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7
 

CONDUCTION AND
 
ELECTROQUASISTATIC
 
CHARGE RELAXATION
 

7.0 INTRODUCTION 

This is the last in the sequence of chapters concerned largely with electrostatic and 
electroquasistatic fields. The electric field E is still irrotational and can therefore 
be represented in terms of the electric potential Φ. 

�× E = 0 ⇔ E = −�Φ (1) 

The source of E is the charge density. In Chap. 4, we began our exploration of EQS 
fields by treating the distribution of this source as prescribed. By the end of Chap. 
4, we identified solutions to boundary value problems, where equipotential surfaces 
were replaced by perfectly conducting metallic electrodes. There, and throughout 
Chap. 5, the sources residing on the surfaces of electrodes as surface charge densities 
were made self­consistent with the field. However, in the volume, the charge density 
was still prescribed. 

In Chap. 6, the first of two steps were taken toward a self­consistent description 
of the charge density in the volume. In relating E to its sources through Gauss’ 
law, we recognized the existence of two types of charge densities, ρu and ρp, which, 
respectively, represented unpaired and paired charges. The paired charges were 
related to the polarization density P with the result that Gauss’ law could be 
written as (6.2.15) 

(2)� · D = ρu 

where D ≡ �oE+P. Throughout Chap. 6, the volume was assumed to be perfectly 
insulating. Thus, ρp was either zero or a given distribution. 
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2 Conduction and Electroquasistatic Charge Relaxation Chapter 7 

Fig. 7.0.1 EQS distributions of potential and current density are analogous 
to those of voltage and current in a network of resistors and capacitors. (a) 
Systems of perfect dielectrics and perfect conductors are analogous to capaci­
tive networks. (b) Conduction effects considered in this chapter are analogous 
to those introduced by adding resistors to the network. 

The second step toward a self­consistent description of the volume charge 
density is taken by adding to (1) and (2) an equation expressing conservation of 
the unpaired charges, (2.3.3). 

∂ρu � · Ju + 
∂t 

= 0 
(3) 

That the charge appearing in this equation is indeed the unpaired charge den­
sity follows by taking the divergence of Ampère’s law expressed with polarization, 
(6.2.17), and using Gauss’ law as given by (2) to eliminate D. 

To make use of these three differential laws, it is necessary to specify P and 
J. In Chap. 6, we learned that the former was usually accomplished by either 
specifying the polarization density P or by introducing a polarization constitutive 
law relating P to E. In this chapter, we will almost always be concerned with linear 
dielectrics, where D = �E. 

A new constitutive law is required to relate Ju to the electric field intensity. 
The first of the following sections is therefore devoted to the constitutive law of 
conduction. With the completion of Sec. 7.1, we have before us the differential laws 
that are the theme of this chapter. 

To anticipate the developments that follow, it is helpful to make an analogy 
to circuit theory. If the previous two chapters are regarded as describing circuits 
consisting of interconnected capacitors, as shown in Fig. 7.0.1a, then this chapter 
adds resistors to the circuit, as in Fig. 7.0.1b. Suppose that the voltage source is a 
step function. As the circuit is composed of resistors and capacitors, the distribution 
of currents and voltages in the circuit is finally determined by the resistors alone. 
That is, as t →∞, the capacitors cease charging and are equivalent to open circuits. 
The distribution of voltages is then determined by the steady flow of current through 
the resistors. In this long­time limit, the charge on the capacitors is determined from 
the voltages already specified by the resistive network. 

The steady current flow is analogous to the field situation where ∂ρu/∂t →
in the conservation of charge expression, (3). We will find that (1) and (3), the 
latter written with Ju represented by the conduction constitutive law, then fully 
determine the distribution of potential, of E, and hence of Ju. Just as the charges 
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3 Sec. 7.1 Conduction Constitutive Laws 

on the capacitors in the circuit of Fig. 7.0.1b are then specified by the already 
determined voltage distribution, the charge distribution can be found in an after­
the­fact fashion from the already determined field distribution by using Gauss’ law, 
(2). After considering the physical basis for common conduction constitutive laws 
in Sec. 7.1, Secs. 7.2–7.6 are devoted to steady conduction phenomena. 

In the circuit of Fig. 7.0.1b, the distribution of voltages an instant after the 
voltage step is applied is determined by the capacitors without regard for the re­
sistors. From a field theory point of view, this is the physical situation described in 
Chaps. 4 and 5. It is the objective of Secs. 7.7–7.9 to form an appreciation for how 
this initial distribution of the fields and sources relaxes to the steady condition, 
already studied in Secs. 7.2–7.6, that prevails when t →∞. 

In Chaps. 3–5 we invoked the “perfect conductivity” model for a conductor. 
For electroquasistatic systems, we will conclude this chapter with an answer to the 
question, “Under what circumstances can a conductor be regarded as perfect?” 

Finally, if the fields and currents are essentially static, there is no distinction 
between EQS and MQS laws. That is, if ∂B/∂t is negligible in an MQS system, 
Faraday’s law again reduces to (1). Thus, the first half of this chapter provides 
an understanding of steady conduction in some MQS as well as EQS systems. In 
Chap. 8, we determine the magnetic field intensity from a given distribution of 
current density. Provided that rates of change are slow enough so that effects of 
magnetic induction can be ignored, the solution to the steady conduction problem 
as addressed in Secs. 7.2–7.6 provides the distribution of the magnetic field source, 
the current density, needed to begin Chap. 8. 

Just how fast can the fields vary without producing effects of magnetic in­
duction? For EQS systems, the answer to this question comes in Secs. 7.7–7.9. The 
EQS effects of finite conductivity and finite rates of change are in sharp contrast 
to their MQS counterparts, studied in the last half of Chap. 10. 

7.1 CONDUCTION CONSTITUTIVE LAWS 

In the presence of materials, fields vary in space over at least two length scales. 
The microscopic scale is typically the distance between atoms or molecules while 
the much larger macroscopic scale is typically the dimension of an object made 
from the material. As developed in the previous chapter, fields in polarized media 
are averages over the microscopic scale of the dipoles. In effect, the experimental 
determination of the polarization constitutive law relating the macroscopic P and 
E (Sec. 6.4) does not deal with the microscopic field. 

With the understanding that experimentally measured values will again be 
used to evaluate macroscopic parameters, we assume that the average force acting 
on an unpaired or free charge, q, within matter is of the same form as the Lorentz 
force, (1.1.1). 

f = q(E + v × µoH) (1) 

By contrast with a polarization charge, a free charge is not bound to the atoms and 
molecules, of which matter is constituted, but under the influence of the electric and 
magnetic fields can travel over distances that are large compared to interatomic or 
intermolecular distances. In general, the charged particles collide with the atomic 
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or molecular constituents, and so the force given by (1) does not lead to uniform 
acceleration, as it would for a charged particle in free space. In fact, in the conven­
tional conduction process, a particle experiences so many collisions on time scales 
of interest that the average velocity it acquires is quite low. This phenomenon gives 
rise to two consequences. First, inertial effects can be disregarded in the time aver­
age balance of forces on the particle. Second, the velocity is so low that the forces 
due to magnetic fields are usually negligible. (The magnetic force term leads to 
the Hall effect, which is small and very difficult to observe in metallic conductors, 
but because of the relatively larger translational velocities reached by the charge 
carriers in semiconductors, more easily observed in these.) 

With the driving force ascribed solely to the electric field and counterbalanced 
by a “viscous” force, proportional to the average translational velocity v of the 
charged particle, the force equation becomes 

f = E = ν (2)±|q±| ±v 

where the upper and lower signs correspond to particles of positive and negative 
charge, respectively. The coefficients ν are positive constants representing the ±
time average “drag” resulting from collisions of the carriers with the fixed atoms 
or molecules through which they move. 

Written in terms of the mobilities, µ , the velocities of the positive and neg­
ative particles follow from (2) as 

±

v± = ±µ±E (3) 

where µ± = |q±|/ν±. The mobility is defined as positive. The positive and negative 
particles move with and against the electric field intensity, respectively. 

Now suppose that there are two types of charged particles, one positive and 
the other negative. These might be the positive sodium and negative chlorine ions 
resulting when salt is dissolved in water. In a metal, the positive charges represent 
the (zero mobility) atomic sites, while the negative particles are electrons. Then, 
with N+ and N , respectively, defined as the number of these charged particles per −
unit volume, the current density is 

Ju = N+|q+|v+ − N−|q−|v− (4) 

A flux of negative particles comprises an electrical current that is in a direction 
opposite to that of the particle motion. Thus, the second term in (4) appears with 
a negative sign. The velocities in this expression are related to E by (3), so it follows 
that the current density is 

Ju = (N+ q+ µ+ +N q )E (5)| | −| −|µ−
In terms of the same variables, the unpaired charge density is 

ρu = N+|q+| − N−|q−| (6) 

Ohmic Conduction. In general, the distributions of particle densities N+ and 
N are determined by the electric field. However, in many materials, the quantity −
in brackets in (5) is a property of the material, called the electrical conductivity σ. 
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Ju = σE; σ ≡ (N+|q+|µ+ +N−|q−|µ−) (7) 

The MKS units of σ are (ohm ­ m)−1 ≡ Siemens/m = S/m. 
In these materials, the charge densities N+q+ and N−q− keep each other in 

(approximate) balance so that there is little effect of the applied field on their sum. 
Thus, the conductivity σ(r) is specified as a function of position in nonuniform 
media by the distribution N in the material and by the local mobilities, which can 
also be functions of r. 

± 

The conduction constitutive law given by (7) is Ohm’s law generalized in a 
field­theoretical sense. Values of the conductivity for some common materials are 
given in Table 7.1.1. It is important to keep in mind that any constitutive law is 
of restricted use, and Ohm’s law is no exception. For metals and semiconductors, 
it is usually a good model on a sufficiently large scale. It is also widely used in 
dealing with electrolytes. However, as materials become semi­insulators, it can be 
of questionable validity. 

Unipolar Conduction. To form an appreciation for the implications of Ohm’s 
law, it will be helpful to contrast it with the law for unipolar conduction. In that 
case, charged particles of only one sign move in a neutral background, so that the 
expressions for the current density and charge density that replace (5) and (6) are 

Ju = ρ µE (8)| | 

ρu = ρ (9) 
where the charge density ρ now carries its own sign. Typical of situations described 
by these relations is the passage of ions through air. 

Note that a current density exists in unipolar conduction only if there is a net 
charge density. By contrast, for Ohmic conduction, where the current density and 
the charge density are given by (7) and (6), respectively, there can be a current 
density at a location where there is no net charge density. For example, in a metal, 
negative electrons move through a background of fixed positively charged atoms. 
Thus, in (7), µ+ = 0 and the conductivity is due solely to the electrons. But it 
follows from (6) that the positive charges do have an important effect, in that they 
can nullify the charge density of the electrons. We will often find that in an Ohmic 
conductor there is a current density where there is no net unpaired charge density. 

7.2 STEADY OHMIC CONDUCTION 

To set the stage for the next two sections, consider the fields in a material that has 
a linear polarizability and is described by Ohm’s law, (7.1.7). 

J = σ(r)E; D = �(r)E (1) 
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TABLE 7.1.1 

CONDUCTIVITY OF VARIOUS MATERIALS 

Metals and Alloys in Solid State 

σ− mhos/m at 20◦C 

Aluminum, commercial hard drawn . . . . . . . . . . . . . . . . . . . . . . . . . . 3.54 x 107 

Copper, annealed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.80 x 107 

Copper, hard drawn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.65 x 107 

Gold, pure drawn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.10 x 107 

Iron, 99.98% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 x 107 

Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5–1.0 x 107 

Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.48 x 107 

Magnesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.17 x 107 

Nichrome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.10 x 107 

Nickel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.28 x 107 

Silver, 99.98% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.14 x 107 

Tungsten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.81 x 107 

Semi­insulating and Dielectric Solids 

Bakelite (average range)* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10−8 −1010 

Celluloid* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10−8 

Glass, ordinary* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10−12 

Hard rubber* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10−14 −10−16 

Mica* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10−11 −10−15 

Paraffin* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10−14 −10−16 

Quartz, fused* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . less than 10−17 

Sulfur* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . less than 10−16 

Teflon* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . less than 10−16 

Liquids 

Mercury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.10 x 107 

Alcohol, ethyl, 15◦ C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 x 10−4 

Water, Distilled, 18◦ C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 x 10−4 

Corn Oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 x 10−11 

*For highly insulating materials. Ohm’s law is of dubious validity and conductivity 
values are only useful for making estimates. 

In general, these properties are functions of position, r. Typically, electrodes 
are used to constrain the potential over some of the surface enclosing this material, 
as suggested by Fig. 7.2.1. 

In this section, we suppose that the excitations are essentially constant in 
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Fig. 7.2.1 Configuration having volume enclosed by surfaces S�, upon which 
the potential is constrained, and S��, upon which its normal derivative is con­
strained. 

time, in the sense that the rate of accumulation of charge at any given location 
has a negligible influence on the distribution of the current density. Thus, the time 
derivative of the unpaired charge density in the charge conservation law, (7.0.3), is 
negligible. This implies that the current density is solenoidal. 

� · σE = 0 (2) 

Of course, in the EQS approximation, the electric field is also irrotational. 

�× E = 0 ⇔ E = −�Φ (3) 

Combining (2) and (3) gives a second­order differential equation for the potential 
distribution. 

� · σ�Φ = 0 (4) 

In regions of uniform conductivity (σ = constant), it assumes a familiar form. 

� 2Φ = 0 (5) 

In a uniform conductor, the potential distribution satisfies Laplace’s equation. 
It is important to realize that the physical reasons for obtaining Laplace’s 

equation for the potential distribution in a uniform conductor are quite different 
from those that led to Laplace’s equation in the electroquasistatic cases of Chaps. 
4 and 5. With steady conduction, the governing requirement is that the divergence 
of the current density vanish. The unpaired charge density does not influence the 
current distribution, but is rather determined by it. In a uniform conductor, the 
continuity constraint on J happens to imply that there is no unpaired charge density. 
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Fig. 7.2.2 Boundary between region (a) that is insulating relative to 
region (b). 

In a nonuniform conductor, (4) shows that there is an accumulation of un­
paired charge. Indeed, with σ a function of position, (2) becomes 

σ� · E + E · �σ = 0 (6) 

Once the potential distribution has been found, Gauss’ law can be used to determine 
the distribution of unpaired charge density. 

ρu = (7)�� · E + E · �� 
Equation (6) can be solved for div E and that quantity substituted into (7) to obtain 

(8)
ρu =
− 

σ 
E · �σ + E · ��
 

Even though the distribution of � plays no part in determining E, through Gauss’ 
law, it does influence the distribution of unpaired charge density. 

Continuity Conditions. Where the conductivity changes abruptly, the con­
tinuity conditions follow from (2) and (3). The condition 

n (σaEa − σbEb) = 0 (9)· 

is derived from (2), just as (1.3.17) followed from Gauss’ law. The continuity con­
ditions implied by (3) are familiar from Sec. 5.3. 

n× (Ea − Eb) = 0 Φa − Φb = 0 (10)⇔ 

Illustration. Boundary Condition at an Insulating Surface 

Insulated wires and ordinary resistors are examples where a conducting medium is 
bounded by one that is essentially insulating. What boundary condition should be 
used to determine the current distribution inside the conducting material? 



� 

� 

9 Sec. 7.2 Steady Ohmic Conduction 

In Fig. 7.2.2, region (a) is relatively insulating compared to region (b), σa 

σb. It follows from (9) that the normal electric field in region (a) is much greater 
than in region (b), En

a � En
b . According to (10), the tangential components of E are 

aequal, Et = Et
b. With the assumption that the normal and tangential components of 

E are of the same order of magnitude in the insulating region, these two statements 
establish the relative magnitudes of the normal and tangential components of E, 
respectively, sketched in Fig. 7.2.2. We conclude that in the relatively conducting 
region (b), the normal component of E is essentially zero compared to the tangential 
component. Thus, to determine the fields in the relatively conducting region, the 
boundary condition used at an insulating surface is 

n J = 0 = 0 (11)· ⇒ n · �Φ 

At an insulating boundary, inside the conductor, the normal derivative of 
the potential is zero, while the boundary potential adjusts itself to make this true. 
Current lines are diverted so that they remain tangential to the insulating boundary, 
as sketched in Fig. 7.2.2. 

Just as Gauss’ law embodied in (8) is used to find the unpaired volume charge 
density ex post facto, Gauss’ continuity condition (6.5.3) serves to evaluate the 
unpaired surface charge density. Combined with the current continuity condition, 
(9), it becomes 

� 
�b σa 

�
σsu = n �aEa 1−· 

�a σb (12) 

Conductance. If there are only two electrodes contacting the conductor of 
Fig. 7.2.1 and hence one voltage v1 = v and current i1 = i, the voltage­current 
relation for the terminal pair is of the form 

i = Gv (13) 

where G is the conductance. To relate G to field quantities, (2) is integrated over 
a volume V enclosed by a surface S, and Gauss’ theorem is used to convert the 
volume integral to one of the current σE da over the surface S. This integral law · 
is then applied to the surface shown in Fig. 7.2.1 enclosing the electrode that is 
connected to the positive terminal. Where it intersects the wire, the contribution 
is −i, so that the integral over the closed surface becomes 

−i+ σE da = 0 (14) 
S1 

· 

where S1 is the surface where the perfectly conducting electrode having potential 
v1 interfaces with the Ohmic conductor. 

