� 2π�oU � 
= const (19) 

r1 λl 

where in Cartesian coordinates 

r2
2 = (a + x)2 + y 2; r1

2 = (a − x)2 + y 2 

With the help of Fig. 4.6.4, (19) is seen to represent cylinders of circular cross­section 
with centers on the x axis. This becomes apparent when the equation is expressed in 
Cartesian coordinates. The equipotential circles are shown in Fig. 4.6.5 for different 
values of 

� 
2π�oU

� 
k ≡ exp (20)

λl 

(c) Given two conducting cylinders whose centers are a distance 2l apart, as 
shown in Fig. 4.6.6, what is the location of the two line charges such that their field 
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Fig. 4.6.6 Cross­section of parallel circular cylinders with centers at 
x = ±l and line charges at x = ±a, having equivalent field. 

has equipotentials coincident with these two cylinders? In terms of k as defined by 
(20), (19) becomes 

2 (x + a)2 + y 2 
k = (21)

(x − a)2 + y2 

This expression can be written as a quadratic function of x and y. 

2 (k2 + 1) 2 2 x − 2xa 
(k2 − 1) 

+ a + y = 0 (22) 

Equation (22) confirms that the loci of constant potential in the x − y plane are 
indeed circles. In order to relate the radius and location of these circles to the 
parameters a and k, note that the expression for a circle having radius R and center 
on the x axis at x = l is 

(x − l)2 + y 2 − R2 = 0 x 2 − 2xl + (l2 − R2) + y 2 = 0 (23)⇒ 

We can make (22) identical to this expression by setting 

(k2 + 1) −2l = −2a 
(k2 − 1) 

(24) 

and 
2 2 a = l2 − R (25) 

Given the spacing 2l and radius R of parallel conductors, this last expression can 
be used to locate the positions of the line charges. It also can be used to see that 
(l − a) = R2/(l + a), which can be used with (24) solved for k2 to deduce that 

l + a 
k = (26)

R 

Introduction of this expression into (20) then relates the potential of the cylinder on 
the right to the line charge density. The net charge per unit length that is actually 
on the surface of the right conductor is equal to the line charge density λl. With the 
voltage difference between the cylinders defined as V = 2U , we can therefore solve 
for the capacitance per unit length. 

λl π�o
C = = (27)

V ln
�

R
l + 

�
(l/R)2 − 1

� 

9. 
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Fig. 4.6.7 Cross­section of spherical electrode having radius R and 
center at the origin of x axis, showing charge q at x = X. Charge 
Q1 at x = D makes spherical surface an equipotential, while Qo at 
origin makes the net charge on the sphere zero without disturbing the 
equipotential condition. 

Often, the cylinders are wires and it is appropriate to approximate this result for 
large ratios of l/R. 

l l 2l 
+ 

�
(l/R)2 − 1 = 

�
1 +

�
1− (R/l)2

� 
� 

R 
(28)

R R 

Thus, the capacitance per unit length is approximately 

λl π�o 

V 
≡ C = 

ln 2l 
(29) 

R 

This same result can be obtained directly from (18) by recognizing that when a � l, 
the line charges are essentially at the center of the cylinders. Thus, evaluated on the 
surface of the right cylinder where the potential is V/2, r1 � R and r2 � 2l, (18) 
gives (29). 

Example 4.6.4. Attraction of a Charged Particle to a Neutral Sphere 

A charged particle facing a conducting sphere induces a surface charge distribution 
on the sphere. This distribution adjusts itself so as to make the spherical surface 
an equipotential. In this problem, we take advantage of the fact that two charges of 
opposite sign produce a potential distribution, one equipotential surface of which is 
a sphere. 

First we find the potential distribution set up by a perfectly conducting sphere 
of radius R, carrying a net charge Q, and a point charge q at a distance X (X ≥ R) 
from the center of the sphere. Then the result is used to determine the force on 
the charge q exerted by a neutral sphere (Q = 0)! The configuration is shown in 
Fig. 4.6.7. 

Consider first the potential distribution set up by a point charge Q1 and 
another point charge q. The construction of the potential is familiar from Sec. 4.4. 

q Q1
Φ(r) = + (30)

4π�or2 4π�or1 

In general, the equipotentials are not spherical. However, the surface of zero 
potential 

q Q1
Φ(r) = 0 = + (31)

4π�or2 4π�or1 
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is described by 
r2 q 

r1 
= − 

Q1 
(32) 

and if q/Q1 ≤ 0, this represents a sphere. This can be proven by expressing (32) 
in Cartesian coordinates and noting that in the plane of the two charges, the result 
is the equation of a circle with its center on the axis intersecting the two charges 
[compare (19)]. 

Using this fact, we can apply (32) to the points A and B in Fig. 4.6.7 and 
eliminate q/Q1. Taking R as the radius of the sphere and D as the distance of the 
point charge Q1 from the center of the sphere, it follows that 

R− D R + D R2


X − R 
= 

X + R 
⇒ D = 

X 
(33)


This specifies the distance D of the point charge Q1 from the center of the equipo­
tential sphere. Introduction of this result into (32) applied to point A gives the 
(fictitious) charge Q1. 

R −Q1 = q (34)
X 

With this value for Q1 located in accordance with (33), the surface of the sphere 
has zero potential. Without altering its equipotential character, the potential of the 
sphere can be shifted by positioning another fictitious charge at its center. If the 
net charge of the spherical conductor is to be Q, then a charge Qo = Q − Q1 is 
to be positioned at the center of the sphere. The net field retains the sphere as an 
equipotential surface, now of nonzero potential. The field outside the sphere is the 
sought­for solution. With r3 defined as the distance from the center of the sphere to 
the point of observation, the field outside the sphere is 

Φ = 
q 

+ 
Q1 

+ 
Q− Q1 

(35)
4π�or2 4π�or1 4π�or3 

With Q = 0, the force on the charge follows from an evaluation of the electric field 
intensity directed along an axis passing through the center of the sphere and the 
charge q. The self­field of the charge is omitted from this calculation. Thus, along 
the x axis the potential due to the fictitious charges within the sphere is 

Q1 Q1
Φ = (36)

4π�o(x − D)
− 

4π�ox 

The x directed electric field intensity, and hence the required force, follows as 

∂Φ qQ1 

� 
1 1 

� 
fx = qEx = = (37)−q

∂x 4π�o (x − D)2 
− 

x2 
x=X 

In view of (33) and (34), this can be written in terms of the actual physical quantities 
as 

2q R 
� 

1 
� 

fx = (38)− 
4π�oX3 �

1− (R/X)2
�2 
− 1 

The field implied by (34) with Q = 0 is shown in Fig. 4.6.8. As the charge approaches 
the spherical conductor, images are induced on the nearest parts of the surface. To 
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Fig. 4.6.8 Field of point charge in vicinity of neutral perfectly conducting 
spherical electrode. 

keep the net charge zero, charges of opposite sign must be induced on parts of the 
surface that are more remote from the point charge. The force of attraction results 
because the charges of opposite sign are closer to the point charge than those of the 
same sign. 