Division of (14) by the terminal voltage v gives an expression for the conduc­
tance defined by (13). 
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Fig. 7.2.3 Typical configurations involving a conducting material and per­
fectly conducting electrodes. (a) Region of interest is filled by material having 
uniform conductivity. (b) Region composed of different materials, each having 
uniform conductivity. Conductivity is discontinuous at interfaces. (c) Conduc­
tivity is smoothly varying. 

i 
�

σE da 
G = = S1 

· 
v v (15) 

Note that the linearity of the equation governing the potential distribution, (4), 
assures that i is proportional to v. Hence, (15) is independent of v and, indeed, a 
parameter characterizing the system independent of the excitation. 

A comparison of (15) for the conductance with (6.5.6) for the capacitance 
suggests an analogy that will be developed in Sec. 7.5. 

Qualitative View of Fields in Conductors. Three classes of steady conduction 
configurations are typified in Fig. 7.2.3. In the first, the region of interest is one of 
uniform conductivity bounded either by surfaces with constrained potentials or by 
perfect insulators. In the second, the conductivity varies abruptly but by a finite 
amount at interfaces, while in the third, it varies smoothly. Because Gauss’ law plays 
no role in determining the potential distribution, the permittivity distributions in 
these three classes of configurations are arbitrary. Of course, they do have a strong 
influence on the resulting distributions of unpaired charge density. 

A qualitative picture of the electric field distribution within conductors emerges 
from arguments similar to those used in Sec. 6.5 for linear dielectrics. Because J is 
solenoidal and has the same direction as E, it passes from the high­potential to the 
low­potential electrodes through tubes within which lines of J neither terminate 
nor originate. The E lines form the same tubes but either terminate or originate on 
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the sum of unpaired and polarization charges. The sum of these charge densities is 
div �oE, which can be determined from (6). 

ρu + ρp = � · �oE = −�oE · �
σ

σ 
= −�oJ · �

σ2 

σ 
(16) 

At an abrupt discontinuity, the sum of the surface charges determines the discon­
tinuity of normal E. In view of (9), 

Eaσsu + σsp = n · (�o − �oEb) = n · �oEa
�
1− 

σ

σ
a

b 

� 
(17) 

Note that the distribution of � plays no part in shaping the E lines. 
In following a typical current tube from high potential to low in the uniform 

conductor of Fig. 7.2.3a, no conductivity gradients are encountered, so (16) tells us 
there is no source of E. Thus, it is no surprise that Φ satisfies Laplace’s equation 
throughout the uniform conductor. 

In following the current tube through the discontinuity of Fig. 7.2.3b, from 
low to high conductivity, (17) shows that there is a negative surface source of E. 
Thus, E tends to be excluded from the more conducting region and intensified in 
the less conducting region. 

With the conductivity increasing smoothly in the direction of E, as illustrated 
in Fig. 7.2.3c, E · �σ is positive. Thus, the source of E is negative and the E lines 
attenuate along the flux tube. 

Uniform and piece­wise uniform conductors are commonly encountered, and 
examples in this category are taken up in Secs. 7.4 and 7.5. Examples where the 
conductivity is smoothly distributed are analogous to the smoothly varying permit­
tivity configurations exemplified in Sec. 6.7. In a simple one­dimensional configu­
ration, the following example illustrates all three categories. 

Example 7.2.1. One­Dimensional Resistors 

The resistor shown in Fig. 7.2.4 has a uniform cross­section of area A in any x − z 
plane. Over its length d it has a conductivity σ(y). Perfectly conducting electrodes 
constrain the potential to be v at y = 0 and to be zero at y = d. The cylindrical 
conductor is surrounded by a perfect insulator. 

The potential is assumed to depend only on y. Thus, the electric field and cur­
rent density are y directed, and the condition that there be no component of E nor­
mal to the insulating boundaries is automatically satisfied. For the one­dimensional 
field, (4) reduces to 

d dΦ�
σ 

� 
= 0 (18)

dy dy 

The quantity in parentheses, the negative of the current density, is conserved over 
the length of the resistor. Thus, with Jo defined as constant, 

dΦ 
σ 

dy 
= −Jo (19) 

This expression is now integrated from the lower electrode to an arbitrary location 
y. 

Φ� � y 
Jo 

� y 
Jo

dΦ = dy Φ = dy (20)− 
σ 

⇒ v − 
0 

σ 
v 0 
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Fig. 7.2.4 Cylindrical resistor having conductivity that is a function 
of position y between the electrodes. The material surrounding the con­
ductor is insulating. 

Evaluation of this expression where y = d and Φ = 0 relates the current density to 
the terminal voltage. 

d d� 
Jo 

� 
dy 

v = dy Jo = v/ (21)
σ 

⇒ 
0 

σ
0 

Introduction of this expression into (20) then gives the potential distribution. 

d� � y 
dy 

� 
dy

� 
Φ = v 1− / (22)

σ σ
0 0 

The conductance, defined by (15), follows from (21). 

d
AJo 

� 
dy

G = = A/ (23) 
v σ

0 

These relations hold for any one­dimensional distribution of σ. Of course, 
there is no dependence on �, which could have any distribution. The permittivity 
could even depend on x and z. In terms of the circuit analogy suggested in the 
introduction, the resistors determine the distribution of voltages regardless of the 
interconnected capacitors. 

Three special cases conform to the three categories of configurations illustrated 
in Fig. 7.2.3. 

Uniform Conductivity. If σ is uniform, evaluation of (22) and (23) gives 

y
Φ = v

�
1− 

� 
(24)

d 

Aσ 
G = (25)

d 
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Fig. 7.2.5 Conductivity, potential, charge density, and field distribu­
tions in special cases for the configuration of Fig. 7.2.4. (a) Uniform 
conductivity. (b) Layers of uniform but different conductivities. (c) Ex­
ponentially varying conductivity. 

The potential and electric field are the same as they would be between plane parallel 
electrodes in free space in a uniform perfect dielectric. However, because of the 
insulating walls, the conduction field remains uniform regardless of the length of the 
resistor compared to its transverse dimensions. 

It is clear from (16) that there is no volume charge density, and this is consis­
tent with the uniform field that has been found. These distributions of σ, Φ, and E 
are shown in Fig. 7.2.5a. 

Piece­Wise Uniform Conductivity. With the resistor composed of uni­
formly conducting layers in series, as shown in Fig. 7.2.5b, the potential and con­
ductance follow from (22) and (23) as 

⎧ � 
G y 

� 

Φ = 

⎨ v 0 < y < b 

(26) 

⎪⎪ 1− 
A σb � 
G 

�⎪⎪⎩ v 1− 
A

[(b/σb) + (y − b)/σa] b < y < a + b 

A 
G = (27)

[(b/σb) + (a/σa)] 

Again, there are no sources to distort the electric field in the uniformly conducting 
regions. However, at the discontinuity in conductivity, (17) shows that there is sur­
face charge. For σb > σa, this surface charge is positive, tending to account for the 
more intense field shown in Fig. 7.2.5b in the upper region. 

Smoothly Varying Conductivity. With the exponential variation σ = 
σo exp(−y/d), (22) and (23) become 

y/d 

Φ = v (28) 

� 
1− 

(e

(e −
−
1)

1)
� 
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Aσo
G = (29)

d(e − 1) 

Here the charge density that accounts for the distribution of E follows from (16). 

ρu + ρp = 
�oJo 

ey/d (30)
σod 

Thus, the field is shielded from the lower region by an exponentially increasing 
volume charge density. 

7.3 DISTRIBUTED CURRENT SOURCES AND 
ASSOCIATED FIELDS 

Under steady conditions, conservation of charge requires that the current density 
be solenoidal. Thus, J lines do not originate or terminate. We have so far thought 
of current tubes as originating outside the region of interest, on the boundaries. 
It is sometimes convenient to introduce a volume distribution of current sources, 
s(r, t) A/m3, defined so that the steady charge conservation equation becomes 

� 

S 

J · da = 
� 

V 

sdv ⇔ � · J = s 
(1) 

The motivation for introducing a distributed source of current becomes clear as we 
now define singular sources and think about how these can be realized physically. 

Distributed Current Source Singularities. The analogy between (1) and 
Gauss’ law begs for the definition of point, line, and surface current sources, as 
depicted in Fig. 7.3.1. In returning to Sec. 1.3 where the analogous singular charge 
distributions were defined, it should be kept in mind that we are now considering 
a source of current density, not of electric flux. 

A point source of current gives rise to a net current ip out of a volume V that 
shrinks to zero while always enveloping the source. 

J da = ip ip ≡ lim sdv (2)
s 

S 

· →∞
VV 0→ 

Such a source might be used to represent the current distribution around a 
small electrode introduced into a conducting material. As shown in Fig. 7.3.1d, the 
electrode is connected to a source of current ip through an insulated wire. At least 
under steady conditions, the wire and its insulation can be made fine enough so 
that the current distribution in the surrounding conductor is not disturbed. 

Note that if the wire and its insulation are considered, the current density 
remains solenoidal. A surface surrounding the spherical electrode is pierced by the 
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Fig. 7.3.1 Singular current source distributions represented conceptually by 
the top row, suggesting how these might be realized physically by the bottom 
row by electrodes fed through insulated wires. 

wire. The contribution to the integral of J da from this part of the surface integral is · 
equal and opposite to that of the remainder of the surface surrounding the electrode. 
The point source is, in this case, an artifice for ignoring the effect of the insulated 
wire on the current distribution. 

The tubular volume having a cross­sectional area A used to define a line charge 
density in Sec. 1.3 (Fig. 1.3.4) is equally applicable here to defining a line current 
density. 

Kl ≡ lim sda (3)
s 
A 0 A
→∞
→ 

In general, Kl is a function of position along the line, as shown in Fig. 7.3.1b. If 
this is the case, a physical realization would require a bundle of insulated wires, 
each terminated in an electrode segment delivering its current to the surrounding 
medium, as shown in Fig. 7.3.1e. Most often, the line source is used with two­
dimensional flows and describes a uniform wire electrode driven at one end by a 
current source. 

The surface current source of Figs. 7.3.1c and 7.3.1f is defined using the same 
incremental control volume enclosing the surface source as shown in Fig. 1.3.5. 

h� ξ+ 2 
Js ≡ lim sdξ 

s 
h

→∞
h 0 ξ− 2 (4)→ 

Note that Js is the net current density entering the surrounding material at 
a given location. 
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Fig. 7.3.2 For a small spherical electrode, the conductance relative to 
a large conductor at “infinity” is given by (7). 

Fields Associated with Current Source Singularities. In the immediate 
vicinity of a point current source immersed in a uniform conductor, the current 
distribution is spherically symmetric. Thus, with J = σE, the integral current 
continuity law, (1), requires that 

4πr2σEr = ip (5) 

From this, the electric field intensity and potential of a point source follow as 

Er = 
ip 

4πσr2 
⇒ Φ = 

ip 

4πσr 
(6) 

Example 7.3.1. Conductance of an Isolated Spherical Electrode 

A simple way to measure the conductivity of a liquid is based on using a small 
spherical electrode of radius a, as shown in Fig. 7.3.2. The electrode, connected to 
an insulated wire, is immersed in the liquid of uniform conductivity σ. The liquid 
is in a container with a second electrode having a large area compared to that of 
the sphere, and located many radii a from the sphere. Thus, the potential drop 
associated with a current i that passes from the spherical electrode to the large 
electrode is largely in the vicinity of the sphere. 

By definition the potential at the surface of the sphere is v, so evaluation of 
the potential for a point source, (6), at r = a gives 

i i 
v =

4πσa 
⇒ G ≡ 

v 
= 4πσa (7) 

This conductance is analogous to the capacitance of an isolated spherical electrode, 
as given by (4.6.8). Here, a fine insulated wire connected to the sphere would have 
little effect on the current distribution. 

The conductance associated with a contact on a conducting material is often 
approximated by picturing the contact as a hemispherical electrode, as shown in Fig. 
7.3.3. The region above the surface is an insulator. Thus, there is no current density 
and hence no electric field intensity normal to this surface. Note that this condition 
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Fig. 7.3.3 Hemispherical electrode provides contact with infinite half­
space of material with conductance given by (8). 

is satisfied by the field associated with a point source positioned on the conductor­
insulator interface. An additional requirement is that the potential on the surface of 
the electrode be v. Because current is carried by only half of the spherical surface, it 
follows from reevaluation of (6a) that the conductance of the hemispherical surface 
contact is 

G = 2πσa (8) 

The fields associated with uniform line and surface sources are analogous to 
those discussed for line and surface charges in Sec. 1.3. 

The superposition principle, as discussed for Poisson’s equation in Sec. 4.3, 
is equally applicable here. Thus, the fields associated with higher­order source sin­
gularities can again be found by superimposing those of the basic singular sources 
already defined. Because it can be used to model a battery imbedded in a conductor, 
the dipole source is of particular importance. 

Example 7.3.2. Dipole Current Source in Spherical Coordinates 

A positive point current source of magnitude ip is located at z = d, just above 
a negative source (a sink) of equal magnitude at the origin. The source­sink pair, 
shown in Fig. 7.3.4, gives rise to fields analogous to those of Fig. 4.4.2. In the limit 
where the spacing d goes to zero while the product of the source strength and this 
spacing remains finite, this pair of sources forms a dipole. Starting with the potential 
as given for a source at the origin by (6), the limiting process is the same as leading 
to (4.4.8). The charge dipole moment qd is replaced by the current dipole moment 
ipd and �o σ, qd ipd. Thus, the potential of the dipole current source is→ → 

ipd cos θ 
Φ = (9)

4πσ r2 

The potential of a polar dipole current source is found in Prob. 7.3.3. 

Method of Images. With the new boundary conditions describing steady 
current distributions come additional opportunities to exploit symmetry, as dis­
cussed in Sec. 4.7. Figure 7.3.5 shows a pair of equal magnitude point current 
sources located at equal distances to the right and left of a planar surface. By con­
trast with the point charges of Fig. 4.7.1, these sources are of the same sign. Thus, 
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Fig. 7.3.4 Three­dimensional dipole current source has potential given 
by (9). 

Fig. 7.3.5 Point current source and its image representing an insulating 
boundary. 

the electric field normal to the surface is zero rather than the tangential field. The 
field and current distribution in the right half is the same as if that region were 
filled by a uniform conductor and bounded by an insulator on its left. 

7.4 SUPERPOSITION	 AND UNIQUENESS OF 
STEADY CONDUCTION SOLUTIONS 

The physical laws and boundary conditions are different, but the approach in this 
section is similar to that of Secs. 5.1 and 5.2 treating Poisson’s equation. 

In a material having the conductivity distribution σ(r) and source distribution 
s(r), a steady potential distribution Φ must satisfy (7.2.4) with a source density 
−s on the right. Typically, the configurations of interest are as in Fig. 7.2.1, except 
that we now include the possibility of a distribution of current source density in the 
volume V . Electrodes are used to constrain this potential over some of the surface 
enclosing the volume V occupied by this material. This part of the surface, where 
the material contacts the electrodes, will be called S�. We will assume here that on 
the remainder of the enclosing surface, denoted by S��, the normal current density 
is specified. Depicted in Fig. 7.2.1 is the special case where the boundary S�� is 
insulating and hence where the normal current density is zero. Thus, according to 
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(7.2.1), (7.2.3), and (7.3.1), the desired E and J are found from a solution Φ to 

� · σ�Φ = −s (1) 

where 
Φ = Φi on Si

�

−n σ�Φ = Ji on Si
��· 

Except for the possibility that part of the boundary is a surface S�� where the 
normal current density rather than the potential is specified, the situation here is 
analogous to that in Sec. 5.1. The solution can be divided into a particular part 
[that satisfies the differential equation of (1) at each point in the volume, but not 
the boundary conditions] and a homogeneous part. The latter is then adjusted to 
make the sum of the two satisfy the boundary conditions. 

Superposition to Satisfy Boundary Conditions. Suppose that a system is 
composed of a source­free conductor (s = 0) contacted by one reference electrode 
at ground potential and n electrodes, respectively, at the potentials vj , j = 1, . . . n. 
The contacting surfaces of these electrodes comprise the surface S�. As shown in 
Fig. 7.2.1, there may be other parts of the surface enclosing the material that are 
insulating (Ji = 0) and denoted by S��. The solution can be represented as the sum 
of the potential distributions associated with each of the electrodes of specified 
potential while the others are grounded. 

n 

Φ = 
� 

Φj (2) 
j=1 

where 
� · σ�Φj = 0 

� 
vj on Si

�, j = iΦj = 0 on Si
�, j = i 

Each Φj satisfies (1) with s = 0 and the boundary condition on Si
�� with Ji = 0. 

This decomposition of the solution is familiar from Sec. 5.1. However, the boundary 
condition on the insulating surface S�� requires a somewhat broadened view of what 
is meant by the respective terms in (2). As the following example illustrates, modes 
that have zero derivatives rather than zero amplitude at boundaries are now useful 
for satisfying the insulating boundary condition. 

Example 7.4.1. Modal Solution with an Insulating Boundary 

In the two­dimensional configuration of Fig. 7.4.1, a uniformly conducting material 
is grounded along its left edge, bounded by insulating material along its right edge, 
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Fig. 7.4.1 (a) Two terminal pairs attached to conducting material 
having one wall at zero potential and another that is insulating. (b) 
Field solution is broken into part due to potential v1 and (c) potential 
v2. (d) The boundary condition at the insulating wall is satisfied by using 
the symmetry of an equivalent problem with all of the walls constrained 
in potential. 

and driven by electrodes having the potentials v1 and v2 at the top and bottom, 
respectively. 

Decomposition of the potential, as called for by (2), amounts to the superpo­
sition of the potentials for the two problems of (b) and (c) in the figure. Note that 
for each of these, the normal derivative of the potential must be zero at the right 
boundary. 