4.7 METHOD OF IMAGES 

Given a charge distribution throughout all of space, the superposition integral can 
be used to determine the potential that satisfies Poisson’s equation. However, it 
is often the case that interest is confined to a limited region, and the potential 
must satisfy a boundary condition on surfaces bounding this region. In the previous 
section, we recognized that any equipotential surface could be replaced by a physical 
electrode, and found solutions to boundary value problems in this way. The art of 
solving problems in this “backwards” fashion can be remarkably practical but hinges 
on having a good grasp of the relationship between fields and sources. 

Symmetry is often the basis for superimposing fields to satisfy boundary con­
ditions. Consider for example the field of a point charge a distance d/2 above a 
plane conductor, represented by an equipotential. As illustrated in Fig. 4.7.1a, the 
field E+ of the charge by itself has a component tangential to the boundary, and 
hence violates the boundary condition on the surface of the conductor. 

To satisfy this condition, forget the conductor and consider the field of two 
charges of equal magnitude and opposite signs, spaced a distance 2d apart. In 
the symmetry plane, the normal components add while the tangential components 
cancel. Thus, the composite field is normal to the symmetry plane, as illustrated 
in the figure. In fact, the configuration is the same as discussed in Sec. 4.4. The 



Sec. 4.7 Method of Images 37 

Fig. 4.7.1 (a) Field of positive charge tangential to horizontal plane is can­
celed by that of symmetrically located image charge of opposite sign. (b) Net 
field of charge and its image. 

fields are as in Fig. 4.4.2a, where now the planar Φ = 0 surface is replaced by a 
conducting sheet. 

This method of satisfying the boundary conditions imposed on the field of 
a point charge by a plane conductor by using an opposite charge at the mirror 
image position of the original charge, is called the method of images. The charge of 
opposite sign at the mirror­image position is the “image­charge.” 

Any superposition of charge pairs of opposite sign placed symmetrically on 
two sides of a plane results in a field that is normal to the plane. An example is 
the field of the pair of line charge elements shown in Fig. 4.5.6. With an electrode 
having the shape of the equipotential enclosing the upper line charge and a ground 
plane in the plane of symmetry, the field is as shown in Fig. 4.6.3. This identification 
of a physical situation to go with a known field was used in the previous section. 
The method of images is only a special case involving planar equipotentials. 

To compare the replacement of the symmetry plane by a planar conductor, 
consider the following demonstration. 

Demonstration 4.7.1. Charge Induced in Ground Plane by Overhead 
Conductor 

The circular cylindrical conductor of Fig. 4.7.2, separated by a distance l from 
an equipotential (grounded) metal surface, has a voltage U = Uo cos ωt. The field 
between the conductor and the ground plane is that of a line charge inside the con­
ductor and its image below the ground plane. Thus, the potential is that determined 
in Example 4.6.3. In the Cartesian coordinates shown, (4.6.18), the definitions of r1 

and r2 with (4.6.19) and (4.6.25) (where U = V/2) provide the potential distribution 

2λl 

�
(a − x)2 + y

Φ = − 
2π�o 

ln �
(a + x)2 + y2 

(1) 

The charge per unit length on the cylinder is [compare (4.6.27)] 

2π�o
λl = CU ; C = (2) 

ln 

� 

R
l + 

�� 
R
l 
�2 − 1 

� 
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Fig. 4.7.2 Charge induced on ground plane by overhead conductor is 
measured by probe. Distribution shown is predicted by (4.7.7). 

In the actual physical situation, images of this charge are induced on the surface of 
the ground plane. These can be measured by using a flat probe that is connected 
through the cable to ground and insulated from the ground plane just below. The 
input resistance of the oscilloscope is low enough so that the probe surface is at 
essentially the same (zero) potential as the ground plane. What is the measured 
current, and hence voltage vo, as a function of the position Y of the probe? 

Given the potential, the surface charge is (1.3.17) 

σs = �oEx(x = 0) = −�o 
∂Φ

���� (3)
∂x 

x=0 

Evaluation of this expression using (1) gives 

CU
� 
− 

(a − 
(a

x

−
)2 

x

+

) 

y 
− 

(a +

(a + x) 
� 

σs = 
2π 2 x)2 + y2 

x=0 (4) 
CU a


=
− 
π a2 + y2
 

Conservation of charge requires that the probe current be the time rate of change 
of the charge q on the probe surface. 

dq
is = (5)

dt 

Because the probe area is small, the integration of the surface charge over its surface 
is approximated by the product of the area and the surface charge evaluated at the 
position Y of its center. 

q = σsdydz � Aσs (6) 
A 
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Fig. 4.7.3 Image charges arranged to satisfy equipotential conditions in two 
planes. 

Thus, it follows from (4)–(6) that the induced voltage, vo = −Rsis, is 

1 RsACUoω 
vo = −Vo sin ωt 

1 + (Y/a)2 
; Vo ≡ 

aπ 
(7) 

This distribution of the induced signal with probe position is shown in Fig. 
4.7.2. 

In the analysis, it is assumed that the plane x = 0, including the section of 
surface occupied by the probe, is constrained to zero potential. In first computing 
the current to the probe using this assumption and then finding the probe voltage, 
we are clearly making an approximation that is valid only if the voltage is “small.” 
This can be insured by making the resistance Rs small. 

The usual scope resistance is 1MΩ. It may come as a surprise that such a 
resistance is treated here as a short. However, the voltage given by (7) is proportional 
to the frequency, so the value of acceptable resistance depends on the frequency. As 
the frequency is raised to the point where the voltage of the probe does begin to 
influence the field distribution, some of the field lines that originally terminated 
on the electrode are diverted to the grounded part of the plane. Also, charges of 
opposite polarity are induced on the other side of the probe. The result is an output 
signal that no longer increases with frequency. A frequency response of the probe 
voltage that does not increase linearly with frequency is therefore telltale evidence 
that the resistance is too large or the frequency too high. In the demonstration, 
where “desk­top” dimensions are typical, the frequency response is linear to about 
100 Hz with a scope resistance of 1MΩ. 

As the frequency is raised, the system becomes one with two excitations con­
tributing to the potential distribution. The multiple terminal­pair systems treated 
in Sec. 5.1 start to model the full frequency response of the probe. 

Symmetry also motivates the use of image charges to satisfy boundary condi­
tions on more than one planar surface. In Fig. 4.7.3, the objective is to find the field 
of the point charge in the first quadrant with the planes x = 0 and y = 0 at zero 
potential. One image charge gives rise to a field that satisfies one of the boundary 
conditions. The second is satisfied by introducing an image for the pair of charges. 

Once an image or a system of images has been found for a point charge, the 
same principle of images can be used for a continuous charge distribution. The 
charge density distributions have density distributions of image charges, and the 
total field is again found using the superposition integral. 

Even where symmetry is not involved, charges located outside the region of 
interest to produce fields that satisfy boundary conditions are often referred to 
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Fig. 4.8.1 (a) Surface of circular cylinder over a ground plane broken into 
planar segments, each having a uniform surface charge density. (b) Special case 
where boundaries are in planes y = constant. 

as image charges. Thus, the charge Q1 located within the spherical electrode of 
Example 4.6.4 can be regarded as the image of q. 

4.8 CHARGE SIMULATION APPROACH TO BOUNDARY VALUE 
PROBLEMS 

In solving a boundary value problem, we are in essence finding that distribution of 
charges external to the region of interest that makes the total field meet the bound­
ary conditions. Commonly, these external charges are actually on the surfaces of 
conductors bounding or embedded in the region of interest. By way of prepara­
tion for the boundary value point of view taken in the next chapter, we consider 
in this section a direct approach to adjusting surface charges so that the fields 
meet prescribed boundary conditions on the potential. Analytically, the technique 
is cumbersome. However, with a computer, it becomes one of a class of powerful 
numerical techniques[1] for solving boundary value problems. 

Suppose that the fields are two dimensional, so that the region of interest 
can be “enclosed” by a surface that can be approximated by strip segments, as 
illustrated in Fig. 4.8.1a. This example becomes an approximation to the circular 
conductor over a ground plane (Example 4.7.1) if the magnitudes of the charges on 
the strips are adjusted to make the surfaces approximate appropriate equipotentials. 

With the surface charge density on each of these strips taken as uniform, 
a “stair­step” approximation to the actual distribution of charge is obtained. By 
increasing the number of segments, the approximation is refined. For purposes of 
illustration, we confine ourselves here to boundaries lying in planes of constant y, as 
shown in Fig. 4.8.1b. Then the potential associated with a single uniformly charged 
strip is as found in Example 4.5.3. 

Consider first the potential due to a strip of width (a) lying in the plane 
y = 0 with its center at x = 0, as shown in Fig. 4.8.2a. This is a special case of the 
configuration considered in Example 4.5.3. It follows from (4.5.24) with x1 = a/2 
and x2 = −a/2 that the potential at the observer location (x, y) is 

Φ(x, y) = σoS(x, y) (1) 
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Fig. 4.8.2 (a) Charge strip of Fig. 4.5.8 centered at origin. (b) Charge strip 
translated so that its center is at (X, Y ). 

where 
a a�2 + y2S(x, y) ≡ 

��
x − 

� 
ln 

��
x −

2 2 

a − 
�
x + 

�
ln 

��
x + 

a�2 + y2 

2 2 (2) 
+ y tan−1 

� x − a/2� 

y 

− y tan−1 
� x + a/2� 

+ a 

�
/2π�o 

y 

With the strip located at (x, y) = (X, Y ), as shown in Fig. 4.8.2b, this potential 
becomes 

Φ(x, y) = σoS(x − X, y − Y ) (3) 

In turn, by superposition we can write the potential due to N such strips, the 
one having the uniform surface charge density σi being located at (x, y) = (Xi, Yi). 

N 

Φ(x, y) = 
� 

σiSi; Si ≡ S(x − Xi, y − Yi) (4) 
i=1 

Given the surface charge densities, σi, the potential at any given location (x, y) can 
be evaluated using this expression. We assume that the net charge on the strips is 
zero, so that their collective potential goes to zero at infinity. 

With the strips representing surfaces that are constrained in potential (for 
example, perfectly conducting boundaries), the charge densities are adjusted to 
meet boundary conditions. Each strip represents part of an electrode surface. The 
potential Vj at the center of the j­th strip is set equal to the known voltage of the 
electrode to which it belongs. Evaluating (4) for the center of the j­th strip one 
obtains 

N� 
σiSij = Vj ; Sij ≡ S(xj − Xi, yj − Yi), j = 1, . . . N (5) 

i=1 



� 

42 Electroquasistatic Fields: The Superposition Integral Point of View Chapter 4 

Fig. 4.8.3 Charge distribution on plane parallel electrodes approxi­
mated by six uniformly charged strips. 

This statement can be made for each of the strips, so that it holds with j = 1, . . . N . 
These relations comprise N equations that are linear in the N unknowns σ1 . . . σN . 

� 
C11 C12 . . .
C21 

. . . CNN 

⎛
⎝ 

σ1 
. . . 

⎞
⎠ = 

⎛
⎝ 

V1 
. . . 

⎞
⎠ (6) 

σN VN 

The potentials V1 . . . VN on the right are known, so these expressions can be solved 
for the surface charge densities. Thus, the potential that meets the approximate 
boundary conditions, (4), has been determined. We have found an approximation 
to the surface charge density needed to meet the potential boundary condition. 

Example 4.8.1. Fields of Finite Width Parallel Plate Capacitor 

In Fig. 4.8.3, the parallel plates of a capacitor are divided into six segments. The 
potentials at the centers of those in the top row are required to be V/2, while those 
in the lower row are −V/2. In this simple case of six segments, symmetry gives 

σ1 = σ3 = −σ4 = −σ6, σ2 = −σ5 (7) 

and the six equations in six unknowns, (6) with N = 6, reduces to two equations 
in two unknowns. Thus, it is straightforward to write analytical expressions for the 
surface charge densities (See Prob. 4.8.1). 

The equipotentials and associated surface charge distributions are shown in 
Fig. 4.8.4 for increasing numbers of charge sheets. The first is a reminder of the 
distribution of potential for uniformly charged sheets. Shown next are the equipo­
tentials that result from using the six­segment approximation just evaluated. In the 
last case, 20 segments have been used and the inversion of (6) carried out by means 
of a computer. 
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Fig. 4.8.4 Potential distributions using 2, 6, and 20 sheets to approxi­
mate the fields of a plane parallel capacitor. Only the fields in the upper 
half­plane are shown. The distributions of surface charge density on the 
upper plate are shown to the right. 

Note that the approximate capacitance per unit length is 

N/2 
1 b 

C = 
� 

σi (8)
V (N/2) 

i=1 

This section shows how the superposition integral point of view can be the 
basis for a numerical approach to solving boundary value problems. But as we 
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proceed to a more direct approach to boundary value problems, it is especially 
important to profit from the physical insight inherent in the method used in this 
section. 