Pictured in part (d) of Fig. 7.4.1 is a configuration familiar from Sec. 5.5. The 
potential distribution for the configuration of Fig. 5.5.2, (5.5.9), is equally applicable 
to that of Fig. 7.4.1. This is so because the symmetry requires that there be no x­
directed electric field along the surface x = a/2. In turn, the potential distribution 
for part (c) is readily determined from this one by replacing v1 v2 and y b− y.→ →
Thus, the total potential is 

∞ 
sinh 

� 
nπ y

� 

Φ = 
� 4

� 
v1 a 

b
� sin 

nπ
x 

π n sinh 
� 

nπ a 
n=1 a 
odd (3) 

nπ 
v2 sinh 

� 
a 

(b− y)
� 

nπ 
� 

+	 sin x 
n sinh 

� 
nπb 

� 
a 

a 

If we were to solve this problem without reference to Sec. 5.5, the modes used 
to expand the electrode potential would be zero at x = 0 and have zero derivative 
at the insulating boundary (at x = a/2). 
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The Conductance Matrix. With Si
� defined as the surface over which the 

i­th electrode contacts the conducting material, the current emerging from that 
electrode is 

ii = σ�Φ da (4) 
Si 

· 

[See Fig. 7.2.1 for definition of direction of da.] In terms of the potential decompo­
sition represented by (2), this expression becomes 

n	 n 

ii = 
� � 

σ�Φj da = 
� 

Gijvj	 (5) 
j=1 S

i
� 

· 
j=1 

where the conductances are 

�
S� σ�Φj da · 

Gij = i 

vj (6) 

Because Φj is by definition proportional to vj , these parameters are independent of 
the excitations. They depend only on the physical properties and geometry of the 
configuration. 

Example 7.4.2. Two Terminal Pair Conductance Matrix 

For the system of Fig. 7.4.1, (5) becomes 

� 
i1 

� 
= 

� 
G11 G12 

� � 
v1 

�	 
(7)

i2 G21 G22 v2 

With the potential given by (3), the self­conductances G11 and G22 and the mutual 
conductances G12 and G21 follow by evaluation of (5). This potential is singular in the 
left­hand corners, so the self­conductances determined in this way are represented by 
a series that does not converge. However, the mutual conductances are determined 
by integrating the current density over an electrode that is at the same potential as 
the grounded wall, so they are well represented. For example, with c defined as the 
length of the conducting block in the z direction, 

σc 
� a/2 

4 
∞ 

1 
G12 = 

∂Φ2 
��� dx = σc

� 
(8) 

v2 ∂y y=b π n sinh 
� 

nπb 
�

0	 n=1 a 
odd 

Uniqueness. With Φi, Ji, σ(r), and s(r) given, a steady current distribution 
is uniquely specified by the differential equation and boundary conditions of (1). 
As in Sec. 5.2, a proof that a second solution must be the same as the first hinges 
on defining a difference potential Φd = Φa − Φb and showing that, because Φd = 
0 on Si

� and n σ�Φd = 0 on Si
�� in Fig. 7.2.1, Φd must be zero. · 
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Fig. 7.5.1 Conducting circular rod is immersed in a conducting mate­
rial supporting a current density that would be uniform in the absence 
of the rod. 

7.5 STEADY CURRENTS IN PIECE­WISE UNIFORM CONDUCTORS 

Conductor configurations are often made up from materials that are uniformly 
conducting. The conductivity is then uniform in the subregions occupied by the 
different materials but undergoes step discontinuities at interfaces between regions. 
In the uniformly conducting regions, the potential obeys Laplace’s equation, (7.2.5), 

� 2Φ = 0 (1) 

while at the interfaces between regions, the continuity conditions require that the 
normal current density and tangential electric field intensity be continuous, (7.2.9) 
and (7.2.10). 

n · (σaEa − σbEb) = 0 (2) 

Φa − Φb = 0 (3) 

Analogy to Fields in Linear Dielectrics. If the conductivity is replaced by 
the permittivity, these laws are identical to those underlying the examples of Sec. 
6.6. The role played by D is now taken by J. Thus, the analysis for the following 
example has already been carried out in Sec. 6.6. 

Example 7.5.1. Conducting Circular Rod in Uniform Transverse Field 

A rod of radius R and conductivity σb is immersed in a material of conductivity 
σa, as shown in Fig. 7.5.1. Perhaps imposed by means of plane parallel electrodes 
far to the right and left, there is a uniform current density far from the cylinder. 

The potential distribution is deduced using the same steps as in Example 
6.6.2, with �a σa and �b σb. Thus, it follows from (6.6.21) and (6.6.22) as→ → 

�� r � 
− 

� R� (σb − σa)
� 

Φa = −REo cos φ
R r (σb + σa) 

(4) 

Φb = 
−2σa 

Eor cos φ (5)
σa + σb 

and the lines of electric field intensity are as shown in Fig. 6.6.6. Note that although 
the lines of E and J are in the same direction and have the same pattern in each of the 
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Fig. 7.5.2 Distribution of current density in and around the rod of 
Fig. 7.5.1. (a) σb ≥ σa. (b) σa ≥ σb. 

regions, they have very different behaviors where the conductivity is discontinuous. 
In fact, the normal component of the current density is continuous at the interface, 
and the spacing between lines of J must be preserved across the interface. Thus, 
in the distribution of current density shown in Fig. 7.5.2, the lines are continuous. 
Note that the current tends to concentrate on the rod if it is more conducting, but 
is diverted around the rod if it is more insulating. 

A surface charge density resides at the interface between the conducting media 
of different conductivities. This surface charge density acts as the source of E on 
the cylindrical surface and is identified by (7.2.17). 

Inside­Outside Approximations. In exploiting the formal analogy between 
fields in linear dielectrics and in Ohmic conductors, it is important to keep in mind 
the very different physical phenomena being described. For example, there is no 
conduction analog to the free space permittivity �o. There is no minimum value of 
the conductivity, and although � can vary between a minimum of �o in free space 
and 1000�o or more in special solids, the electrical conductivity is even more widely 
varying. The ratio of the conductivity of a copper wire to that of its insulation 
exceeds 1021 . 

Because some materials are very good conductors while others are very good 
insulators, steady conduction problems can exemplify the determination of fields 
for large ratios of physical parameters. In Sec. 6.6, we examined field distributions 
in cases where the ratios of permittivities were very large or very small. The “inside­
outside” viewpoint is applicable not only to approximating fields in dielectrics but 
to finding the fields in the transient EQS systems in the latter part of this chapter 
and in MQS systems with magnetization and conduction. 

Before attempting a more general approach, consider the following example, 
where the fields in and around a resistor are described. 

Example 7.5.2. Fields in and around a Conductor 

The circular cylindrical conductor of Fig. 7.5.3, having radius b and length L, 
is surrounded by a perfectly conducting circular cylindrical “can” having inside 
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Fig. 7.5.3 Circular cylindrical conductor surroun­
ded by coaxial perfectly conducting “can” that is connected to the right 
end by a perfectly conducting “short” in the plane z = 0. The left end is 
at potential v relative to right end and surrounding wall and is connected 
to that wall at z = −L by a washer­shaped resistive material. 

Fig. 7.5.4 Distribution of potential and electric field intensity for the 
configuration of Fig. 7.5.3. 

radius a. With respect to the surrounding perfectly conducting shield, a dc voltage 
source applies a voltage v to the perfectly conducting disk. A washer­shaped material 
of thickness δ and also having conductivity σ is connected between the perfectly 
conducting disk and the outer can. What are the distributions of Φ and E in the 
conductors and in the annular free space region? 

Note that the fields within each of the conductors are fully specified without 
regard for the shape of the can. The surfaces of the circular cylindrical conductor are 
either constrained in potential or bounded by free space. On the latter, the normal 
component of J, and hence of E, is zero. Thus, in the language of Sec. 7.4, the 
potential is constrained on S� while the normal derivative of Φ is constrained on the 
insulating surfaces S��. For the center conductor, S� is at z = 0 and z = −L while 
S�� is at r = b. For the washer­shaped conductor, S� is at r = b and r = a and S�� 

is at z = −L and z = −(L + δ). The theorem of Sec. 7.4 shows that the potential 
inside each of the conductors is uniquely specified. Note that this is true regardless 
of the arrangement outside the conductors. 

In the cylindrical conductor, the solution for the potential that satisfies Laplace’s 

L 

equation and all these boundary conditions is simply a linear function of z. 

Φ = z b v − 
L 

(6) 

Thus, the electric field intensity is uniform and z directed. 

E = iz 
b v 

(7) 

These equipotentials and E lines are sketched in Fig. 7.5.4. By way of reinforcing 
what is new about the insulating surface boundary condition, note that (6) and (7) 
apply to the cylindrical conductor regardless of its cross­section geometry and its 
length. However, the longer it is, the more stringent is the requirement that the 
annular region be insulating compared to the central region. 
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In the washer­shaped conductor, the axial symmetry requires that the poten­
tial not depend on z. If it depends only on the radius, the boundary conditions on 
the insulating surfaces are automatically satsfied. Two solutions to Laplace’s equa­
tion are required to meet the potential constraints at r = a and r = b. Thus, the 
solution is assumed to be of the form 

Φc = Alnr + B (8) 

The coefficients A and B are determined from the radial boundary conditions, and 
it follows that the potential within the washer­shaped conductor is 

Φc 
ln

� 
a
r 
� 

= v (9) 
ln

� 
b 
�

a 

The “inside” fields can now be used to determine those in the insulating annular 
“outside” region. The potential is determined on all of the surface surrounding this 
region. In addition to being zero on the surfaces r = a and z = 0, the potential is 
given by (6) at r = b and by (9) at z = −L. So, in turn, the potential in this annular 
region is uniquely determined. 

This is one of the few problems in this book where solutions to Laplace’s 
equation that have both an r and a z dependence are considered. Because there is 
no φ dependence, Laplace’s equation requires that 

� 
∂2 1 ∂ ∂ 

� 
+ r Φ = 0 (10)

∂z2 r ∂r ∂r 

The linear dependence on z of the potential at r = b suggests that solutions to 
Laplace’s equation take the product form R(r)z. Substitution into (10) then shows 
that the r dependence is the same as given by (9). With the coefficients adjusted to 
make the potential Φa(a, −L) = 0 and Φa(b, −L) = v, it follows that in the outside 
insulating region 

v 
Φa = 

ln
� 

a 
� ln

� r � z 
(11) 

a L 
b 

To sketch this potential and the associated E lines in Fig. 7.5.4, observe that 
the equipotentials join points of the given potential on the central conductor with 
those of the same potential on the washer­shaped conductor. Of course, the zero 
potential surface is at r = a and at z = 0. The lines of electric field intensity that 
originate on the surfaces of the conductors are perpendicular to these equipoten­
tials and have tangential components that match those of the inside fields. Thus, 
at the surfaces of the finite conductors, the electric field in region (a) is neither 
perpendicular nor tangential to the boundary. 

For a positive potential v, it is clear that there must be positive surface charge 
on the surfaces of the conductors bounding the annular insulating region. Remember 
that the normal component of E on the conductor sides of these surfaces is zero. 
Thus, there is a surface charge that is proportional to the normal component of E 
on the insulating side of the surfaces. 

z 
σs(r = b) = �oEr

a(r = b) = 
�ov 

(12)− 
b ln(a/b) L 

The order in which we have determined the fields makes it clear that this 
surface charge is the one required to accommodate the field configuration outside 
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Fig. 7.5.5 Demonstration of the absence of volume charge density 
and existence of a surface charge density for a uniform conductor. (a) 
A slightly conducting oil is contained by a box constructed from a pair 
of electrodes to the left and right and with insulating walls on the other 
two sides and the bottom. The top surface of the conducting oil is free to 
move. The resulting surface force density sets up a circulating motion 
of the liquid, as shown. (b) With an insulating sheet resting on the 
interface, the circulating motion is absent. 

the conducting regions. A change in the shield geometry changes Φa but does not 
alter the current distribution within the conductors. In terms of the circuit analogy 
used in Sec. 7.0, the potential distributions have been completely determined by the 
rod­shaped and washer­shaped resistors. The charge distribution is then determined 
ex post facto by the “distributed capacitors” surrounding the resistors. 

The following demonstration shows that the unpaired charge density is zero 
in the volume of a uniformly conducting material and that charges do indeed tend 
to accumulate at discontinuities of conductivity. 

Demonstration 7.5.1. Distribution of Unpaired Charge 

A box is constructed so that two of its sides and its bottom are plexiglas, the top 
is open, and the sides shown to left and right in Fig. 7.5.5 are highly conducting. It 
is filled with corn oil so that the region between the vertical electrodes in Fig. 7.5.5 
is semi­insulating. The region above the free surface is air and insulating compared 
to the corn oil. Thus, the corn oil plays a role analogous to that of the cylindrical 
rod in Example 7.5.2. Consistent with its insulating transverse boundaries and the 
potential constraints to left and right is an “inside” electric field that is uniform. 

The electric field in the outside region (a) determines the distribution of charge 
on the interface. Since we have determined that the inside field is uniform, the 
potential of the interface varies linearly from v at the right electrode to zero at the 
left electrode. Thus, the equipotentials are evenly spaced along the interface. The 
equipotentials in the outside region (a) are planes joining the inside equipotentials 
and extending to infinity, parallel to the canted electrodes. Note that this field 
satisfies the boundary conditions on the slanted electrodes and matches the potential 
on the liquid interface. The electric field intensity is uniform, originating on the upper 
electrode and terminating either on the interface or on the lower slanted electrode. 
Because both the spacing and the potential difference vary linearly with horizontal 
distance, the negative surface charge induced on the interface is uniform. 
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Wherever there is an unpaired charge density, the corn oil is subject to an 
electrical force. There is unpaired charge in the immediate vicinity of the interface 
in the form of a surface charge, but not in the volume of the conductor. Consistent 
with this prediction is the observation that with the application of about 20 kV 
to electrodes having 20 cm spacing, the liquid is set into a circulating motion. The 
liquid moves rapidly to the right at the interface and recirculates in the region below. 
Note that the force at the interface is indeed to the right because it is proportional 
to the product of a negative charge and a negative electric field intensity. The fluid 
moves as though each part of the interface is being pulled to the right. But how can 
we be sure that the circulation is not due to forces on unpaired charges in the fluid 
volume? 

An alteration to the same experiment answers this question. With a plexiglas 
sheet placed on the interface, it is mechanically pinned down. That is, the electrical 
force acting on the unpaired charges in the immediate vicinity of the interface is 
countered by viscous forces tending to prevent the fluid from moving tangential to 
the solid boundary. Yet because the sheet is insulating, the field distribution within 
the conductor is presumably unaltered from what it was before. 

With the plexiglas sheet in place, the circulations of the first experiment are 
no longer observed. This is consistent with a model that represents the corn­oil as 
a uniform Ohmic conductor1. (For a mathematical analysis, see Prob. 7.5.3.) 

In general, there is a two­way coupling between the fields in adjacent uniformly 
conducting regions. If the ratio of conductivities is either very large or very small, it 
is possible to calculate the fields in an “inside” region ignoring the effect of “outside” 
regions, and then to find the fields in the “outside” region. The region in which the 
field is first found, the “inside” region, is usually the one to which the excitation 
is applied, as illustrated in Example 7.5.2. This will be further illustrated in the 
following example, which pursues an approximate treatment of Example 7.5.1. The 
exact solutions found there can then be compared to the approximate ones. 

Example 7.5.3.	 Approximate Current Distribution around Relatively 
Insulating and Conducting Rods 

Consider first the field distribution around and then in a circular rod that has 
a small conductivity relative to its surroundings. Thus, in Fig. 7.5.1, σa � σb. 
Electrodes far to the left and right are used to apply a uniform field and current 
density to region (a). It is therefore in this inside region outside the cylinder that 
the fields are first approximated. 

With the rod relatively insulating, it imposes on region (a) the approximate 
boundary condition that the normal current density, and hence the radial derivative 
of the potential, be zero at the rod surface, where r = R. 

∂Φa 

n Ja ≈ 0 
∂r 

≈ 0 at r = R (13)· ⇒ 

Given that the field at infinity must be uniform, the potential distribution in region 
(a) is now uniquely specified. A solution to Laplace’s equation that satisfies this 
condition at infinity and includes an arbitrary coefficient for hopefully satisfying the 

1 See film Electric Fields and Moving Media, produced by the National Committee for Electri­
cal Engineering Films and distributed by Education Development Center, 39 Chapel St., Newton, 
Mass. 02160. 
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Fig. 7.5.6 Distributions of electric field intensity around conducting 
rod immersed in conducting medium: (a) σa � σb; (b) σb � σa. Com­
pare these to distributions of current density shown in Fig. 7.5.2. 

first condition is 
cos φ 

Φa = −Eor cos φ + A (14) 
r 

With A adjusted to satisfy (13), the approximate potential in region (a) is 

Φa = −Eo

�
r + 

R2 � 
cos φ (15) 

r 

This is the potential in the exterior region, implying the field lines shown in Fig. 
7.5.6a. 

Now that we have obtained the approximate potential at r = R, Φb = 
−2EoR cos(φ), we can in turn approximate the potential in region (b). 

Φb = Br cos φ = −2Eor cos φ (16) 

The field lines associated with this potential are also shown in Fig. 7.5.6a. Note that 
if we take the limits of (4) and (5) where σa/σb � 1, we obtain these potentials. 

Contrast these steps with those that are appropriate in the opposite extreme, 
where σa/σb � 1. There the rod tends to behave as an equipotential and the bound­
ary condition at r = R is Φa = constant = 0. This condition is now used to evaluate 
the coefficient A in (14) to obtain 

Φa = −Eo

�
r − 

R2 � 
cos φ (17) 

r 

This potential implies that there is a current density at the rod surface given by 

∂Φa 

Jr
a(r = R) = −σa (r = R) = 2σaEo cos φ (18)

∂r 

The normal current density at the inside surface of the rod must be the same, so 
the coefficient B in (16) can be evaluated. 

2σa
Φb = Eor cos φ (19)− 

σb 
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Fig. 7.5.7 Rotor of insulating material is immersed in somewhat con­
ducting corn oil. Plane parallel electrodes are used to impose constant 
electric field, so from the top, the distribution of electric field should be 
that of Fig. 7.5.6a, at least until the rotor begins to rotate spontaneously 
in either direction. 

Now the field lines are as shown in Fig. 7.5.6b. 
Again, the approximate potential distributions given by (17) and (19), respec­

tively, are consistent with what is obtained from the exact solutions, (4) and (5), in 
the limit σa/σb � 1. 

In the following demonstration, a surprising electromechanical response has 
its origins in the charge distribution implied by the potential distributions found in 
Example 7.5.3. 

Demonstration 7.5.2. Rotation of an Insulating Rod in a Steady Current 

In the apparatus shown in Fig. 7.5.7, a teflon rod is mounted at its ends on bearings 
so that it is free to rotate. It, and a pair of plane parallel electrodes, are immersed in 
corn oil. Thus, from the top, the configuration is as shown in Fig. 7.5.1. The applied 
field Eo = v/d, where v is the voltage applied between the electrodes and d is their 
spacing. In the experiment, R = 1.27 cm , d = 11.8 cm, and the applied voltage is 
10–20 kV. 

As the voltage is raised, there is a threshold at which the rod begins to rotate. 
With the voltage held fixed at a level above the threshold, the ensuing rotation is 
continuous and in either direction. [See footnote 1.] 

To explain this “motor,” note that even though the corn oil used in the ex­
periment has a conductivity of σa = 5× 10−11 S/m, that is still much greater than 
the conductivity σb of the rod. Thus, the potential around and in the rod is given 
by (15) and (16) and the E field distribution is as shown in Fig. 7.5.6a. Also shown 
in this figure is the distribution of unpaired surface charge, which can be evaluated 
using (16). 

∂Φb 

σs(r = R) = n (�aEr
a − �bEr

b) = �b (r = R) = −2�bEo cos φ (20)· 
∂r 

Positive charges on the left electrode induce charges of the same sign on the nearer 
side of the rod, as do the negative charges on the electrode to the right. Thus, 
when static, the rod is in a posture analogous to that of a compass needle oriented 
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backwards in a magnetic field. Its static state is unstable and it attempts to reorient 
itself in the field. The continuous rotation results because once it begins to rotate, 
additional fields are generated that allow the charge to leak off the cylinder through 
currents in the surrounding oil. 

Note that if the rod were much more conducting than its surroundings, charges 
on the electrodes would induce charges of opposite sign on the nearer surfaces of the 
rod. This more familiar situation is the one shown in Fig. 7.5.6b. 

The condition requiring that there be no normal current density at an insu­
lating boundary can have a dramatic effect on fringing fields. This has already been 
illustrated by Example 7.5.2, where the field was uniform in the central conductor 
no matter what its length relative to its radius. Whenever we take the resistance of 
a wire having length L, cross­sectional area A, and conductivity σ as being L/σA, 
we exploit this boundary condition. 

The conduction analogue of Example 6.6.3 gives a further illustration of how 
an insulating boundary ducts the electric field intensity. With �a σa and �b σb,→ →
the configuration of Fig. 6.6.8 becomes the edge of a plane parallel resistor filled 
out to the edge of the electrodes by a material having conductivity σb. The fringing 
field then depends on the conductivity σa of the surrounding material. 

The fringing field that would result if the entire region were filled by a ma­
terial having a uniform conductivity is shown in Fig. 6.6.9a. By contrast, the field 
distribution with the conducting material extending only to the edge of the elec­
trode is shown in Fig. 6.6.9b. The field inside is exactly uniform and independent of 
the geometry of what is outside. Of course, there is always a fringing field outside 
that does depend on the outside geometry. But because there is little associated 
current density, the resistance is unaffected by this part of the field. 

7.6 CONDUCTION ANALOGS 

The potential distribution for steady conduction is determined by solving (7.4.1) 

� · σ�Φc = −s (1) 

in a volume V having conductivity σ(r) and current source distribution s(r), re­
spectively. 

On the other hand, if the volume is filled by a perfect dielectric having permit­
tivity �(r) and unpaired charge density distribution ρu(r), respectively, the potential 
distribution is determined by the combination of (6.5.1) and (6.5.2). 

� · ��Φe = −ρu (2) 

It is clear that solutions pertaining to one of these physical situations are 
solutions for the other, provided that the boundary conditions are also analogous. 
We have been exploiting this analogy in Sec. 7.5 for piece­wise continuous systems. 
There, solutions for the fields in dielectrics were applied to conduction problems. 
Of course, measurements made on dielectrics can also be used to predict steady 
conduction phemonena. 
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Conversely, fields found either theoretically or by experimentation in a steady 
conduction situation can be used to describe those in perfect dielectrics. When 
measurements are used, the latter procedure is a particularly useful one, because 
conduction processes are conveniently simulated and comparatively easy to mea­
sure. It is more difficult to measure the potential in free space than in a conductor, 
and to measure a capacitance than a resistance. 

Formally, a quantitative analogy is established by introducing the constant 
ratios for the magnitudes of the properties, sources, and potentials, respectively, in 
the two systems throughout the volumes and on the boundaries. With k1 and k2 

defined as scaling constants, 

� Φc k2 s 
= k1, = k2, = (3)

σ Φe k1 ρu 

substitution of the conduction variables into (2) converts it into (1). The boundary 
conditions on surfaces S� where the potential is constrained are analogous, provided 
the boundary potentials also have the constant ratio k2 given by (3). 

Most often, interest is in systems where there are no volume source distribu­
tions. Thus, suppose that the capacitance of a pair of electrodes is to be determined 
by measuring the conductance of analogously shaped electrodes immersed in a con­
ducting material. The ratio of the measured capacitance to conductance, the ratio 
of (6.5.6) to (7.2.15), follows from substituting � = k1σ, (3a), 

C 
� 

�E da/v k1 

�
σE da/v � 

G 
= �S1 

σE 

· 
da/v 

= � S1 

σE d

· 
a/v 

= k1 = 
σ 

(4) 
S1 S1

· · 

In multiple terminal pair systems, the capacitance matrix defined by (5.1.12) and 
(5.1.13) is similarly deduced from measurement of a conductance matrix, defined 
in (7.4.6). 

Demonstration 7.6.1. Electrolyte­Tank Measurements 

If great accuracy is required, fields in complex geometries are most easily determined 
numerically. However, especially if the capacitance is sought– and not a detailed 
field mapping– a conduction analog can prove convenient. A simple experiment to 
determine the capacitance of a pair of electrodes is shown in Fig. 7.6.1, where they are 
mounted on insulated rods, contacted through insulated wires, and immersed in tap 
water. To avoid electrolysis, where the conductors contact the water, low­frequency 
ac is used. Care should be taken to insure that boundary conditions imposed by the 
tank wall are either analogous or inconsequential. 

Often, to motivate or justify approximations used in analytical modeling of 
complex systems, it is helpful to probe the potential distribution using such an 
experiment. The probe consists of a small metal tip, mounted and wired like the 
electrodes, but connected to a divider. By setting the probe potential to the desired 
rms value, it is possible to trace out equipotential surfaces by moving the probe in 
such a way as to keep the probe current nulled. Commercial equipment is automated 
with a feedback system to perform such measurements with great precision. However, 
given the alternative of numerical simulation, it is more likely that such approaches 
are appropriate in establishing rough approximations. 
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Fig. 7.6.1 Electrolytic conduction analog tank for determining poten­
tial distributions in complex configurations. 

Fig. 7.6.2 In two dimensions, equipotential and field lines predicted by 
Laplace’s equation form a grid of curvilinear squares. 

Mapping Fields that Satisfy Laplace’s Equation. Laplace’s equation deter­
mines the potential distribution in a volume filled with a material of uniform con­
ductivity that is source free. Especially for two­dimensional fields, the conduction 
analog then also gives the opportunity to refine the art of sketching the equipoten­
tials of solutions to Laplace’s equation and the associated field lines. 

Before considering how a sheet of conducting paper provides the medium for 
determining two­dimensional fields, it is worthwhile to identify the properties of a 
field sketch that indeed represents a two­dimensional solution to Laplace’s equation. 

A review of the many two­dimensional plots of equipotentials and fields given 
in Chaps. 4 and 5 shows that they form a grid of curvilinear rectangles. In terms 
of variables defined for the field sketch of Fig. 7.6.2, where the distance between 
equipotentials is denoted by Δn and the distance between E lines is Δs, the ratio 
Δn/Δs tends to be constant, as we shall now show. 
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The condition that the field be irrotational gives 

E = −�Φ ⇒ |E| ≈ 
|ΔΦ|
|Δn| 

while the steady charge conservation law implies that along a flux tube, 

(5) 

� · σE = 0 ⇒ σ|E|Δs = constant ≡ ΔK 

Thus, along a flux tube, 

(6) 

σ 
ΔΦ 
Δn 

Δs = ΔK ⇒ 
Δs 
Δn 

= 
ΔK 
σΔΦ 

= constant (7) 

If each of the flux tubes carries the same current, and if the equipotential lines 
are drawn for equal increments of ΔΦ, then the ratio Δs/Δn must be constant 
throughout the mapping. The sides of the curvilinear rectangles are commonly 
made equal, so that the equipotentials and field lines form a grid of curvilinear 
squares. 

The faithfulness to Laplace’s equation of a map of equipotentials at equal 
increments in potential can be checked by sketching in the perpendicular field lines. 
With the field lines forming curvilinear squares in the starting region, a correct 
distribution of the equipotentials is achieved when a grid of squares is maintained 
throughout the region. With some practice, it is possible to iterate between re­
finements of the equipotentials and the field lines until a satisfactory map of the 
solution is sketched. 

Demonstration 7.6.2. Two­Dimensional Solution to Laplace’s Equation 
by Means of Teledeltos Paper 

For the mapping of two­dimensional fields, the conduction analog has the advantage 
that it is not necessary to make the electrodes and conductor “infinitely” long in the 
third dimension. Two­dimensional current distributions will result even in a thin­
sheet conductor, provided that it has a conductivity that is large compared to its 
surroundings. Here again we exploit the boundary condition applying to the surfaces 
of the paper. As far as the fields inside the paper are concerned, a two­dimensional 
current distribution automatically meets the requirement that there be no current 
density normal to those parts of the paper bounded by air. 

A typical field mapping apparatus is as simple as that shown in Fig. 7.6.3. 
The paper has the thickness Δ and a conductivity σ. The electrodes take the form 
of silver paint or copper tape put on the upper surface of the paper, with a shape 
simulating the electrodes of the actual system. Because the paper is so thin compared 
to dimensions of interest in the plane of the paper surface, the currents from the 
electrodes quickly assume an essentially uniform profile over the cross­section of the 
paper, much as suggested by the inset to Fig. 7.6.3. 

In using the paper, it is usual to deal in terms of a surface resistance 1/Δσ. 
The conductance of the plane parallel electrode system shown in Fig. 7.6.4 can be 
used to establish this parameter. 

i wΔσ S 

v 
= 

S 
≡ Gp ⇒ Δσ = Gp 

w 
(8) 
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Fig. 7.6.3 Conducting paper with attached electrodes can be used to 
determine two­dimensional potential distributions. 

Fig. 7.6.4 Apparatus for determining surface conductivity Δσ of pa­
per used in experiment shown in Fig. 7.6.3. 

The units are simply ohms, and 1/Δσ is the resistance of a square of the material 
having any sidelength. Thus, the units are commonly denoted as “ohms/square.” 

To associate a conductance as measured at the terminals of the experiment 
shown in Fig. 7.6.3 with the capacitance of a pair of electrodes having length l in the 
third dimension, note that the surface integrations used to define C and G reduce 
to 

C = 
l 

v 

� 

C 

�E · ds; G = 
Δ 

v 

� 

C 

σE · ds (9) 

where the surface integrals have been reduced to line integrals by carrying out the 
integration in the third dimension. The ratio of these quantities follows in terms of 
the surface conductance Δσ as 

C lk1 l� 
= = (10)

G Δ Δσ 

Here G is the conductance as actually measured using the conducting paper, and C 
is the capacitance of the two­dimensional capacitor it simulates. 

In Chap. 9, we will find that magnetic field distributions as well can often be 
found by using the conduction analog. 
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TABLE 7.7.1 

CHARGE RELAXATION TIMES OF TYPICAL MATERIALS 

σ − S/m �/�o τe − s 

Copper 

Water, distilled 

Corn oil 

Mica 

5.8× 107 

2× 10−4 

5× 10−11 

10−11 − 10−15 

1 

81 

3.1 

5.8 

1.5× 10−19 

3.6× 10−6 

0.55 

5.1− 5.1× 104 

7.7 CHARGE RELAXATION IN UNIFORM CONDUCTORS 

In a region that has uniform conductivity and permittivity, charge conservation 
and Gauss’ law determine the unpaired charge density throughout the volume of 
the material, without regard for the boundary conditions. To see this, Ohm’s law 
(7.1.7) is substituted for the current density in the charge conservation law, (7.0.3), 

∂ρu � · σE + 
∂t 

= 0 (1) 

and Gauss’ law (6.2.15) is written using the linear polarization constitutive law, 
(6.4.3). 

� · �E = ρu (2) 

In a region where σ and � are uniform, these parameters can be pulled outside the 
divergence operators in these equations. Substitution of div E found from (2) into 
(1) then gives the charge relaxation equation for ρu. 

∂ρu ρu � 

∂t 
+ 
τe 

= 0; τe ≡ 
σ (3) 

Note that it has not been assumed that E is irrotational, so the unpaired charge 
obeys this equation whether the fields are EQS or not. 

The solution to (3) takes on the same appearance as if it were an ordinary 
differential equation, say predicting the voltage of an RC circuit. 

ρu = ρi(x, y, z)e−t/τe (4) 

However, (3) is a partial differential equation, and so the coefficient of the exponen­
tial in (4) is an arbitrary function of the spatial coordinates. The relaxation time 
τe has the typical values illustrated in Table 7.7.1. 

The function ρi(x, y, z) is the unpaired charge density when t = 0. Given 
any initial distribution, the subsequent distribution of ρu is given by (4). Once the 
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unpaired charge density has decayed to zero at a given point, it will remain zero. 
This is true regardless of the constraints on the surface bounding the region of 
uniform σ and �. Except for a transient that can only be initiated from very special 
initial conditions, the unpaired charge density in a material of uniform conductivity 
and permittivity is zero. This is true even if the system is not EQS. 

The following example is intended to help emphasize these implications of (3) 
and (4). 

Example 7.7.1. Charge Relaxation in Region of Uniform σ and � 

In the region of uniform σ and � shown in Fig. 7.7.1, the initial distribution of 
unpaired charge density is 

� 
ρo; r < a 

ρi = 0; a < r (5) 

where ρo is a constant.
 
It follows from (4) that the subsequent distribution is
 

� 
ρoe

−t/τe ;ρu = r < a 
0; a < r 

As pictured in Fig. 7.7.1, the charge density in the spherical region r < a remains 
uniform as it decays to zero with the time constant τe. The charge density in the 
surrounding region is initially zero and remains so throughout the transient. 

Charge conservation implies that there must be a current density in the ma­
terial surrounding the initially charged spherical region. Yet, according to the laws 
used here, there is never a net unpaired charge density in that region. This is pos­
sible because in Ohmic conduction, there are at least two types of charges involved. 
In the uniformly conducting material, one or both of these migrate in the electric 
field caused by the net charge [in accordance with (7.1.5)] while exactly neutralizing 
each other so that ρu = 0 (7.1.6). 

Net Charge on Bodies Immersed in Uniform Materials2 . The integral 
charge relaxation law, (1.5.2), applies to the net charge within any volume con­
taining a medium of constant � and σ. If an initially charged particle finds itself 
suspended in a fluid having uniform σ and �, this charge must decay with the charge 
relaxation time constant τe. 

Demonstration 7.7.1. Relaxation of Charge on Particle in Ohmic Conductor 

The pair of plane parallel electrodes shown in Fig. 7.7.2 is immersed in a semi­
insulating liquid, such as corn oil, having a relaxation time on the order of a second. 
Initially, a metal particle rests on the lower electrode. Because this particle makes 
electrical contact with the lower electrode, application of a potential difference re­
sults in charge being induced not only on the surfaces of the electrodes but on the 
surface of the particle as well. At the outset, the particle is an extension of the lower 

2 This subsection is not essential to the material that follows. 
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Fig. 7.7.1 Within a material having uniform conductivity and permittivity,

initially there is a uniform charge density ρu in a spherical region, having radius

a. In the surrounding region the charge density is given to be initially zero and

found to be always zero. Within the spherical region, the charge density is

found to decay exponentially while retaining its uniform distribution.


Fig. 7.7.2 The region between plane parallel electrodes is filled by 
a semi­insulating liquid. With the application of a constant potential 
difference, a metal particle resting on the lower plate makes upward 
excursions into the fluid. [See footnote 1.] 

electrode. Thus, there is an electrical force on the particle that is upward. Note that 
changing the polarity of the voltage changes the sign of both the particle charge and 
the field, so the force is always upward. 