We have found a mathematical procedure for adjusting the distributions of 
surface charge so that boundaries are equipotentials. Conducting surfaces sur­
rounded by insulating material tend to become equipotentials by similarly redis­
tributing their surface charge. For example, consider how the surface charge redis­
tributes itself on the parallel plates of Fig. 4.8.4. With the surface charge uniformly 
distributed, there is a strong electric field tangential to the surface of the plate. In 
the upper plate, the charges move radially outward in response to this tangential 
field. Thus, the charge redistributes itself as shown in the subsequent cases. The 
correct distribution of surface charge density is the one that makes this tangential 
electric field approach zero, which it is when the surfaces become equipotentials. 
Thus, the surface charge density is higher near the edges of the plates than it is 
in the middle. The additional surface charges near the edges result in just that 
inward­directed electric field which is needed to make the net field perpendicular 
to the surfaces of the electrodes. 

We will find in Sec. 8.6 that the solution to a class of two­dimensional MQS 
boundary value problems is completely analogous to that for EQS systems of perfect 
conductors. 

4.9 SUMMARY 

The theme in this chapter is set by the two equations that determine E, given the 
charge density ρ. The first of these, (4.0.1), requires that E be irrotational. Through 
the representation of E as the negative gradient of the electric potential, Φ, it is 
effectively integrated. 

E = (1)−�Φ 

This gradient operator, determined in Cartesian coordinates in Sec. 4.1 and found in 
cylindrical and spherical coordinates in the problems of that section, is summarized 
in Table I. The associated gradient integral theorem, (4.1.16), is added for reference 
to the integral theorems of Gauss and Stokes in Table II. 

The substitution of (1) into Gauss’ law, the second of the two laws forming 
the theme of this chapter, gives Poisson’s equation. 

� 2Φ = − 
�

ρ 

o 
(2) 

The Laplacian operator on the left, defined as the divergence of the gradient of Φ, 
is summarized in the three standard coordinate systems in Table I. 

It follows from the linearity of (2) that the potential for the superposition 
of charge distributions is the superposition of potentials for the individual charge 
distributions. The potentials for dipoles and other singular charge distributions are 
therefore found by superimposing the potentials of point or line charges. The su­
perposition integral formalizes the determination of the potential, given the distri­
bution of charge. With the surface and line charges recognized as special (singular) 
volume charge densities, the second and third forms of the superposition integral 
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summarized in Table 4.9.1 follow directly from the first. The fourth is convenient 
if the source and field are two dimensional. 

Through Sec. 4.5, the charge density is regarded as given throughout all space. 
From Sec. 4.6 onward, a shift is made toward finding the field in confined regions 
of space bounded by surfaces of constant potential. At first, the approach is oppor­
tunistic. Given a solution, what problems have been solved? However, the numerical 
convolution method of Sec. 4.8 is a direct and practical approach to solving bound­
ary value problems with arbitrary geometry. 

R E F E R E N C E S 

[1] R. F. Harrington, Field Computation by Moment Methods, MacMillan, 
NY (1968). 
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SUPERPOSITION 

TABLE 4.9.1 

INTEGRALS FOR ELECTRIC POTENTIAL 

Volume Charge 
(4.5.3) 

Φ = 

� 

V � 

ρ(r�)dv� 

4π�o|r − r�| 

Surface Charge 
(4.5.5) 

Φ = 

� 

A� 

σs(r
�)da� 

4π�o|r − r�| 

Line Charge 
(4.5.12) 

Φ = 

� 

L� 

λl(r
�)dl� 

4π�o|r − r�| 

Two­dimensional 
(4.5.20) Φ = − 

� 

S� 

ρ(r�)ln|r − r�|da� 

2π�o 

Double­layer 
(4.5.28) 

Φ = 
πs 

4π�o 
Ω 

Ω ≡ 

� 

S 

ir�r · da 
|r − r�|2 
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P R O B L E M S 

4.1 Irrotational	 Field Represented by Scalar Potential: The 
Gradient Operator and Gradient Integral Theorem 

4.1.1	 Surfaces of constant Φ that are spherical are given by 

Φ = 
Vo (x 2 + y 2 + z 2)	 (a) 
a2 

For example, the surface at radius a has the potential Vo. 

(a) In Cartesian coordinates, what is grad(Φ)? 
(b) By the definition of the gradient operator, the unit normal n to an 

equipotential surface is 

n = 
�Φ	 

(b) |�Φ| 
Evaluate n in Cartesian coordinates for the spherical equipotentials 
given by (a) and show that it is equal to ir, the unit vector in the 
radial direction in spherical coordinates. 

4.1.2	 For Example 4.1.1, carry out the integral of E ds from the origin to (x, y) = · 
(a, a) along the line y = x and show that it is indeed equal to Φ(0, 0) −
Φ(a, a). 

4.1.3	 In Cartesian coordinates, three two­dimensional potential functions are 

Φ =	 
Vox	

(a) 
a 

Φ = 
Voy	 

(b) 
a 

Φ = 
V

a2 

o (x2	 − y 2)	 (c) 

(a) Determine E for each potential. 
(b) For each function, make a sketch of Φ and E using the conventions 

of Fig. 4.1.3. 
(c) For each function, make a sketch using conventions of Fig. 4.1.4. 

4.1.4∗	 A cylinder of rectangular cross­section is shown in Fig. P4.1.4. The electric 
potential inside this cylinder is 

Φ = 
ρo(

+

t) � 
π
�2� sin 

π
x sin 

π
y	 (a) 

a b�o

�� 
π
a	

�2 

b 
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Fig. P4.1.4 

where ρo(t) is a given function of time. 

(a) Show that the electric field intensity is 

E = 
�o

�� 
π
a 

−�ρ2 
o

+

(t� 
) 

π
b 

�2�
� π
a 

cos 
π

a
x sin 

π

b
yix 

(b) 
+ 

π 
sin 

π
x cos 

π
yiy

� 

b a b 

(b) By direct evaluation, show that E is irrotational. 
(c) Show that the charge density ρ is 

π π 
ρ = ρo(t) sin x sin y (c) 

a b 

(d) Show that the tangential E is zero on the boundaries. 
(e) Sketch the distributions of Φ, ρ, and E using conventions of Figs. 2.7.3 

and 4.1.3. 
(f) Compute the line integral of E ds between the center and corner of the · 

rectangular cross­section (points shown in Fig. P4.1.4) and show that 
it is equal to Φ(a/2, b/2, t). Why would you expect the integration to 
give the same result for any path joining the point (a) to any point 
on the wall? 

(g) Show that the net charge inside a length d of the cylinder in the z 
direction is 

ab 
Q = dρo4 

π2 
(d) 

first by integrating the charge density over the volume and then by 
using Gauss’ integral law and integrating �oE da over the surface · 
enclosing the volume. 

(h) Find the surface charge density on the electrode at y = 0 and use your 
result to show that the net charge on the electrode segment between 
x = a/4 and x = 3a/4 having depth d into the paper is 

√
2adρo 

q = b (e)− �� 
π
a 

�2 +
� 

π
b 

�2� 
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4.1.5	 

4.1.6	 

4.1.7	 

(i) Show that the current, i(t), to this electrode segment is 

√
2ad dρo 

i = b dt (f)�� 
π
a	

�2 +
� 

π
b 

�2�	 

Inside the cylinder of rectangular cross­section shown in Fig. P4.1.4, the 
potential is given as 

Φ = 
�o

�� 
π
�ρ2 

o(

+

t) � 
π
�2� cos 

π
x cos 

π
y	 (a) 

a b 
a	 b 

where ρo(t) is a given function of time. 

(a) Find E. 
(b) By evaluating the curl, show that E is indeed irrotational. 
(c) Find ρ. 
(d) Show that E is tangential to all of the boundaries. 
(e) Using the conventions of Figs. 2.7.3 and 4.1.3, sketch Φ, ρ, and E. 
(f) Use E as found in part (a) to compute the integral of E ds from (a) · 

to (b) in Fig. P4.1.4. Check your answer by evaluating the potential 
difference between these points. 

(g) Evaluate the net charge in the volume by first using Gauss’ integral 
law and integrating �oE da over the surface enclosing the volume and · 
then by integrating ρ over the volume. 

Given the potential 

Φ = A sinh mx sin kyy sin kzz sin ωt	 (a) 

where A,m, and ω are given constants. 

(a) Find E. 
(b) By direct evaluation, show that E is indeed irrotational. 
(c) Determine the charge density ρ. 
(d) Can you adjust m so that ρ = 0 throughout the volume? 

The system, shown in cross­section in Fig. P4.1.7, extends to ±∞ in the z 
direction. It consists of a cylinder having a square cross­section with sides 
which are resistive sheets (essentially many resistors in series). Thus, the 
voltage sources ±V at the corners of the cylinder produce linear distribu­
tions of potential along the sides. For example, the potential between the 
corners at (a, 0) and (0, a) drops linearly from V to −V . 
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Fig. P4.1.7 

(a) Show that the potential inside the cylinder can match that on the 
walls of the cylinder if it takes the form A(x2 − y2). What is A? 

(b) Determine E and show that there is no volume charge density ρ within 
the cylinder. 

(c) Sketch the equipotential surfaces and lines of electric field intensity. 

4.1.8	 Figure P4.1.8 shows a cross­sectional view of a model for a “capacitance” 
probe designed to measure the depth h of penetration of a tool into a 
metallic groove. Both the “tool” and the groove can be considered con­
stant potential surfaces having the potential difference v(t) as shown. An 
insulating segment at the tip of the tool is used as a probe to measure h. 
This is done by measuring the charge on the surface of the segment. In 
the following, we start with a field distribution that can be made to fit the 
problem, determine the charge and complete some instructive manipula­
tions along the way. 

Fig. P4.1.8 

(a) Given that the electric field intensity between the groove and tool 
takes the form 

E = C[xix − yiy] (a) 

show that E is irrotational and evaluate the coefficient C by comput­
ing the integral of E ds between point (a) and the origin. · 
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(b) Find the potential function consistent with (a) and evaluate	 C by 
inspection. Check with part (a). 

(c) Using the conventions of Figs. 2.7.3 and 4.1.3, sketch lines of constant 
potential and electric field E for the region between the groove and 
the tool surfaces. 

(d) Determine	 the total	 charge on the insulated segment, given v(t). 
(Hint: Use the integral form of Gauss’ law with a convenient surface 
S enclosing the electrode.) 

4.1.9∗	 In cylindrical coordinates, the incremental displacement vector, given in 
Cartesian coordinates by (9), is 

Δr = Δrir + rΔφiφ + Δziz	 (a) 

Using arguments analogous to (7)–(12), show that the gradient operator in 
cylindrical coordinates is as given in Table I at the end of the text. 

4.1.10∗ Using arguments analogous to those of (7)–(12), show that the gradient 
operator in spherical coordinates is as given in Table I at the end of the 
text. 

4.2 Poisson’s Equation 

4.2.1∗	 In Prob. 4.1.4, the potential Φ is given by (a). Use Poisson’s equation to 
show that the associated charge density is as given by (c) of that problem. 

4.2.2	 In Prob. 4.1.5, Φ is given by (a). Use Poisson’s equation to find the charge 
density. 

4.2.3	 Use the expressions for the divergence and gradient in cylindrical coor­
dinates from Table I at the end of the text to show that the Laplacian 
operator is as summarized in that table. 

4.2.4	 Use the expressions from Table I at the end of the text for the divergence 
and gradient in spherical coordinates to show that the Laplacian operator 
is as summarized in that table. 

4.3 Superposition Principle 

4.3.1	 A current source I(t) is connected in parallel with a capacitor C and a 
resistor R. Write the ordinary differential equation that can be solved for 
the voltage v(t) across the three parallel elements. Follow steps analogous 
to those used in this section to show that if Ia(t) va(t) and Ib(t) vb(t), 
then Ia(t) + Ib(t) va(t) + vb(t). 

⇒ ⇒ 
⇒ 
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4.4 Fields Associated with Charge Singularities 

4.4.1∗	 A two­dimensional field results from parallel uniform distributions of line 
charge, +λl at x = d/2, y = 0 and −λl at x = −d/2, y = 0, as shown in 
Fig. P4.4.1. Thus, the potential distribution is independent of z. 

Fig. P4.4.1 

(a) Start with the electric field of a line charge, (1.3.13), and determine 
Φ. 

(b) Define the two­dimensional dipole moment as pλ = dλl and show that 
in the limit where d 0 (while this moment remains constant), the 
electric potential is 

→ 

Φ = 
pλ cos φ	 

(a)
2π�o r 

4.4.2∗	 For the configuration of Prob. 4.4.1, consider the limit in which the line 
charge spacing d goes to infinity. Show that, in polar coordinates, the po­
tential distribution is of the form 

Φ Ar cos φ	 (a)→ 

Express this in Cartesian coordinates and show that the associated E is 
uniform. 

4.4.3	 A two­dimensional charge distribution is formed by pairs of positive and 
negative line charges running parallel to the z axis. Shown in cross­section 
in Fig. P4.4.3, each line is at a distance d/2 from the origin. Show that in 
the limit where d � r, this potential takes the form A cos 2φ/rn. What are 
the constants A and n? 

4.4.4	 The charge distribution described in Prob. 4.4.3 is now at infinity (d � r). 

(a) Show that the potential in the neighborhood of the origin takes the 
form A(x2 − y2). 

(b) How would you position the line charges so that in the limit where 
they moved to infinity, the potential would take the form of (4.1.18)? 