As the voltage is raised, the electrical force outweighs the net gravitational 
force on the particle and it lifts off. As it separates from the lower electrode, it does 
so with a net charge sufficient to cause the electrical force to start it on its way 
toward charges of the opposite sign on the upper electrode. However, if the liquid 
is an Ohmic conductor with a relaxation time shorter than that required for the 
particle to reach the upper electrode, the net charge on the particle decays, and the 
upward electrical force falls below that of the downward gravitational force. In this 
case, the particle falls back to the lower electrode without reaching the upper one. 
Upon contacting the lower electrode, its charge is renewed and so it again lifts off. 
Thus, the particle appears to bounce on the lower electrode. 

By contrast, if the oil has a relaxation time long enough so that the particle 
can reach the upper electrode before a significant fraction of its charge is lost, then 
the particle makes rapid excursions between the electrodes. Contact with the upper 
electrode results in a charge reversal and hence a reversal in the electrical force as 
well. 

The experiment demonstrates that as long as a particle is electrically isolated 
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Fig. 7.7.3 Particle immersed in an initially uniform electric field is 
charged by unipolar current of positive ions following field lines to its 
surface. As the particle charges, the “window” over which it can collect 
ions becomes closed. 

in an Ohmic conductor, its charge will decay to zero and will do so with a time 
constant that is the relaxation time �/σ. According to the Ohmic model, once the 
particle is surrounded by a uniformly conducting material, it cannot be given a net 
charge by any manipulation of the potentials on electrodes bounding the Ohmic 
conductor. The charge can only change upon contact with one of the electrodes. 

We have found that a particle immersed in an Ohmic conductor can only dis­
charge. This is true even if it finds itself in a region where there is an externally 
imposed conduction current. By contrast, the next example illustrates how a unipo­
lar conduction process can be used to charge a particle. The ion­impact charging 
(or field charging) process is put to work in electrophotography and air pollution 
control. 

Example 7.7.2. Ion­Impact Charging of Macroscopic Particles 

The particle shown in Fig. 7.7.3 is itself perfectly conducting. In its absence, the 
surrounding region is filled by an un­ionized gas such as air permeated by a uniform 
z­directed electric field. Positive ions introduced at z → −∞ then give rise to a 
unipolar current having a density given by the unipolar conduction law, (7.1.8). 
With the introduction of the particle, some of the lines of electric field intensity can 
terminate on the particle. These carry ions to the particle. Other lines originate on 
the particle and it is assumed that there is no mechanism for the particle surface to 
initiate ions that would then carry charge away from the particle along these lines. 
Thus, as the particle intercepts some of the ion current, it charges up. 

Here the particle­charging process is described as a sequence of steady states. 
The charge conservation equation (7.0.3) obtained by using the unipolar conduction 
law (7.1.8) then requires that 

� · (µρE) = 0 (6) 

Thus, the “field” ρE (consisting of the product of the charge density and the electric 
field intensity) forms flux tubes. These have walls tangential to E and incremental 
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cross­sectional areas δa, as illustrated in Figs.7.7.3 and 2.7.5, such that ρE δa· 
remains constant. 

As a second approximation, it is assumed that the dominant sources for the 
electric field are on the boundaries, either on the surface of the particle or at infinity. 
Thus, the ions in the volume of the gas are low enough in concentration so that their 
volume charge density makes a negligible contribution to the electric field intensity. 
At each point in the volume of the gas, 

� · �oE ≈ 0 (7) 

From this statement of Gauss’ law, it follows that the E lines also form flux 
tubes along which E 	δa is conserved. Because both E δa and ρE δa are constant· · · 
along a given E line, it is necessary that the charge density ρ be constant along these 
lines. This fact will now be used to calculate the current of ions to the particle. 

At a given instant in the charging process, the particle has a net charge q. 
Its surface is an equipotential and it finds itself in an electric field that is uniform 
at infinity. The distribution of electric field for this situation was found in Example 
5.9.2. Lines of electric field intensity terminate on the southern end of the sphere 
over the range π ≥ θ ≥ θc, where θc is shown in Figs. 7.7.3 and 5.9.2. In view of the 
unipolar conduction law, these lines carry with them a current density. Thus, there 
is a net current into the particle given by 

π 

i = −µρEr(r = R, θ)(2πR sin θRdθ)	 (8) 
θc 

Because ρ is constant along an electric field line and ρ is uniform far from the 
charge­collecting particles, it is a constant over the surface of integration. 

It follows from (5.9.13) that the normal electric field needed to evaluate (8) is 

∂Φ �� q	 
Er = = 3Ea cos θ + (9)− 

∂r r=R 4π�oR2 

Substitution of (9) into (8) gives 

π 

i = −µρ6πR2Ea 

� � 
cos θ + 

q � 
sin θdθ (10) 

θc 
qc 

where, as in Example 5.9.2, qc = 12π�oR
2Ea and 

− cos θc =	 
q 

(11) 
qc 

Remember, θc is the angle at which the radial electric field switches from being 
outward to inward. Thus, it is a function of the amount of charge on the particle. 
Substitution of (11) into (10) and some manipulation gives the net current to the 
particle as 

qc 
�
1−	 

q �2 
i = (12)

τi qc 

where τi = 4�o/µρ. 
From (10) it is clear that the current depends on the particle charge. As charge 

accumulates on the particle, the angle θc increases and so the southern surface over 
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Fig. 7.7.4 Normalized particle charge as a function of normalized 
time. The saturation charge qc and charging time τ are given after (10) 
and (12), respectively. 

which electric field lines terminate decreases. By the time q = qc, the collection 
surface is zero and, as implied by (12), the current goes to zero. 

If the charging process is slow enough to be viewed as a sequence of stationary 
states, the current given by (12) is equal to the rate of increase of the particle charge. 

dq 
= i

d(q/qc)
= 

�
1− 

q �2 
(13)

dt 
⇒ 

d(t/τi) qc 

Divided by what is on the right and multiplied by the denominator on the left, this 
expression can be integrated. 

� q/qc d
� 

q� � � t/τi 
qc 

0 

�
1− 

q
q

c 

� �2 
= 

0 

d
� 

τ

t 

i 

� 
(14) 

The result is a charging law that is not exponential but rather 

q t/τi 
= (15) 

qc 1 + t/τi 

This charging transient is shown in Fig. 7.7.4. By contrast with a particle 
placed in a conduction current that is Ohmic, a particle subjected to a unipolar 
current will charge up to the saturation charge qc. Note that the charging time, 
τi = 4�o/µρ, again takes the form of � divided by a “conductivity.” 

Demonstration 7.7.2. Electrostatic Precipitation 

Once dust, smoke, or fume particles are charged, they can be subjected to an electric 
field and pulled out of the gas in which they are interspersed. In large precipitators 
used to filter combustion gases before they are released from a stack, the charging 
and precipitation processes are carried out in one region. The apparatus of Fig. 7.7.5 
illustrates this process. 

A fine wire is stretched along the axis of a grounded conducting cylinder having 
a radius of 5–10 cm. With the wire at a voltage of 10–30 kv, a hissing sound gives 
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Fig. 7.7.5 Electrostatic precipitator consisting of fine wire at high 
voltage relative to surrounding conducting transparent coaxial cylinder. 
Ions created in corona discharge in the immediate vicinity of the wire 
follow field lines toward outer wall, some terminating on smoke particles. 
Once charged by the mechanism described in Example 7.7.2, the smoke 
particles are precipitated on the outer wall. 

evidence of ionization of the air in the immediate vicinity of the wire. This corona 
discharge provides positive and negative ion pairs adjacent to the wire. If the wire 
is positive, some of the positive ions are drawn out of this region and migrate to the 
cylindrical outer wall. Thus, outside the corona discharge region there is a unipolar 
conduction current of the type postulated in Example 7.7.2. The ion mobility is 
typically (1 2)× 10−4 (m/s)/(v/m), while the field is on the order of 5 × 105 v/m,→
so the ion velocity (7.1.3) is in the range of 50 − 100 m/s. 

Smoke particles, mixed with air rising through the cylinder, can be seen to be 
removed from the gas within a second or so. Large polyethylene particles dropped 
in from the top can be more readily seen to collect on the walls. In a practical 
precipitator, the collection electrodes are periodically rapped so that chunks of the 
collected material drop into a hopper below. 

Most of the time required to clear the air of smoke is spent by the particle 
in migrating to the wall after it has been charged. The charging time constant τi is 
typically only a few milliseconds. 

This demonstration further emphasizes the contrast between the behavior of 
a macroscopic particle when immersed in an Ohmic conductor, as in the previous 
demonstration, and when subjected to unipolar conduction. A particle immersed in 
a unipolar “conductor” becomes charged. In a uniform Ohmic conductor, it can only 
discharge. 

7.8 ELECTROQUASISTATIC CONDUCTION LAWS 
FOR INHOMOGENEOUS MATERIALS 

In this section, we extend the discussion of transients to situations in which the 
electrical permittivity and Ohmic conductivity are arbitrary functions of space. 

� = �(r), σ = σ(r) (1) 
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Distributions of these parameters, as exemplified in Figs. 6.5.1 and 7.2.3, might be 
uniform, piece­wise uniform, or smoothly nonuniform. The specific examples falling 
into these categories answer three questions. 

(a) Where does the unpaired charge density, found in Sec. 7.7, tend to accumulate 
when it disappears from a region having uniform properties. 

(b) With the unpaired charge density determined by the self­consistent EQS laws, 
what is the equation governing the potential distribution throughout the vol­
ume of interest? 

(c) What boundary and initial conditions make the solutions to this equation 
unique? 

The laws studied in this section and exemplified in the next describe both the 
perfectly insulating limit of Chap. 6 and the conduction dominated limit of Secs. 
7.1–7.6. More important, as suggested in Sec. 7.0, they describe how these limiting 
situations are related in EQS systems. 

Evolution of Unpaired Charge Density. With a nonuniform conductivity 
distribution, the statement of charge conservation and Ohm’s law expressed by 
(7.7.1) becomes 

∂ρu
σ� · E + E · �σ + 

∂t 
= 0 (2) 

Similarly, with a nonuniform permittivity, Gauss’ law as given by (7.7.2) becomes 

�� · E + E · �� = ρu (3) 

Elimination of � · E between these equations gives an expression that is the gener­
alization of the charge relaxation equation, (7.7.3). 

∂ρu ρu σ 

∂t 
+

(�/σ)
= −E · �σ + 

� 
E · �� (4) 

Wherever the electric field has a component in the direction of a gradient of σ or 
�, the unpaired charge density can be present and can be temporally increasing or 
decreasing. If a steady state has been established, in the sense that time rates of 
change are negligible, the charge distribution is given by (4), because then, ∂ρu/∂t = 
0. Note that this is the distribution of (7.2.8) that prevails for steady conduction. 
We can therefore expect that the charge density found to disappear from a region 
of uniform properties in Sec. 7.7 will reappear at surfaces of discontinuity of σ and 
� or in regions where � and σ vary smoothly. 

Electroquasistatic Potential Distribution. To evaluate (4), the self­consistent 
electric field intensity is required. With the objective of determining that field, 
Gauss’ law, (7.7.2), is used to eliminate ρu from the charge conservation statement, 
(7.7.1). 

∂ � · σE + 
∂t 

(� · �E) = 0 (5) 
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For the first time in the analysis of charge relaxation, we now introduce the elec­
troquasistatic approximation 

�× E � 0 ⇒ E = −�Φ (6) 

and (5) becomes the desired expression governing the evolution of the electric po­
tential. 

∂
��Φ

� 
= 0� · �σ�Φ + 

∂t (7) 

Uniqueness. Consider now the initial and boundary conditions that make 
solutions to (7) unique. Suppose that throughout the volume V , the initial charge 
distribution is given as 

ρu(r, t = 0) = ρi(r) (8) 

and that on the surface S enclosing this volume, the potential is a given function 
of time 

Φ = Φi(r, t) on S for t ≥ 0. (9) 

Thus, when t = 0, the initial distribution of electric field intensity satisfies Gauss’ 
law. The initial potential distribution satisfies the same law as for regions occupied 
by perfect dielectrics. 

� · ��Φi = −ρi (10) 

Given the boundary condition of (9) when t = 0, it follows from Sec. 5.2 that the 
initial distribution of potential is uniquely determined. 

Is the subsequent evolution of the field uniquely determined by (7) and the 
initial and boundary conditions? To answer this question, we will take a somewhat 
more formal approach than used in Sec. 5.2 but nevertheless use the same reasoning. 
Supose that there are two solutions, Φ = Φa and Φ = Φb, that satisfy (7) and the 
same initial and boundary conditions. 

Equation (7) is written first with Φ = Φa and then with Φ = Φb. With 
Φd ≡ Φa − Φb, the difference between these two equations becomes 

∂ 
(��Φd)

� 
= 0� · �σ�Φd + 

∂t 
(11) 

Multiplication of (11) by Φd and integration over the volume V gives 
� 

∂ 
(��Φd)

�
dv = 0 

V 

Φd� · �σ�Φd + 
∂t 

(12) 

The objective in the following manipulation is to turn this integration either into one 
over positive definite quantities or into an integration over the surface S, where the 
boundary conditions determine the potential. The latter is achieved if the integrand 
can be expressed as a divergence. Thus, the vector identity 

� · ψA = ψ� · A + A · �ψ (13) 
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is used to write (12) as 
� 

∂ 

V 

� · �Φd

�
σ�Φd + 

∂t 
��Φd

��
dv 

� �
σ�Φd + 

∂
��Φd 0 

(14) 
− 

V ∂t 

� · �Φddv = 

and then Gauss’ theorem converts the first integral to one over the surface S en­
closing V . � 

Φd

�
σ�Φd + 

∂
��Φd

� 
da 

S ∂t 
· 

2 + 
∂ � 1 2

��
dv = 0− 

� 

V 

�
σ|�Φd| 

∂t 2
�|�Φd| 

(15) 

The conversion of (12) to (15) is an example of a three­dimensional integration 
by parts. The surface integral is analogous to an evaluation at the endpoints of a 
one­dimensional integral. 

If both Φa and Φb satisfy the same condition on S, namely (9), then the 
difference potential is zero on S for all 0 ≤ t. Thus, the surface integral in (15) 
vanishes. We are left with the requirement that for 0 ≤ t, 

dt

d 
� 

V 

1
2
�|�Φd| 2dv = − 

� 

V 

σ|�Φd| 2dv (16) 

Because both Φa and Φb satisfy the same initial conditions, Φd must initially be 
zero. Thus, for �Φd to change to a nonzero value from zero, the derivative on 
the left must be positive. However, the integral on the right can only be zero or 
negative. Thus, Φd must stay zero for all time. We conclude that the fields found 
using (7), the initial condition of (8), and boundary conditions of (9) are unique. 

7.9 CHARGE RELAXATION IN UNIFORM AND 
PIECE­WISE UNIFORM SYSTEMS 

Configurations composed of subregions where the material has uniform properties 
are already familiar from Secs. 6.6 and 7.5. The conductivity and permittivity are 
then step functions of position, and the terms on the right in (7.8.4) are spatial 
impulses. Thus, the charge density tends to accumulate at interfaces between regions 
and is represented by a surface charge density. 

We consider first the evolution of the potential distribution in a region hav­
ing uniform properties. With the inhomogeneities represented by the continuity 
conditions, the discussion is then extended to piece­wise uniform configurations. 

Fields in Regions Having Uniform Properties. Where � and σ are uniform, 
(7.8.7) becomes
 � 

∂Φ Φ 
�


2� 
∂t 

+
(�/σ) 

= 0 (1) 
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This expression is satisfied either if the potential obeys the relaxation equation 

∂Φp +
Φp = 0 (2)

∂t (�/σ) 

or if it satisfies Laplace’s equation 

� 2Φh = 0 (3) 

In general, the potential is a linear combination of these solutions. 

Φ = Φp + Φh (4) 

The potential satisfying (2) is that associated with the relaxation of the charge 
density initially distributed in the volume of the material. We can think of this 
as being a particular solution, because the divergence of the associated electric 
displacement D = �E = −��Φp gives the unpaired charge density, (7.7.4), at each 
point in the volume V for t > 0. The solutions Φh to Laplace’s equation can then 
be used to make the sum of the two solutions satisfy the boundary conditions. 

Given that the initial charge density throughout the volume is ρi(r), the 
subsequent distribution is given by (7.7.4). One particular solution for the potential 
that then satisfies Poisson’s equation throughout the volume follows from evaluating 
the superposition integral [(4.5.3) with �o �] over that volume. → 

� 
ρi(r�)Φp = dv�e−t/(�/σ) (5) 

V � 4π� |r− r�| 

Note that this potential indeed satisfies (2) and the initial conditions on the charge 
density in the volume. Of course, the integral could be extended to charges outside 
the volume V , and the particular solution would be equally valid. 

The solutions to Laplace’s equation make it possible to make the total poten­
tial satisfy boundary conditions. Because an initial distribution of volume charge 
density cannot be initiated by means of boundary electrodes, the decay of an initial 
charge density is not usually of interest. The volume potential is most often simply 
a solution to Laplace’s equation. Before delving into these more common examples, 
consider one that illustrates the more general situation. 

Example 7.9.1. Potential Associated with Relaxation of Volume Charge 

In Example 7.7.1, the decay of charge having a spherical distribution in space was 
described. This could be done without regard for boundary constraints. To determine 
the associated potential, we stipulate the nature of the boundary surrounding the 
uniform material in which the charge is initially embedded. 

The uniform material fills the upper half­space and is bounded in the plane 
z = 0 by a perfect conductor constrained to zero potential. As shown in Fig. 7.9.1, 
when t = 0, there is an initial distribution of charge density that is uniform and of 
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Fig. 7.9.1 Infinite half­space of material having uniform conductivity 
and permittivity is bounded from below by a perfectly conducting plate. 
When t = 0, there is a uniform charge density in a spherical region. 

density ρo throughout a spherical region of radius a centered at z = h on the z axis, 
where h > a. 