4.5 Solution of Poisson’s Equation for Specified 
Charge Distributions 
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Fig. P4.4.3 

Fig. P4.5.1 

4.5.1	 The only charge is restricted to a square patch centered at the origin and 
lying in the x − y plane, as shown in Fig. P4.5.1. 

(a) Assume that the patch is very thin in the z direction compared to 
other dimensions of interest. Over its surface there is a given surface 
charge density σs(x, y). Express the potential Φ along the z axis for 
z > 0 in terms of a two­dimensional integral. 

(b) For the particular surface charge distribution σs = σo xy /a2 where| |
σo and a are constants, determine Φ along the positive z axis. 

(c) What is Φ at the origin? 

(d) Show that Φ has a z dependence for z � a that is the same as for a 
point charge at the origin. In this limit, what is the equivalent point 
charge for the patch? 

(e) What is E along the positive z axis? 

4.5.2∗	 The highly insulating spherical shell of Fig. P4.5.2 has radius R and is 
“coated” with a surface charge density σs = σo cos θ, where σo is a given 
constant. 
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Fig. P4.5.2 

(a) Show that the distribution of potential along the z axis in the range 
z > R is
 

σoR
3
 

Φ =	 (a)
3�oz2 

[Hint: Remember that for the triangle shown in the figure, the law of 
cosines gives c = (b2 + a2 − 2ab cos α)1/2.] 

(b) Show that the potential distribution for the range z < R along the z 
axis inside the shell is 

Φ = 
σ

3
o

�o 

z	 
(b) 

(c) Show that along the z axis, E is 
� 

2σoR3 

E = iz 3�o
σ
z
o

3 

	 

R < z (c) −	 R > z3�o 

(d) By comparing the z dependence of the potential to that of a dipole 
polarized in the z direction, show that the equivalent dipole moment 
is qd = (4π/3)σoR

3 . 

4.5.3	 All of the charge is on the surface of a cylindrical shell having radius R 
and length 2l, as shown in Fig. P4.5.3. Over the top half of this cylinder at 
r = R the surface charge density is σo (coulomb/m2), where σo is a positive 
constant, while over the lower half it is −σo. 

(a) Find the potential distribution along the z axis. 
(b) Determine E along the z axis. 
(c) In the limit where z � l, show that Φ becomes that of a dipole at 

the origin. What is the equivalent dipole moment? 

4.5.4∗	 A uniform line charge of density λl and length d is distributed parallel to the 
y axis and centered at the point (x, y, z) = (a, 0, 0), as shown in Fig. P4.5.4. 
Use the superposition integral to show that the potential Φ(x, y, z) is 

d 
λl 2 − y +

�
(x − a)2 +

� 
d 
2 − y

�2 + z2 �
Φ = ln
	 (a)

4π�o − d2 

 − y +

�
(x − a)2 +

� 
d 
2 + y

�2 + z2 
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Fig. P4.5.3 

Fig. P4.5.4 

Fig. P4.5.5 

4.5.5	 Charge is distributed with density λl = ±λox/l coulomb/m along the lines 
z = ±a, y = 0, respectively, between the points x = 0 and x = l, as shown 
in Fig. P4.5.5. Take λo as a given charge per unit length and note that 
λl varies from zero to λo over the lengths of the line charge distributions. 
Determine the distribution of Φ along the z axis in the range 0 < z < a. 

4.5.6	 Charge is distributed along the z axis such that the charge per unit length 
λl(z) is given by 

� 
λoz −a < z < aλl =	 a (a)
0 z < −a; a < z 

Determine Φ and E at a position z > a on the z axis. 
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Fig. P4.5.9 

4.5.7∗	 A strip of charge lying in the x−z plane between x = −b and x = b extends 
to ±∞ in the z direction. On this strip the surface charge density is 

σs = σo (
(
d

d

−
− 

x

b)
)	 

(a) 

where d > b. Show that at the location (x, y) = (d, 0), the potential is 

Φ(d, 0) =
4
σ

π�
o

o	 
(d− b){[ln(d− b)]2 − [ln(d + b)]2 } (b) 

4.5.8	 A pair of charge strips lying in the x−z plane and running from z = +∞ to 
z = −∞ are each of width 2d with their left and right edges, respectively, 
located on the z axis. The one between the z axis and (x, y) = (2d, 0) has a 
uniform surface charge density σo, while the one between (x, y) = (−2d, 0) 
and the z axis has σs = −σo. (Note that the symmetry makes the plane 
x = 0 one of zero potential.) What must be the value of σo if the potential 
at the center of the right strip, where (x, y) = (d, 0), is to be V ? 

4.5.9∗	 Distributions of line charge can be approximated by piecing together uni­
formly charged segments. Especially if a computer is to be used to carry 
out the integration by summing over the fields due to the linear elements 
of line charge, this provides a convenient basis for calculating the electric 
potential for a given line distribution of charge. In the following, you de­
termine the potential at an arbitrary observer coordinate r due to a line 
charge that is uniformly distributed between the points r+b and r+ c, as 
shown in Fig. P4.5.9a. The segment over which this charge (of line charge 
density λl) is distributed is denoted by the vector a, as shown in the figure. 

Viewed in the plane in which the position vectors a,b, and c lie, a 
coordinate ξ denoting the position along the line charge is as shown in 
Fig. P4.5.9b. The origin of this coordinate is at the position on the line 
segment collinear with a that is nearest to the observer position r. 

http:P4.5.9a
http:P4.5.9b
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(a) Argue that in terms of	 ξ, the base and tip of the a vector are as 
designated in Fig. P4.5.9b along the ξ axis. 

(b) Show that the superposition integral for the potential due to the seg­
ment of line charge at r� is 

a/ a� b· | | λldξ	
Φ = (a) 

c a/ a· | | 4π�o|r− r�| 

where 

|r− r�| = 

� 

ξ2 + 
|b
|
× 
a|2 

a|2 
(b) 

(c) Finally, show that the potential is 
����b 

�� 
b a

�2 b 2 

����·a + · + | ×a 
2
|

λ a a a 

Φ = ln 
| | | | | | 

(c)
4π�o 

����c a + 

�
� 
c a

�2 b×a 2 
����a a a 

· · + | 2
|

| | | | | | 

(d) A straight segment of line charge has the uniform density λo between 
the points (x, y, z) = (0, 0, d) and (x, y, z) = (d, d, d). Using (c), show 
that the potential φ(x, y, z) is 

λo 

����
2d− x − y +

�
2[(d− x)2 + (d− y)2 + (d− z)2]

����Φ = ln (d)
4π�o −x − y +

�
2[x2 + y2 + (d− z)2] 

4.5.10∗ Given the charge distribution, ρ(r), the potential Φ follows from (3). This 
expression has the disadvantage that to find E, derivatives of Φ must be 
taken. Thus, it is not enough to know Φ at one location if E is to be 
determined. Start with (3) and show that a superposition integral for the 
electric field intensity is 

1 
� 

ρ(r�)ir�rdv�	 
E = (a)

4π�o V � |r− r�|2 

where ir�r is a unit vector directed from the source coordinate r� to the ob­
server coordinate r. (Hint: Remember that when the gradient of Φ is taken 
to obtain E, the derivatives are with respect to the observer coordinates 
with the source coordinates held fixed.) A similar derivation is given in Sec. 
8.2, where an expression for the magnetic field intensity H is obtained from 
a superposition integral for the vector potential A. 

4.5.11	 For a better understanding of the concepts underlying the derivation of 
the superposition integral for Poisson’s equation, consider a hypothetical 
situation where a somewhat different equation is to be solved. The charge 
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density is assumed in part to be a predetermined density s(x, y, z), and in 
part to be induced at a given point (x, y, z) in proportion to the potential 
itself at that same point. That is, 

ρ = s − �oκ
2Φ (a) 

(a) Show that the expression to be satisfied by Φ is then not Poisson’s 
equation but rather 

� 2Φ− κ2Φ = − 
�

s 

o 
(b) 

where s(x, y, z) now plays the role of ρ. 
(b) The first step in the derivation of the superposition integral is to find 

the response to a point source at the origin, defined such that 

� R 

lim s4πr2dr = Q (c) 
R 0→ 0 

Because the situation is then spherically symmetric, the desired re­
sponse to this point source must be a function of r only. Thus, for 
this response, (b) becomes 

2 s1 ∂ �
r

∂Φ� − κ2Φ = (d) 
r2 ∂r ∂r 

− 
�o 

Show that for r = 0, a solution is 

e−κr 

Φ = A (e) 
r 

and use (c) to show that A = Q/4π�o. 
(c) What is the superposition integral for Φ? 

4.5.12∗ Because there is a jump in potential across a dipole layer, given by (31), 
there is an infinite electric field within the layer. 

(a) With n defined as the unit normal to the interface, argue that this 
internal electric field is 

Eint = −�oσsn (a) 

(b) In deriving the continuity condition on E, (1.6.12), using (4.1.1), it 
was assumed that E was finite everywhere, even within the interface. 
With a dipole layer, this assumption cannot be made. For example, 
suppose that a nonuniform dipole layer πs(x) is in the plane y = 0. 
Show that there is a jump in tangential electric field, Ex, given by 

∂πs
Ex

a − Ex
b = −�o (b)

∂x 
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Fig. P4.6.1 

4.6 Electroquasistatic Fields in the Presence of Perfect Conductors 

4.6.1∗	 A charge distribution is represented by a line charge between z = c and 
z = b along the z axis, as shown in Fig. P4.6.1a. Between these points, the 
line charge density is given by 

λl =	
(a − z)

(a)λo (a − c)	 

and so it has the distribution shown in Fig. P4.6.1b. It varies linearly from 
the value λo where z = c to λo(a − b)/(a − c) where z = b. The only other 
charges in the system are at infinity, where the potential is defined as being 
zero. 

An equipotential surface for this charge distribution passes through 
the point z = a on the z axis. [This is the same “a” as appears in (a).] If 
this equipotential surface is replaced by a perfectly conducting electrode, 
show that the capacitance of the electrode relative to infinity is 

C = 2π�o(2a − c − b)	 (b) 

4.6.2	 Charges at “infinity” are used to impose a uniform field E = Eoiz on a 
region of free space. In addition to the charges that produce this field, 
there are positive and negative charges, of magnitude q, at z = +d/2 and 
z = −d/2, respectively, as shown in Fig. P4.6.2. Spherical coordinates 
(r, θ, φ) are defined in the figure. 

(a) The potential, radial coordinate and charge are normalized such that 

Φ r q	
Φ = ; r = ; q =	 (a)

Eod d 4π�oEod2 

Show that the normalized electric potential Φ can be written as 

2 +	 2 +Φ = −r cos θ + q
��

r 
1
4 
− r cos θ

�−1/2 − 
�
r 

1
4 

+ r cos θ
�−1/2 } (b) 

http:P4.6.1a
http:P4.6.1b
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Fig. P4.6.2 

(b) There is	 an equipotential surface Φ = 0 that encloses these two 
charges. Thus, if a “perfectly conducting” object having a surface tak­
ing the shape of this Φ = 0 surface is placed in the initially uniform 
electric field, the result of part (a) is a solution to the boundary value 
problem representing the potential, and hence electric field, around 
the object. The following establishes the shape of the object. Use (b) 
to find an implicit expression for the radius r at which the surface 
intersects the z axis. Use a graphical solution to show that there will 
always be such an intersection with r > d/2. For q = 2, find this 
radius to two­place accuracy. 

(c) Make a plot of the surface Φ = 0 in a φ = constant plane. One way 
to do this is to use a programmable calculator to evaluate Φ given r 
and θ. It is then straightforward to pick a θ and iterate on r to find 
the location of the surface of zero potential. Make q = 2. 

(d) We expect E to be largest at the poles of the object. Thus, it is in 
these regions that we expect electrical breakdown to first occur. In 
terms of Eo and with q = 2, what is the electric field at the north 
pole of the object? 

(e) In terms of Eo and d, what is the total charge on the northern half 
of the object. [Hint: A numerical calculation is not required.] 

4.6.3∗	 For the disk of charge shown in Fig. 4.5.3, there is an equipotential surface 
that passes through the point z = d on the z axis and encloses the disk. 
Show that if this surface is replaced by a perfectly conducting electrode, 
the capacitance of this electrode relative to infinity is 

2πR2�o
C =

(
√

R2 + d2 − d)	 
(a) 

4.6.4	 The purpose of this problem is to get an estimate of the capacitance of, 
and the fields surrounding, the two conducting spheres of radius R shown 
in Fig. P4.6.4, with the centers separated by a distance h. We construct 
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Fig. P4.6.4 

an approximate field solution for the field produced by charges ±Q on the 
two spheres, as follows: 

(a) First we place the charges at the centers of the spheres. If R � h, 
the two equipotentials surrounding the charges at r1 ≈ R and r2 ≈ R 
are almost spherical. If we assume that they are spherical, what is 
the potential difference between the two spherical conductors? Where 
does the maximum field occur and how big is it? 

(b) We can obtain a better solution by noting that a spherical equipo­
tential coincident with the top sphere is produced by a set of three 
charges. These are the charge −Q at z = −h/2 and the two charges 
inside the top sphere properly positioned according to (33) of appro­
priate magnitude and total charge +Q. Next, we replace the charge 
−Q by two charges, just like we did for the charge +Q. The net field 
is now due to four charges. Find the potential difference and capaci­
tance for the new field configuration and compare with the previous 
result. Do you notice that you have obtained higher­order terms in 
R/h? You are in the process of obtaining a rapidly convergent series 
in powers of R/h. 