In terms of a spherical coordinate system centered on the z axis at z = h, a 
particular solution for the potential follows from the integral form of Gauss’ law, 
much as in Example 1.3.1. With r+ denoting the radial distance from the center of 
the spherical region, 

2 2� 
3a −r+ ρoe

−t/τ ; r+ < a 
Φp = 

a 3ρ 
6 

o 

� 
−t/τ 

(6) 
e ; a < r+3�r+ 

where r+ = [x 2 + y 2 + (z − h)2]1/2 and τ ≡ �/σ. 
Note that this potential satisfies (2) and the initial condition but does not 

satisfy the zero potential condition at z = 0. To satisfy the latter, we add a potential 
that is a solution to Laplace’s equation, (3), everywhere in the upper half­space. This 
is the potential associated with an image charge density −ρoexp(−t/τ) distributed 
uniformly over a spherical region of radius a centered at z = −h. 

Φh = 
−a 3ρo 

e−t/τ (7)
3�r− 

where r = [x 2 + y 2 + (z + h)2]1/2 , z > 0.−
Thus, the total potential Φ = Φp +Φh that satisfies both the initial conditions 

and boundary conditions for 0 < t is 

2 2� 
3a −r+ ρoe

−t/τ a 3ρo −t/τ 

a 3ρo 
� 

1 1 

− 
−t/τ 

− 
e ; r+ < a 

Φ = 6� 3�r (8) 

3� r+ 
− 

r 

�
e ; a < r+ − 

At each instant in time, the potential distribution is the same as if the charge and 
its image were static. As the charge relaxes, so does its image. Note that the charge 
relaxes to the boundary without producing a net charge density anywhere outside 
the spherical region where the charge was initiated. 

Continuity Conditions in Piece­Wise Uniform Systems. Where the material 
properties undergo step discontinuities, the differential equations are represented 
by continuity conditions. The one representing the condition that the field be irro­
tational, (7.8.6), is the same as that in Sec. 5.3. 

n× (Ea − Eb) = 0 ⇔ Φa − Φb = 0 (9) 
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Fig. 7.9.2 Incremental volume for writing charge conservation boundary 
condition. 

The continuity condition representing Gauss’ law, (7.7.2), is also familiar (6.2.16). 

σsu = n (�aEa − �bEb) (10)· 

The continuity condition representing charge conservation, (7.7.1), is (1.5.12). With 
the current density expressed in terms of Ohm’s law, this continuity condition 
becomes 

n (σaEa − σbEb) + 
∂
σsu = 0 · 

∂t (11) 

For the incremental volume of Fig. 7.9.2, this continuity condition requires that if 
the conduction current entering the volume from region (b) exceeds that leaving to 
region (a), there must be an increasing surface charge density within the volume. 

The fact that we are solving a second­order differential equation, (7.8.7), sug­
gests that there are really only two continuity conditions. Thus, Gauss’ continuity 
condition only serves to relate the field to the unknown surface charge density, and 
the combination of (10) and (11) comprise one continuity condition. 

n (σaEa − σbEb) + 
∂ 

n (�aEa − �bEb) = 0 (12)· 
∂t 

· 

This continuity condition and the one on the tangential field or potential, (9), 
are needed to splice together solutions representing fields in piece­wise uniform 
configurations. 

The following example illustrates how the time dependence of the continuity 
condition allows the fields and charge distribution to evolve from the distributions 
for perfect dielectrics described in the latter part of Chap. 6 to the steady conduction 
distributions discussed in the first part of this chapter. 

Example 7.9.2. Maxwell’s Capacitor 

A configuration that brings out the roles of polarization and conduction in the field 
evolution while avoiding geometric complications is shown in Fig. 7.9.3. The space 
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Fig. 7.9.3 Maxwell’s capacitor. 

between perfectly conducting parallel plates is filled by layers of material. The one 
above has thickness a, permittivity �a, and conductivity σa, while for the one below, 
these parameters are b, �b, and σb, respectively. When t = 0, a switch is closed and 
the potential V of a battery is applied across the two electrodes. Initially, there is 
no unpaired charge between the electrodes either in the volume or on the interface. 

The electrodes are assumed long enough so that the fringing can be neglected 
and the fields in each of the materials taken as uniform. 

� 
Ea(t); 0 < x < a 

E = ix (13)
Eb(t); −b < x < 0 

The linear potential associated with this distribution satisfies Laplace’s equation, 
(3). Because there is no initial charge density in the volumes of the layers, the 
particular part of the potential, the solution to (2), is zero. 

The voltage source imposes the condition that the line integral of the electric 
field between the plates must be equal to v(t). 

a 

Exdx = v(t) = aEa + bEb (14) 
−b 

Because the layers are conducting, they respond to the application of the 
voltage with conduction currents. Since the currents differ, they cause a time rate 
of change of unpaired surface charge density at the interface between the layers, as 
expressed by (12). 

d 
(σaEa − σbEb) + (�aEa − �bEb) = 0 (15)

dt 

Note that the boundary conditions on tangential E at the electrode surfaces and at 
the interface are automatically satisfied. 

Given the driving voltage, these last two expressions comprise two equations 
in the two unknowns Ea and Eb. Thus, the solution to (14) for Eb and substitution 
into (15) gives a first­order differential equation for the field response in the upper 
layer. 

dEa dv 
(b�a + a�b) + (bσa + aσb)Ea = σbv + �b (16)

dt dt 

In particular, consider the response to a step in voltage, v = V u−1(t). The drive 
on the right in (16) then consists of a step and an impulse. The impulse must be 
matched by an impulse on the left. That is, the field Ea also undergoes a step change 
when t = 0. To identify the magnitude of this step, integrate (16) from 0− to 0+ . 

� 0+ 
dEa 

� 0+ 

(b�a + a�b) dt + (bσa + aσb) Eadt 
dt

0− 0− 

� � 
dv 

(17) 
0+ 0+ 

= σb vdt + �b dt 
dt

0− 0− 
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The result is a relationship between the jumps in voltage and in field. 

�
�a + 

a
�b

�
[Ea(0+)− Ea(0−)] = 

�b 
[v(0+)− v(0−)] (18)

b b 

Because v(0−) = 0 and Ea(0−) = 0, it follows that 

Ea(0+) = �b 
V 

(19)
b�a + a�b 

For t > 0, the particular plus homogeneous solution to (16) is 

Ea = σb 
V 

+ Ae−t/τ (20)
bσa + aσb 

where
 
b�a + a�b
 

.τ ≡ 
bσa + aσb 

The coefficient A is adjusted to make Ea meet the initial condition given by (19). 
Thus, the field transient in the upper layer is found to be 

σbV 
(1 − e−t/τ �bV

e−t/τEa = ) + (21)
(bσa + aσb) (b�a + a�b) 

It follows from (14) that the field in the lower layer is then 

V a 
Eb = Ea (22)

b 
− 

b 

The unpaired surface charge density, (10), follows from these fields. 

V (σb�a − σa�b)
(1 − e−t/τσsu = ) (23)

(bσa + aσb) 

The field and unpaired surface charge density transients are shown in Fig. 
7.9.4. The curves are drawn to depict a lower layer that has a somewhat greater 
permittivity and a much greater conductivity than the upper layer. Just after the 
step in voltage, when t = 0+, the surface charge density remains zero. Thus, the 
electric fields are at first what they would be if the layers were regarded as perfectly 
insulating dielectrics. As the surface charge accumulates, these fields approach values 
consistent with steady conduction. The limiting surface charge density approaches a 
saturation value that could be found by first evaluating the steady conduction fields 
and then finding σsu. Note that this surface charge can be positive or negative. 
With the lower region much more conducting than the upper one (σb�a � σa�b) the 
surface charge is positive. In this case, the field ends up tending to be shielded out 
of the lower layer. 

Piece­wise continuous configurations can often be represented by capacitor­
resistor networks. An exact circuit representation of Maxwell’s capacitor is shown 
in Fig. 7.9.5. The voltages across the capacitors are simply va = Eaa and vb = Ebb. 
In the circuit, the surface charge density given by (23) is the sum of the net charge 
per unit area on the lower plate of the top capacitor and that on the upper plate of 
the lower capacitor. 
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Fig. 7.9.4 With a step in voltage applied to the plane parallel config­
uration of Fig. 7.9.3, the electric field intensity above and below the in­
terface responds as shown on the left, while the unpaired surface charge 
density has the time dependence shown on the right. 

Fig. 7.9.5 Maxwell’s capacitor, Fig. 7.9.3, is exactly equivalent to the circuit
 
shown.
 

Nonuniform Fields in Piece­Wise Uniform Systems. We continue now to 
consider examples with no initial charge density in the regions having uniform 
conductivity and dielectric constant. Since it is not possible to establish a charge 
density in these regions by means of boundary constraints, this is almost always 
the situation in practice. The field distributions in the uniform subregions have 
potentials that satisfy Laplace’s equation, (3). These are “spliced” together at the 
interfaces between regions and constrained at boundaries by conditions that vary 
with time. The continuity conditions vary with time to account for the accumulation 
of unpaired charge at the interfaces between regions. 

Maxwell’s capacitor, Example 7.9.2, illustrates most features of the surface 
charge relaxation process. The response to a step function of voltage across an 
electrode pair is at first the field distribution of a system of perfect dielectrics, 
as developed in Chap. 6. After many charge relaxation times, steady conduction 
prevails, and the fields are as described in Sec. 7.5. In the remainder of this section, 
configurations will be considered that, by contrast to Maxwell’s capacitor, have 
fields that change their shape as the relaxation process evolves. 

The interplay of polarization and conduction processes is also evident in the 
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Fig. 7.9.6 A spherical material with conductivity σb and permittiv­
ity �b is surrounded by a material with conductivity and permittivity 
(σa, �a). An electric field E(t) that is uniform far from the sphere is 
applied. 

sinusoidal steady state response of a system. Just as the Maxwell capacitor has 
short­time and long­time responses dominated by the “capacitors” and “resistors,” 
respectively, the high­frequency and low­frequency responses are dominated by po­
larization and conduction, respectively. This too will now be illustrated. 

Example 7.9.3.	 Spherical Semi­insulating Material Embedded in a Second 
Material Stressed by Uniform Electric Field 

An electric field intensity E(t) is imposed on a material having permittivity and 
conductivity (�a, σa), perhaps by means of plane parallel electrodes. At the origin of 
a spherical coordinate system embedded in this material is a spherical region having 
permittivity and conductivity (�b, σb) and radius R, as shown in Fig. 7.9.6. Limiting 
cases include a conducting sphere surrounded by free space (�a = �o, σa = 0) or an 
insulating spherical cavity surrounded by a conducting material (σb = 0). 

In each of the regions, the potential must satisfy Laplace’s equation. From 
our experience with the potentials for perfect dielectric and for steady conduction 
configurations, we can expect that the boundary conditions can be satisfied using 
combinations of uniform and dipole fields. With the understanding that the coeffi­
cients A(t) and B(t) are functions of time, the solutions to Laplace’s equation are 
therefore postulated to take the form 

) cos θ
� 
−E(t)r cos θ + A(t 2 ; r > R 

Φ = r	 (24)
B(t)r cos θ; r < R 

Note that the uniform part of the exterior field has been matched at r →∞ to the 
given driving field. 

Continuity of the tangential electric field at r = R, (9), requires that these 
potential functions match at r = R. 

Φa(r = R) = Φb(r = R)	 (25) 

Conservation of charge, with the surface charge density represented using Gauss’ 
law, (12), makes the further requirement that 

(σaEr
a − σbEr

b) + 
∂ 

(�aEr
a − �bEr

b) = 0	 (26)
∂t 

In substituting the potentials of (24) into these two conditions, no derivatives with 
respect to θ are taken, so each term has the θ dependence cos(θ). It is for this 
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reason that such a simple solution can be used to satisfy the continuity conditions. 
Substitution into (25) relates the coefficients 

A A −ER + 
R2 

= BR ⇒ B = −E + 
R3 

(27) 

and with this relation used to eliminate B, substitution into (26) results in a differ­
ential equation for A(t), with E(t) as a driving function. 

dA 3 3 dE 
(2�a + �b) + (2σa + σb)A = (σb − σa)R E(t) + (�b − �a)R (28)

dt dt 

Step Response. Note that expression (28) has the same form as that for 
Maxwell’s capacitor, (16). The procedure leading to the field response to a step 
function of applied field, E = Eou−1(t), is therefore identical to that illustrated 
in Example 7.9.2. In fact, comparison of these equations makes it clear that the 
required solution, given that there were no initial fields (when t = 0−), is 

3

� 
σb − σa 

(1 − e−t/τ �b − �a 
e−t/τ 

� 
A = EoR ) + (29)

2σa + σb 2�a + �b 

where the relaxation time τ = (2�a + �b)/(2σa + σb). The coefficient B follows from 
(27). Thus, the potential of (24) is determined for t ≥ 0. 

⎧
r 

� 
σa−σb (1 − e−t/τ �a−�b e−t/τ 

� 
)2+ ) + (R ; R < r

⎪⎪
R 2σa+σb 2�a+�b r 

Φ = −EoR cos θ

⎨ 

r 

� 
1 + σa−σb (1 − e−t/τ e−t/τ 

� (30) 

⎩ ) + �a−�b ; r < R
⎪⎪

R 2σa+σb 2�a+�b 

The accumulation of unpaired surface charge at r = R accounts for the redistribution 
of potential with time. It follows from (10) that 

σsu = �aEr
a 

 − �bEr

b
 = 3Eo 
(�aσb − �bσa)

(1 − e−t/τ ) cos θ (31)
(2σa + σb) 

Thus, the unpaired surface charge density accumulates at the poles of the sphere, 
exponentially approaching a saturation value at a rate determined by the relaxation 
time τ . Just after the field is turned on, this surface charge density is zero and 
the field distribution should be that for a uniform field applied to perfect dielectrics. 
Indeed, evaluated when t = 0, (30) gives the potential for perfect dielectrics. In the 
opposite extreme, where many relaxation times have passed so that the exponentials 
in (30) are negligible, the potential assumes the distribution for steady conduction. 

A graphical portrayal of this field transient is given in Fig. 7.9.7. The case 
shown was chosen because it involves a drastic redistribution of the field as time 
progresses. The spherical region is highly conducting compared to its surroundings, 
but the exterior material is highly polarizable compared to the spherical region. 
Thus, just after the switch is closed, the field lines tend to be trapped in the outer 
region. As time progresses and conduction rules, these lines tend to pass through 
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Fig. 7.9.7 Evolution of the displacement flux density D in and around 
the sphere of Fig. 7.9.6 and of σsu in response to the application of a step 
in applied field. The sphere is more conducting than its surroundings 
(σa/σb = 0.2), while the outer region has a greater permittivity than 
the inner one, �a/�b = 5. Thus, when the distribution of D is determined 
by the polarization just after the field is applied, the field lines tend to 
be trapped in the outer region. By the time t = 0.5 τ , enough σsu has 
been induced to cancel the field associated with σsp, and the electric 
field intensity is essentially uniform. In the final state, conduction alone 
determines the distribution of E. However, it is D that is shown in the 
figure, so, in fact, the permittivities do contribute to the final relative 
intensities. 

the highly conducting sphere. The temporal scale of the transient is determined by 
the relaxation time τ . 

Sinusoidal Steady State Response. Consider now the sinusoidal steady 
state that results from applying the uniform field 

E(t) = Ep cos ωt = ReEpejωt (32) 



� 

� 
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As in dealing with ac circuits, where the currents and voltages are also solutions to 
constant coefficient ordinary differential equations, the response is now assumed to 
have the same frequency ω as the drive but to have a yet to be determined amplitude 
and phase represented by the complex coefficients A and B. 

A(t) = ReAeˆ jωt; B(t) = Re ˆ jωt Be (33) 

Substitution of (32) and (33a) into (28) gives an expression that can be solved for 

Â in terms of the drive, Ep. 

Â =
[(σb − σa) + jω(�b − �a)] 

R3Ep (34)
(2σa + σb) + jω(2�a + �b) 

In turn, the complex amplitude B follows from this result and (27). 

Â (σa + jω�a)
B̂ = −Ep + 

R3 
= −3Ep

(2σa + σb) + jω(2�a + �b) 
(35) 

Now, with the amplitudes in (31) and (32) given by these expressions, the sinusoidal 
steady state fields postulated with (24) are determined. 

Φ = −Re EpR cos θejωt 

⎧
⎨ 

⎩ 

r 
R 

+ 

� 
(σa−σb)+jω(�a−�b) 

(2σa+σb)+jω(2�a+�b) 
(R )2 

r 
; r > R 

(36) 
r (σa+jω�a)3
R (2σa+σb)+jω(2�a+�b)

; R > r 

The surface charge density associated with these fields is then 

σsu = Re 
3Ep(σb�a − σa�b) 

cos θejωt (37)
(2σa + σb) + jω(2�a + �b) 

With the frequency rather than the time as the parameter, these expressions can be 
interpreted analogously to the step function response, (30) and (31). In the high­
frequency limit, where 

ω(2�a + �b) 
� 

(�a − �b) ≡ ωτ � 1; ω 
(σa − σb) 

� 1 (38)
2σa + σb 

the conductivity terms become negligible in (36), the coefficients Â and B̂ become 
independent of frequency and real. Thus, the fields are in temporal phase with 
the applied field and sinusoidally varying versions of what would be found if the 
materials were assumed to be perfect dielectrics. If the frequency is high compared 
to the reciprocal charge relaxation times, the field distributions are the same as they 
would be just after a step in applied field [when t = 0+ in (30)]. 

With the inequalities of (38) reversed, the terms involving the permittivity in 

(36) are negligible, the coefficients Â and B̂ are again real and hence the fields are just 
as they would be for stationary conduction except that they vary sinusoidally with 
time. Thus, in the low frequency limit, the fields are sinusoidally varying versions 
of the steady conduction fields that prevail long after a step in applied field [(30) in 
the limit t →∞]. 
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These high­ and low­frequency limits are consistent with the frequency de­
pendence of the unpaired surface charge density, given by (37). At low frequencies, 
this surface charge density varies sinusoidally in or out of phase with the applied 
field and with an amplitude consistent with steady conduction. As the frequency is 
made to greatly exceed the reciprocal relaxation time, the magnitude of this charge 
falls to zero. In this high­frequency limit, there is insufficient time during one cycle 
for significant charge to relax to the spherical interface. Thus, at high frequencies 
the fields become the same as if the unpaired charge density were ignored and the 
dielectrics assumed to be perfectly insulating. 

In the two demonstrations that close this section, an obvious objective is the 
association of the previous example with practical situations. The approximations 
used to rederive the relevant fields cast further light on the physical processes at 
work. 

Demonstration 7.9.1. Capacitively Induced Fields in a Person in the Vicinity 
of a High­Voltage Power Line 

A person standing under a conventional power line, as in Fig. 7.9.8a, is subject to 
a 60 Hz alternating electric field intensity that is typically 5 × 104 v/m. In response 
to this field, body currents are induced. Common experience suggests that these are 
not large enough to create discomfort, but are the currents appreciable enough to 
be of long­term medical concern? 

In the bare­handed maintenance of power lines, a person is brought to within 
arms length of the line by an insulated hoist, as shown in Fig. 7.9.8b. Without 
shielding, the body is in this case subjected to much more intense fields, perhaps 
5× 105 v/m. For the first person proving out this technique, the estimation of fields 
and currents within the body was of considerable interest. 

To the layman, these imposed fields seem to imply that a body one meter in 
length would be subject to a voltage difference of 50 kV at the ground and 500 kV 
near the line. However, as we will now illustrate, surrounded by air, the body does 
an excellent job of shielding out the electric field. 

The hemispherical conductor resting on a ground plane, shown in Fig. 7.9.9, 
is a model for an individual on (and in electrical contact with) the ground. In the 
experiment, the hemisphere is jello, molded to have the radius R and having a 
conductivity essentially that of the salt water used in its making. (To obtain the 
physiological conductivity of 0.2 S/m, unflavored gelatine is made using 0.02 M 
NaCl, a solution of 1.12 grams/liter.) 

Presumably, the potential in and around the hemisphere is given by (30). 
The z = 0 plane is at zero potential for the spherical region described, and so the 
potential applies equally well to the hemisphere on the ground plane. Parameters are 
(�a, σa) = (�o, 0) in the air and (�b, σb) = (�, σ) in the hemisphere. A conductivity 
typical of physiological tissue is σ = .2 S/m. As a result, the charge relaxation time 
based on the permittivity of the body (�b = 81�o) and the conductivity of the body is 
extremely short, τ = 4× 10−9 s. This makes it possible to approximate the potential 
distribution using the two simple steps that follow. 

First, because the charge can relax to the surface in a time that is far shorter 
than 1/ω, and because the hemisphere is surrounded by material that has far less 
conductivity, as far as the field in the air is concerned, its surface is an equipotential. 

Φa(r = R) � 0 (39) 
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Fig. 7.9.8 (a) Person in vicinity of power line terminates lines of elec­
tric field intensity and hence is subject to currents associated with in­
duced charge. The electric field intensity at the ground is as much as 
5 × 104 V/m. (b) Worker carrying out “bare­handed maintenance” is 
subject to field that depends greatly on shielding provided, but can be 
5× 105 V/m or more. (c) Hemispherical model for person on ground in 
(a). (d) Spherical model for person near line without shielding, (b). 

Thus, the potential distribution can be written by inspection [or by recourse to 
(5.9.7)] as �� r � 

− 
� R�2

� 

R r 
Φa � −EpR cos ωt cos θ (40) 

Because of the short relaxation time and high conductivity for the sphere relative 
to the air, the surface charge density is essentially determined by the exterior field. 
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Fig. 7.9.9 Demonstration of currents induced in flesh­simulating hemi­
sphere by field applied in surrounding air. 

Thus, the conservation of charge continuity condition, (12), is approximately 

∂ 
σEr

b(r = R) � [�oEr
a(r = R)] (41)

∂t 

The rate of change of the surface charge density on the right in this expression has 
already been determined, so the expression serves to evaluate the normal conduction 
current density just inside the hemispherical surface. 

b 3ω�oEp
Er(r = R) = sin ωt cos θ (42)− 

σ 

In the interior region, the potential is uniform and thus takes the form Br cos(θ). 
Evaluation of the coefficient B by using (42) then gives the approximate potential 
distribution within the hemisphere. 

Φb 3ω�o 
Epr cos θ sin ωt =

3ω�o 
Epz sin ωt (43)� 

σ σ 

In retrospect, note that the potentials given by (40) and (43) are obtained by 
taking the appropriate limit of the potential obtained without making approxima­
tions, (36). 

Inside the hemisphere, the conditions for essentially steady conduction prevail. 
Thus, the potential predicted by (43) is probed by means of metal spheres (Ag/AgCl 
electrodes) embedded in the jello and connected to an oscilloscope through insulated 
wires. Inside the hemisphere, surface charge stored on the surfaces of the insulated 
wires has a minor effect on the current distribution. 

Typical experimental values for a 250 Hz excitation are R = 3.8 cm, s = 12.7 
cm, v = 565 V peak, and σ = 0.2 S/m. With the probes located at z = 2.86 cm and 
z = 0.95 cm, the measured potentials are 25 µV peak and 10 µV peak, respectively. 
With the given parameters, (43) gives 26.5 µV peak and 8.8 µV peak, respectively. 

What are the typical current densities that would be induced in a person in 
the vicinity of a power line? According to (41), for the person on the ground in a 
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Fig. 7.9.10 Configuration for an electrocardiogram, including volt­
ages typically generated at body periphery by the heart. 

field of 5 × 104 V/m (Fig. 7.9.8a), the current density is Jz = σEz = 0.05µA/cm2 . 
For the person doing bare­handed maintenance where the field is perhaps 5 × 105 

V/m (Fig. 7.9.8b), the model is a sphere in a uniform field (Fig. 7.9.8d). The current 
density is again given by (43), Jz = σEz = 0.5µA/cm2 . 

Of course, the geometry of a person is not spherical. Thus, it can be expected 
that the field will concentrate more in the actual situation than for the hemispherical 
or spherical models. The approximations introduced in this demonstration would 
greatly simplify the development of a numerical model. 

Have we found estimates of current densities suggesting danger, especially for 
the maintenance worker? Physiological systems are far too complex for there to be 
a simple answer to this question. However, matters are placed in some perspective 
by recognizing that currents of diverse origins exist in the body so long as it lives. In 
the next demonstration, electrocardiogram potentials are used to estimate current 
densities that result from the muscular contractions of the heart. The magnitude of 
the current density found there will lend some perspective to that determined here. 

The approximate analysis introduced in support of the previous demonstra­
tion is an example of the “inside­outside” viewpoint introduced in Sec. 7.5. The 
exterior insulating region, where the field was applied, was “inside,” while the inte­
rior conducting region was “outside.” The following demonstration continues this 
theme with a contrasting example, where the excitation is in the conducting region. 

Demonstration 7.9.2. Currents Induced by the Heart 

The configuration for taking an electro cardiogram is typically as shown in Fig. 
7.9.10. With care taken to balance out 60 Hz signals induced in each of the elec­
trodes by external fields, the electrical signals induced by the muscle contractions in 
the heart are easily measured using a conventional oscilloscope. In practice, many 
electrodes are used so that detailed information on the distribution of the muscle 
contractions can be discerned. 

Here we simply represent the heart by a dipole source of current at the center 
of a conducting sphere, somewhat as depicted in Figs. 7.9.10 and 7.9.11. Relatively 
little current is induced in the limbs, so that potentials measured at the extremities 
roughly reflect the potentials on the surface of the equivalent sphere. Given that 
typical potential differences are on the order of millivolts, what current dipole mo­
ment can we attribute to the heart, and what are the typical current densities in its 
neighborhood? 
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Fig. 7.9.11 Body and heart modeled by spherical conductor and dipole 
current. 

With the heart represented by a current source of dipole moment ipd at the 
center of the spherical “torso,” the electric potential at the origin approaches that 
for the dipole current source, (7.3.9). 

ipd cos θ 
Φb(r 0) (44)→ → 

4πσ r2 

At the surface r = R, the spherical body is being surrounded by an insulator. 
Thus, again using Fig. 7.9.11, any normal conduction current must be accounted 
for by the accumulation of surface charge. Because the relaxation time is so short 
compared to the 1s period typical of the heart, the current density associated with 
the buildup of surface charge is extremely small. As a result, the current distribution 
inside the sphere is as though the normal current density at r = R were zero. 

∂Φb 
(r = R) � 0 (45)

∂r 

Thus, the potential within the body is fully determined without regard for con­
straints from the surrounding region. The solution to Laplace’s equation that satis­
fies these last two conditions is 

Φb � 
ipd 

�� R�2 
+ 2

� r �� 
cos θ (46)

4πσR2 r R 

Because the potential is continuous at r = R, the potential on the surface of the 
“torso” follows from evaluation of this expression at r = R. 

3(ipd)
Φa(r = R) = Φb(r = R) = cos θ (47)

4πσR2 

Thus, given that the potential difference between θ = 45 degrees and θ = 135 degrees 
is 1 mV, that R = 25 cm, and that σ = 0.2 S/m, it follows from (47) that the peak 
current dipole moment of the heart is 3.7× 10−5 A ­ m. 

Typical current densities can now be found using (46) to evaluate the electric 
field intensity. For example, the current density at the radius R/2 just above the 
dipole source is 

Jz = σEz

�
r = 

R
, θ = 0

� 
= 

7(ipd) 

2 2πR3 (48) 

= 2.6× 10−3A/m 2 = 0.26 µA/cm 2 



60 Conduction and Electroquasistatic Charge Relaxation Chapter 7 

Note that at the particular position selected the current density exceeds with some 
margin that to which the maintenance worker is subjected in the previous demon­
stration. 

To begin to correlate the state and function of the heart with electrocardio­
grams, it is necessary to represent the heart by a current dipole that not only has 
a special temporal signature but rotates with time as well[1,2]. Unfortunately, much 
of the medical literature on the subject takes the analogy between electric dipoles 
(Sec.4.4) and current dipoles (Sec. 7.3) literally. The heart is described as an electric 

dipole[2], which it certainly is not. If it were, its fields would be shielded out by the 
surrounding conducting flesh. 

R E F E R E N C E S 

[1] R. Plonsey, Bioelectric Phenomena, McGraw­Hill Book Co., N.Y. (1969), p. 
205. 
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Medical Pub., Inc., Chicago, Ill. 2nd ed., pp. 125­138. 

7.10 SUMMARY 

This chapter can be divided into three parts. In the first, Sec. 7.1, conduction 
constitutive laws are related to the average motions of microscopic charge carriers. 
Ohm’s law, as it relates the current density Ju to the electric field intensity E 

Ju = σE (1) 

is found to describe conduction in certain materials which are constituted of at 
least one positive and one negative species of charge carrier. As a reminder that the 
current density can be related to field variables in many ways other than Ohm’s 
law, the unipolar conduction law is also derived in Sec. 7.1, (7.1.8). But in this 
chapter and those to follow, the conduction law (1) is used almost exclusively. 

The second part of this chapter, Secs. 7.2–7.6, is concerned with “steady” con­
duction. A summary of the differential laws and corresponding continuity conditions 
is given in Table 7.10.1. Under steady conditions, the unpaired charge density is 
determined from the last expressions in the table after the first two have been used 
to determine the electric potential and field intensity. 

In the third part of this chapter, Secs. 7.7–7.9, the dynamics of EQS systems 
is developed and exemplified. The laws used to determine the electric potential and 
field intensity, given by the first two lines in Table 7.10.2, are valid for frequencies 
and characteristic times that are arbitrary relative to electrical relaxation times, 
provided those times are themselves long compared to times required for an elec­
tromagnetic wave to propagate through the system. The last expressions identify 
how the unpaired charge density is relaxing under dynamic conditions. 

In EQS systems, the magnetic induction makes a negligible contribution and 
the electric field intensity is essentially irrotational. Thus, E is represented by 
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TABLE 7.10.1 

SUMMARY OF LAWS FOR STEADY STATE OHMIC CONDUCTION 

Differential Law Eq. No. Continuity Condition Eq. No. 

Faraday’s 
Law 

� × E � 0 ⇔ E = −�Φ (7.0.1) Φa − Φb = 0 (7.2.10) 

Charge 
conservation 

� · σE = s (7.2.2) 
(7.3.1) 

n · (σaE
a − σbE

b) = Js 
(7.2.9) 
(7.3.4) 

Unpaired 
charge 

distribution 

ρu = − � 
σ
E · �σ + E · �� (7.2.8) σsu = n · �aE

a
�
1− �bσa 

�aσb 

� 
(7.2.12) 

TABLE 7.10.2 

SUMMARY OF EQS LAWS FOR INHOMOGENEOUS OHMIC MEDIA 

Differential Law Eq. No. Continuity Condition Eq. No. 

Faraday’s 
law 

E = −�Φ (7.0.1) Φa − Φb = 0 (7.2.10) 

Charge 
conservation, 

Ohm’s law, 

and 

Gauss’ law 

� · 
�
σE + ∂ 

∂t
(�E)

� 
= s (7.8.5) 

(7.3.2) 

n · (σaE
a − σbE

b) 

+ 
∂ 

∂t 
n · (�aE

a − �bE
b) 

= Js 

(7.9.12) 

(7.3.4) 

Relaxation 

of unpaired 

charge 

density 

∂ρu 

∂t 
+ 

ρu 

�/σ 
= −E · �σ 

+ 
σ 

� 
E · �� 

(7.8.4) 
∂σsu 

∂t 
+ n · (σaE

a − σbE
b) 

= 0 

(7.9.11) 

−grad (Φ) in both Table 7.10.1 and Table 7.10.2. In the EQS approximation, ne­
glecting the magnetic induction is tantamount to ignoring the finite transit time 
effects of electromagnetic waves. This we saw in Chap. 3 and will see again in Chaps. 
14 and 15. 
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In MQS systems, fields may be varying so slowly that the effect of magnetic 
induction on the current flow is again ignorable. In that case, the laws of Table 
7.10.1 are once again applicable. So it is that the second part of this chapter is a 
logical base from which to begin the next chapter. At least under steady conditions 
we already know how to predict the distribution of the current density, the source 
of the magnetic field intensity. 

How rapidly can MQS fields vary without having the magnetic induction come 
into play? We will answer this question in Chap. 10. 
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P R O B L E M S 

7.1 Conduction Constitutive Laws 

7.1.1	 In a metal such as copper, where each atom contributes approximately one 
conduction electron, typical current densities are the result of electrons 
moving at a surprisingly low velocity. To estimate this velocity, assume 
that each atom contributes one conduction electron and that the material is 
copper, where the molecular weight Mo = 63.5 and the mass density is ρ = 
8.9× 103kg/m3. Thus, the density of electrons is approximately (Ao/Mo)ρ, 
where Ao = 6.023 × 1026 molecules/kg­mole is Avogadro’s number. Given 
σ from Table 7.1.1, what is the mobility of the electrons in copper? What 
electric field intensity is required to drive a current density of l amp/cm2? 
What is the electron velocity? 

7.2 Steady Ohmic Conduction 

7.2.1∗	 The circular disk of uniformly conducting material shown in Fig. P7.2.1 
has a dc voltage v applied to its surfaces at r = a and r = b by means of 
perfectly conducting electrodes. The other boundaries are interfaces with 
free space. Show that the resistance R = ln(a/b)/2πσd. 

Fig. P7.2.1 

7.2.2	 In a spherical version of the resistor shown in Fig. P7.2.1, a uniformly 
conducting material is connected to a voltage source v through spherical 
perfectly conducting electrodes at r = a and r = b. What is the resistance? 

7.2.3∗	 By replacing � σ, resistors are made to have the same geometry as shown →
in Fig. P6.5.1. In general, the region between the plane parallel perfectly 
conducting electrodes is filled by a material of conductivity σ = σ(x). The 
boundaries of the conductor that interface with the surrounding free space 
have normals that are either in the x or the z direction. 

(a) Show that even if d is large compared to l and c, E between the plates 
is (v/d)iy. 
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(b) If the conductor is piece­wise uniform, with sections having conduc­
tivities σa and σb of width a and b, respectively, as shown in Fig. 
P6.5.1a, show that the conductance G = c(σbb+ σaa)/d. 

(c) If σ = σa(1 + x/l), show that G = 3σacl/2d. 

7.2.4	 A pair of uniform conductors form a resistor having the shape of a circular 
cylindrical half­shell, as shown in Fig. P7.2.4. The boundaries at r = a 
and r = b, and in planes parallel to the paper, interface with free space. 
Show that for steady conduction, all boundary conditions are satisfied by a 
simple piece­wise continuous potential that is an exact solution to Laplace’s 
equation. Determine the resistance. 

Fig. P7.2.4 

7.2.5∗	 The region between the planar electrodes of Fig. 7.2.4 is filled with a ma­
terial having conductivity σ = σo/(1+ y/a), where σo and a are constants. 
The permittivity � is uniform. 

(a) Show that G = Aσo/d(1 + d/2a). 

(b) Show that ρu = �Gv/Aσoa. 