4.6.5	 This is a continuation of Prob. 4.5.4. The line distribution of charge given 
there is the only charge in the region 0 ≤ x. However, the y − z plane is 
now a perfectly conducting surface, so that the electric field is normal to 
the plane x = 0. 

(a) Determine the potential in the half­space 0 ≤ x. 
(b) For the potential found in part (a), what is the equation for the 

equipotential surface passing through the point (x, y, z) = (a/2, 0, 0)? 
(c) For the remainder of this problem, assume that d = 4a. Make a sketch 

of this equipotential surface as it intersects the plane z = 0. In doing 
this, it is convenient to normalize x and y to a by defining ξ = x/a and 
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η = y/a. A good way to make the plot is then to compute the potential 
using a programmable calculator. By iteration, you can quickly zero 
in on points of the desired potential. It is sufficient to show that in 
addition to the point of part (a), your curve passes through three 
well­defined points that suggest its being a closed surface. 

(d) Suppose	 that this closed surface having potential V is actually a 
metallic (perfect) conductor. Sketch the lines of electric field intensity 
in the region between the electrode and the ground plane. 

(e) The capacitance of the electrode relative to the ground plane is de­
fined as C = q/V , where q is the total charge on the surface of the 
electrode having potential V . For the electrode of part (c), what is 
C? 

4.7 Method of Images 

4.7.1∗	 A point charge Q is located on the z axis a distance d above a perfect 
conductor in the plane z = 0. 

(a) Show that Φ above the plane is 

Q 
� 

1
Φ = 

4π�o [x2 + y2 + (z − d)2�]
1/

	 
2 

(a)
1 

1/2
− 

[x2 + y2 + (z + d)2] 

(b) Show that the equation for the equipotential surface Φ = V passing 
through the point z = a < d is 

[x 2 + y 2 + (z − d)2]−1/2 − [x 2 + y 2 + (z + d)2]−1/2 

2a (b) 
= 

d2 − a2 

(c) Use intuitive arguments to show that this surface encloses the point 
charge. In terms of a, d, and �o, show that the capacitance relative to 
the ground plane of an electrode having the shape of this surface is 

C =
2π�o(d2 − a2)	 

(c) 
a 

4.7.2	 A positive uniform line charge is along the z axis at the center of a perfectly 
conducting cylinder of square cross­section in the x − y plane. 

(a) Give the location and sign of the image line charges. 
(b) Sketch the equipotentials and E lines in the x − y plane. 
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4.7.3	 When a bird perches on a dc high­voltage power line and then flies away, 
it does so carrying a net charge. 

(a) Why? 
(b) For the purpose of measuring this net charge Q carried by the bird, 

we have the apparatus pictured in Fig. P4.7.3. Flush with the ground, 
a strip electrode having width w and length l is mounted so that it 
is insulated from ground. The resistance, R, connecting the electrode 
to ground is small enough so that the potential of the electrode (like 
that of the surrounding ground) can be approximated as zero. The 
bird flies in the x direction at a height h above the ground with a 
velocity U . Thus, its position is taken as y = h and x = Ut. 

(c) Given that the bird has flown at an altitude sufficient to make it 
appear as a point charge, what is the potential distribution? 

(d) Determine the surface charge density on the ground plane at y = 0. 
(e) At a given instant, what is the net charge, q, on the electrode? (As­

sume that the width w is small compared to h so that in an integration 
over the electrode surface, the integration in the z direction is simply 
a multiplication by w.) 

(f)	 Sketch the time dependence of the electrode charge. 
(g) The current through the resistor	 is	 dq/dt. Find an expression for 

the voltage, v, that would be measured across the resistance, R, and 
sketch its time dependence. 

4.7.4∗	 Uniform line charge densities +λl and −λl run parallel to the z axis at 
x = a, y = 0 and x = b, y = 0, respectively. There are no other charges in 
the half­space 0 < x. The y − z plane where x = 0 is composed of finely 
segmented electrodes. By connecting a voltage source to each segment, the 
potential in the x = 0 plane can be made whatever we want. Show that 
the potential distribution you would impose on these electrodes to insure 
that there is no normal component of E in the x = 0 plane, Ex(0, y, z), is 

λl (a2 + y2)	
Φ(0, y, z) = − 

2π�o 
ln

(b2 + y2)	
(a) 
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Fig. P4.7.5 

4.7.5	 The two­dimensional system shown in cross­section in Fig. P4.7.5 consists 
of a uniform line charge at x = d, y = d that extends to infinity in the ±z 
directions. The charge per unit length in the z direction is the constant λ. 
Metal electrodes extend to infinity in the x = 0 and y = 0 planes. These 
electrodes are grounded so that the potential in these planes is zero. 

(a) Determine the electric potential in the region x > 0, y > 0. 
(b) An equipotential surface passes through the line x = a, y = a(a < d). 

This surface is replaced by a metal electrode having the same shape. 
In terms of the given constants a, d, and �o, what is the capacitance 
per unit length in the z direction of this electrode relative to the 
ground planes? 

4.7.6∗	 The disk of charge shown in Fig. 4.5.3 is located at z = s rather than z = 0. 
The plane z = 0 consists of a perfectly conducting ground plane. 

(a) Show that for 0 < z, the electric potential along the z axis is given 
by 

σoΦ =
2�o 

���
R2 + (z − s)2 − |z − s|�	

(a) 
− 

��
R2 + (z + s)2 z + s 

��	 

− |	 | 

(b) Show that the capacitance relative to the ground plane of an electrode 
having the shape of the equipotential surface passing through the 
point z = d < s on the z axis and enclosing the disk of charge is 

2πR2�o
C = (b)��

R2 + (d− s)2 − 
�

R2 + (d + s)2 + 2d
� 

4.7.7	 The disk of charge shown in Fig. P4.7.7 has radius R and height h above 
a perfectly conducting plane. It has a surface charge density σs = σor/R. 
A perfectly conducting electrode has the shape of an equipotential surface 
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that passes through the point z = a < h on the z axis and encloses the 
disk. What is the capacitance of this electrode relative to the plane z = 0? 

4.7.8	 A straight segment of line charge has the uniform density λo between the 
points (x, y, z) = (0, 0, d) and (x, y, z) = (d, d, d). There is a perfectly con­
ducting material in the plane z = 0. Determine the potential for z ≥ 0. 
[See part (d) of Prob. 4.5.9.] 

4.8 Charge Simulation Approach to Boundary Value Problems 

4.8.1	 For the six­segment approximation to the fields of the parallel plate ca­
pacitor in Example 4.8.1, determine the respective strip charge densities in 
terms of the voltage V and dimensions of the system. What is the approx­
imate capacitance? 