7.2.6	 The region between the planar electrodes of Fig. 7.2.4 is filled with a uni­
formly conducting material having permittivity � = �a/(1 + y/a). 

(a) What is G? 

(b) What is ρu in the conductor? 

7.2.7∗	 A section of a spherical shell of conducting material with inner radius b 
and outer radius a is shown in Fig. P7.2.7. Show that if σ = σo(r/a)2, the 
conductance G = 6π(1− cos α/2)ab3σo/(a3 − b3). 

http:P6.5.1a
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Fig. P7.2.7 

7.2.8	 In a cylindrical version of the geometry shown in Fig. P7.2.7, the mate­
rial between circular cylindrical outer and inner electrodes of radii a and 
b, respectively, has conductivity σ = σo(a/r). The boundaries parallel to 
the page interface free space and are a distance d apart. Determine the 
conductance G. 

7.3 Distributed Current Sources and Associated Fields 

7.3.1∗	 An infinite half­space of uniformly conducting material in the region y > 0 
has an interface with free space in the plane y = 0. There is a point current 
source of I amps located at (x, y, z) = (0, h, 0) on the y axis. Using an 
approach analogous to that used in Prob. 6.6.5, show that the potential 
inside the conductor is 

I	 I
Φa = + . (a)

4πσ
�
x2 + (y − h)2 + z2 4πσ

�
x2 + (y + h)2 + z2 

Now that the potential of the interface is known, show that the po­
tential in the free space region outside the conductor, where y < 0, is 

2I
Φb = (b)

4πσ
�
x2 + (y − h)2 + z2 

7.3.2	 The half­space y > 0 is of uniform conductivity while the remaining space is 
insulating. A uniform line current source of density Kl (A/m) runs parallel 
to the plane y = 0 along the line x = 0, y = h. 

(a) Determine Φ in the conductor. 
(b) In turn, what is Φ in the insulating half­space? 

7.3.3∗	 A two­dimensional dipole current source consists of uniform line current 
sources ±Kl have the spacing d. The cross­sectional view is as shown in 
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Fig. 7.3.4, with θ φ. Show that the associated potential is → 

Φ =	 
Kld cos φ 

(a)
2πσ r 

in the limit Kl →∞, d 
0, Kld finite.
 →


7.4 Superposition and Uniqueness of Steady Conduction Solutions 

7.4.1∗	 A material of uniform conductivity has a spherical insulating cavity of 
radius b at its center. It is surrounded by segmented electrodes that are 
driven by current sources in such a way that at the spherical outer surface 
r = a, the radial current density is Jr = −Jo cos θ, where Jo is a given 
constant. 

(a) Show that inside the conducting material, the potential is 

1Job
�
(r/b) + 2 (b/r)2

�
Φ =	 cos θ; b < r < a. (a)

σ [1 − (b/a)3] 

(b) Evaluated at r = b, this gives the potential on the surface bounding 
the insulating cavity. Show that the potential in the cavity is 

3Jo r cos θ
Φ = ; r < b	 (b)

2σ [1− (b/a)3]

7.4.2	 A uniformly conducting material has a spherical interface at r = a, with a 
surrounding insulating material and a spherical boundary at r = b (b < a), 
where the radial current density is Jr = Jo cos θ, essentially independent of 
time. 
(a) What is Φ in the conductor? 
(b) What is Φ in the insulating region surrounding the conductor? 

7.4.3	 In a system that stretches to infinity in the ±x and ±z directions, there is 
a layer of uniformly conducting material having boundaries in the planes 
y = 0 and y = −a. The region y > 0 is free space, while a potential 
Φ = V cos βx is imposed on the boundary at y = a.− 

(a) Determine Φ in the conducting layer. 
(b) What is Φ in the region y > 0? 

7.4.4∗	 The uniformly conducting material shown in cross­section in Fig. P7.4.4 
extends to infinity in the ±z directions and has the shape of a 90­degree 
section from a circular cylindrical annulus. At φ = 0 and φ = π/2, it is in 
contact with grounded electrodes. The boundary at r = a interfaces free 
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Fig. P7.4.4 

Fig. P7.4.5 

space, while at r = b, an electrode constrains the potential to be v. Show 
that the potential in the conductor is 

∞ 4V [(r/b)2m + (a/b)4m(b/r)2m]
Φ = 

�	 

mπ [1 + (a/b)4m] 
sin 2mφ (a) 

m=1
 
odd
 

7.4.5	 The cross­section of a uniformly conducting material that extends to infin­
ity in the ±z directions is shown in Fig. P7.4.5. The boundaries at r = b, 
at φ = 0, and at φ = α interface insulating material. At r = a, voltage 
sources constrain Φ = −v/2 over the range 0 < φ < α/2, and Φ = v/2 over 
the range α/2 < φ < α. 

(a) Find an infinite set of solutions for Φ that satisfy the boundary con­
ditions at the three insulating surfaces. 

(b) Determine Φ in the conductor. 

7.4.6	 The system of Fig. P7.4.4 is altered so that there is an electrode on the 
boundary at r = a. Determine the mutual conductance between this elec­
trode and the one at r = b. 

7.5 Steady Currents in Piece­Wise Uniform Conductors 

7.5.1∗	 A sphere having uniform conductivity σb is surrounded by material having 
the uniform conductivity σa. As shown in Fig. P7.5.1, electrodes at “infin­
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Fig. P7.5.1 

ity” to the right and left impose a uniform current density Jo at infinity. 
Steady conduction prevails. Show that 

⎧� 
r 

� 
σa−σb 

�� 
R

�2
� 

R 
⎪⎪

R + 2σa+σb r cos θ; R < r
Jo

⎨	 
Φ = (a)− 

σa 3σa
⎪⎪

� 

σb+2σa 

�� 
R
r 
� 
cos θ; r < R⎩ 

7.5.2	 Assume at the outset that the sphere of Prob. 7.5.1 is much more highly 
conducting than its surroundings. 

(a) As far as the fields in region (a) are concerned, what is the boundary 
condition at r = R? 

(b) Determine the approximate potential in region (a) and compare to 
the appropriate limiting potential from Prob. 7.5.1. 

(c) Based on this potential in region (a), determine the approximate po­
tential in the sphere and compare to the appropriate limit of Φ as 
found in Prob. 7.5.1. 

(d) Now, assume that the sphere is much more insulating than its sur­
roundings. Repeat the steps of parts (a)–(c). 

7.5.3∗	 A rectangular box having depth b, length l and width much larger than b 
has an insulating bottom and metallic ends which serve as electrodes. In 
Fig. P7.5.3a, the right electrode is extended upward and then back over the 
box. The box is filled to a depth b with a liquid having uniform conductivity. 
The region above is air. The voltage source can be regarded as imposing a 
potential in the plane z = −l between the left and top electrodes that is 
linear. 

(a) Show that the potential in the conductor is Φ = −vz/l. 
(b) In turn, show that in the region above the conductor, Φ = v(z/l)(x−

a)/a. 
(c) What are the distributions of ρu and σu? 

http:P7.5.3a
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Fig. P7.5.3 

Fig. P7.5.4 

(d) Now suppose that the upper electrode is slanted, as shown in Fig. 
P7.5.3b. Show that Φ in the conductor is unaltered but in the region 
between the conductor and the slanted plate, Φ = v[(z/l) + (x/a)]. 

7.5.4	 The structure shown in Fig. P7.5.4 is infinite in the ±z directions. Each 
leg has the same uniform conductivity, and conduction is stationary. The 
walls in the x and in the y planes are perfectly conducting. 

(a) Determine Φ, E, and J in the conductors. 
(b) What are Φ and E in the free space region? 
(c) Sketch Φ and E in this region and in the conductors. 

7.5.5	 The system shown in cross­section by Fig. P7.5.6a extends to infinity in 
the ±x and ±z directions. The material of uniform conductivity σa to the 
right is bounded at y = 0 and y = a by electrodes at zero potential. The 
material of uniform conductivity σb to the left is bounded in these planes 
by electrodes each at the potential v. The approach to finding the fields is 
similar to that used in Example 6.6.3. 

(a) What is Φa as x →∞ and Φb as x → −∞? 
(b) Add to each of these solutions an infinite set such that the boundary 

conditions are satisfied in the planes y = 0 and y = a and as x → ±∞. 
(c) What two boundary conditions relate Φa to Φb in the plane x = 0? 
(d) Use these conditions to determine the coefficients in the infinite series, 

and hence find Φ throughout the region between the electrodes. 

http:P7.5.3b
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Fig. P7.5.5 

(e) In the limits σb � σa and σb = σa, sketch Φ and E. (A numerical 
evaluation of the expressions for Φ is not required.) 

(f) Shown in Fig. P7.5.6b is a similar system but with the conductors 
bounded from above by free space. Repeat the steps (a) through (e) 
for the fields in the conducting layer. 

7.6 Conduction Analogs 

7.6.1∗	 In deducing (4) relating the capacitance of electrodes in an insulating mate­
rial to the conductance of electrodes having the same shape in a conducting 
material, it is assumed that not only are the ratios of all dimensions in one 
situation the same as in the other (the systems are geometrically similar), 
but that the actual size of the two physical situations is the same. Show 
that if the systems are again geometrically similar but the length scale of 
the capacitor is l� while that of the conduction cell is lσ, RC = (�/σ)(l�/lσ). 

7.7 Charge Relaxation in Uniform Conductors 

7.7.1∗	 In the two­dimensional configuration of Prob. 4.1.4, consider the field tran­
sient that results if the region within the cylinder of rectangular cross­
section is filled by a material having uniform conductivity σ and permit­
tivity �. 

(a) With the initial potential given by (a) of Prob. 4.1.4, with �o � and →
ρo a given constant, show that ρu(x, y, t = 0) is given by (c) of Prob. 
4.1.4. 

(b) Show that for t > 0, ρ is given by (c) of Prob. 4.1.4 multiplied by 
exp(−t/τ), where τ = �/σ. 

(c) Show that for	 t > 0, the potential is given by (a) of Prob. 4.1.4 
multiplied by exp(−t/τ). 

(d) Show that for t > 0, the current i(t) from the electrode segment is (f) 
of Prob. 4.1.4 

7.7.2	 When t = 0, the only net charge in a material having uniform σ and � is 
the line charge of Prob. 4.5.4. As a function of time for t > 0, determine 
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the 

(a) line charge density, 
(b) charge density elsewhere in the medium, and 
(c) the potential Φ(x, y, z, t). 

7.7.3∗	 When t = 0, the charged particle of Example 7.7.2 has a charge q = qo < 
−qc. 
(a) Show that, as long as q remains less than −qc, the net current to the 

particle is i = µρq.−
(b) Show that, as long as q < −qc, q = qo exp(−t/τ1) where τ1 = �/µρ. 

7.7.4	 Relative to the potential at infinity on a plane passing through the equator 
of the particle in Example 7.7.2, what is the potential of the particle when 
its charge reaches q = qc? 

7.8 Electroquasistatic Conduction Laws for Inhomogeneous Materials 

7.8.1∗	 Use an approach similar to that illustrated in this section to show unique­
ness of the solution to Poisson’s equation for a given initial distribution 
of ρ and a given potential Φ = ΦΣ on the surface S�, and a given current 
density −(σ�Φ + ∂��Φ/∂t) n = JΣ on S�� where S� + S�� encloses the · 
volume of interest V . 

7.9 Charge Relaxation in Uniform and Piece­Wise Uniform Systems 

7.9.1∗	 We return to the coaxial circular cylindrical electrode configurations of 
Prob. 6.5.5. Now the material in region (2) of each has not only a uniform 
permittivity � but a uniform conductivity σ as well. Given that V (t) = 
ReV̂ exp(jωt), 

(a) show that E in the first configuration of Fig. P6.5.5 is irv/rln(a/b), 
(b) while in the second configuration, 

ir v̂  � 
jω�o; R < r < a	E = 

r
Re 

Det σ + jω�; b < r < R 
(a) 

where Det = [σ ln(a/R)] + jω[�o ln(R/b) + �ln(a/R)]. 
(c) Show that in the first configuration a length	 l (into the paper) is 

equivalent to a conductance G in parallel with a capacitance C where 

G =
[σα]l 

; C =	 
[�o(2π − α) + �α]l 

(b)
ln (a/b) ln (a/b) 
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Fig. P7.9.4 

while in the second, it is equivalent to the circuit of Fig. 7.9.5 with 

2πσl 
Ga = 0; Gb = 

ln (R/b) 

2π�ol 2π�l 
Ca = ; Cb =	 (c)

ln (a/R) ln (R/b) 

7.9.2	 Interpret the configurations shown in Fig. P6.5.5 as spherical. An outer 
spherically shaped electrode has inside radius a, while an inner electrode 
positioned on the same center has radius b. Region (1) is free space while 
(2) has uniform � and σ. 

(a) For V = Vo cos(ωt), determine E in each region. 
(b) What are the elements in the equivalent circuit for each? 

7.9.3∗	 Show that the hemispherical electrode of Fig. 7.3.3 is equivalent to a circuit 
having a conductance G = 2πσa in parallel with a capacitance C = 2π�a. 

7.9.4	 The circular cylinder of Fig. P7.9.4a has �b and σb and is surrounded by 
material having	 �a and σa. The electric field E(t)ix is applied at x = ±∞. 

(a) Find the potential in and around the cylinder and the surface charge 
density that result from applying a step in field to a system that 
initially is free of charge. 

(b) Find these quantities for the sinusoidal steady state response. 
(c) Argue that these fields are equally applicable to the description of 

the configuration shown in Fig. P7.9.4b with the cylinder replaced 
by a half­cylinder on a perfectly conducting ground plane. In the 
limit where the exterior region is free space while the half­cylinder 
is so conducting that its charge relaxation time is short compared to 
times characterizing the applied field (1/ω in the sinusoidal steady 
state case), what are the approximate fields in the exterior and in 
the interior regions? (See Prob. 7.9.5 for a direct calculation of these 
approximate fields.) 
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7.9.5∗	 The half­cylinder of Fig. P7.9.4b has a relaxation time that is short com­
pared to times characterizing the applied field E(t). The surrounding region 
is free space (σa = 0). 

(a) Show that in the exterior region, the potential is approximately 

a
Φa � −aE(t)

� 

a

r − 
r 

� 
cos φ	 (a) 

(b) In turn, show that the field inside the half­cylinder is approximately 

Φb	 2�o dE
r cos φ (b)� −	 

σ dt 

7.9.6	 An electric dipole having a z­directed moment p(t) is situated at the origin 
and at the center of a spherical cavity of free space having a radius a in a 
material having uniform � and σ. When t < 0, p = 0 and there is no charge 
anywhere. The dipole is a step function of time, instantaneously assuming 
a moment po when t = 0. 

(a) An instant after the dipole is established, what is the distribution of 
Φ inside and outside the cavity? 

(b) Long after the electric dipole is turned on and the fields have reached 
a steady state, what is the distribution of Φ? 

(c) Determine Φ(r, θ, t). 

7.9.7∗	 A planar layer of semi­insulating material has thickness d, uniform permit­
tivity �, and uniform conductivity σ, as shown in Fig. P7.9.7. From below 
it is bounded by contacting electrode segments that impose the potential 
Φ = V cos βx. The system extends to infinity in the ±x and ±z directions. 

(a) The potential has been applied for a long time. Show that at	 y = 
0, σsu = �oV β cos βx/ cosh βd. 

(b) When t = 0, the applied potential is turned off. Show that this un­
paired surface charge density decays exponentially from the initial 
value from part (a) with the time constant τ = (�o tanh βd+ �)/σ. 

Fig. P7.9.7 

7.9.8∗	 Region (b), where y < 0, has uniform permittivity � and conductivity σ, 
while region (a), where 0 < y, is free space. Before t = 0 there are no 
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charges. When t = 0, a point charge Q is suddenly “turned on” at the 
location (x, y, z) = (0, h, 0). 

(a) Show that just after t = 0, 

Φa =
4π�o

�
x2 + (

Q

y

	 

− h)2 + z2 
− 

4π�o
�
x2 + (

qb 

y + h)2 + z2 
(a) 

Φb = 
qa (b)

4π�o
�
x2 + (y − h)2 + z2 

where qb Q[(�/�o)− 1]/[(�/�o) + 1] and qa 2Q/[(�/�o) + 1]. → → 

(b) Show that as t →∞, qb Q and the field in region (b) goes to zero. →
(c) Show that the transient is described by (a) and (b) with 

� �	 
2�o 

� � 

qb = Q	 1− exp(−t/τ) (c)
�+ �o 

� 
2�o 

� 

qa = Q	 
(�+ �o) 

exp(−t/τ) (d) 

where τ = (�o + �)/σ. 

7.9.9∗	 The cross­section of a two­dimensional system is shown in Fig. P7.9.9. The 
parallel plate capacitor to the left of the plane x = 0 extends to x = −∞, 
with the lower electrode at potential v(t) and the upper one grounded. This 
upper electrode extends to the right to the plane x = b, where it is bent 
downward to y = 0 and inward to the plane x = 0 along the surface y = 0. 
Region (a) is free space while region (b) to the left of the plane x = 0 has 
uniform permittivity � and conductivity σ. The applied voltage v(t) is a 
step function of magnitude Vo. 

(a) The voltage has been on for a long­time. What are the field and 
potential distributions in region (b)? Having determined Φb, what is 
the potential in region (a)? 

(b) Now, Φ is to be found for t > 0. Example 6.6.3 illustrates the approach 
that can be used. Show that in the limit t →∞, Φ becomes the result 
of part (a). 

(c) In the special case where � = �o, sketch the evolution of the field from 
the time just after the voltage is applied to the long­time limit of part 
(a). 

Fig. P7.9.9 




