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MAGNETOQUASISTATIC 

FIELDS: SUPERPOSITION 
INTEGRAL AND BOUNDARY 
VALUE POINTS OF VIEW 

8.0 INTRODUCTION 

MQS Fields: Superposition Integral and Boundary Value Views 
We now follow the study of electroquasistatics with that of magnetoquasistat­

ics. In terms of the flow of ideas summarized in Fig. 1.0.1, we have completed the 
EQS column to the left. Starting from the top of the MQS column on the right, 
recall from Chap. 3 that the laws of primary interest are Ampère’s law (with the 
displacement current density neglected) and the magnetic flux continuity law (Table 
3.6.1). 

�× H = J (1) 

� · µoH = 0 (2) 

These laws have associated with them continuity conditions at interfaces. If the in­
terface carries a surface current density K, then the continuity condition associated 
with (1) is (1.4.16) 

n × (Ha − Hb) = K (3) 
and the continuity condition associated with (2) is (1.7.6). 

n (µoHa Hb) = 0 (4)· − µo

In the absence of magnetizable materials, these laws determine the magnetic 
field intensity H given its source, the current density J. By contrast with the elec­
troquasistatic field intensity E, H is not everywhere irrotational. However, it is 
solenoidal everywhere. 

1 
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The similarities and contrasts between the primary EQS and MQS laws are 
the topic of this and the next two chapters. The similarities will streamline the 
development, while the contrasts will deepen the understanding of both MQS and 
EQS systems. Ideas already developed in Chaps. 4 and 5 will also be applicable 
here. Thus, this chapter alone plays the role for MQS systems taken by these two 
earlier chapters for EQS systems. 

Chapter 4 began by expressing the irrotational E in terms of a scalar poten­
tial. Here H is not generally irrotational, although it may be in certain source­free 
regions. On the other hand, even with the effects of magnetization that are in­
troduced in Chap. 9, the generalization of the magnetic flux density µoH has no 
divergence anywhere. Therefore, Sec. 8.1 focuses on the solenoidal character of µoH 
and develops a vector form of Poisson’s equation satisfied by the vector potential, 
from which the H field may be obtained. 

In Chap. 4, where the electric potential was used to represent an irrotational 
electric field, we paused to develop insights into the nature of the scalar potential. 
Similarly, here we could delve into the way in which the vector potential represents 
the flux of a solenoidal field. For two reasons, we delay developing this interpretation 
of the vector potential for Sec. 8.6. First, as we see in Sec. 8.2, the superposition 
integral approach is often used to directly relate the source, the current density, to 
the magnetic field intensity without the intetermediary of a potential. Second, many 
situations of interest involving current­carrying coils can be idealized by represent­
ing the coil wires as surface currents. In this idealization, all of space is current 
free except for some surfaces within which surface currents flow. But, because H is 
irrotational everywhere except through these surfaces, this means that the H field 
may be expressed as the gradient of a scalar potential. Further, since the magnetic 
field is divergence free (at least as treated in this chapter, which does not deal 
with magnetizable materials), the scalar potential obeys Laplace’s equation. Thus, 
most methods developed for EQS systems using solutions to Laplace’s equation can 
be applied to the solution to MQS problems as well. In this way, we find “dual” 
situations to those solved already in earlier chapters. The method extends to time­
varying quasistatic magnetic fields in the presence of perfect conductors in Sec. 
8.4. Eventually, in Chap. 9, we shall extend the approach to problems involving 
piece­wise uniform and linear magnetizable materials. 

Vector Field Uniquely Specified. A vector field is uniquely specified by 
its curl and divergence. This fact, used in the next sections, follows from a slight 
modification to the uniqueness theorem discussed in Sec. 5.2. Suppose that the 
vector and scalar functions C(r) and D(r) are given and represent the curl and 
divergence, respectively, of a vector function F. 

�× F = C(r) (5) 

� · F = D(r) (6) 

The same arguments used in this earlier uniqueness proof then shows that F is 
uniquely specified provided the functions C(r) and D(r) are given everywhere and 
have distributions consistent with F going to zero at infinity. Suppose that Fa 

and Fb are two different solutions of (5) and (6). Then the difference solution 
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Fd = Fa − Fb is both irrotational and solenoidal. 

�× Fd = 0 (7) 

� · Fd = 0 (8) 

The difference solution is governed by the same equations as in Sec. 5.2. With 
Fd taken to be the gradient of a Laplacian potential, the remaining steps in the 
uniqueness argument are equally applicable here. 

The uniqueness proof shows the importance played by the two differential 
vector operations, curl and divergence. Among the many possible combinations of 
the partial derivatives of the vector components of F, these two particular combi­
nations have the remarkable property that their specification gives full information 
about F. 

In Chap. 4, we determined a vector field F = E given that the vector source 
C = 0 and the scalar source D = ρ/�o. In Secs. 8.1 we find the vector field F = H, 
given that the scalar source D = 0 and that the vector source is C = J. 

The strategy in this chapter parallels that for Chaps. 4 and 5. We can again 
think of dividing the fields into two parts, a particular part due to the current 
density, and a homogeneous part that is needed to satisfy boundary conditions. 
Thus, with the understanding that the superposition principle makes it possible 
to take the fields as the sum of particular and homogeneous solutions, (1) and (2) 
become 

�× Hp = J (9) 

� · µoHp = 0 (10) 

�× Hh = 0 (11) 

� · µoHh = 0 (12) 

In sections 8.1–8.3, it is presumed that the current density is given everywhere. 
The resulting vector and scalar superposition integrals provide solutions to (9) and 
(10) while (11) and (12) are not relevant. In Sec. 8.4, where the fields are found 
in free­space regions bounded by perfect conductors, (11) and (12) are solved and 
boundary conditions are met without the use of particular solutions. In Sec. 8.5, 
where currents are imposed but confined to surfaces, a boundary value approach is 
taken to find a particular solution. Finally, Sec. 8.6 concludes with an example in 
which the region of interest includes a volume current density (which gives rise to a 
particular field solution) bounded by a perfect conductor (in which surface currents 
are induced that introduce a homogeneous solution). 

8.1 THE VECTOR POTENTIAL AND THE VECTOR 
POISSON EQUATION 

A general solution to (8.0.2) is 

µoH = (1)�× A 
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where A is the vector potential. Just as E = −gradΦ is the “integral” of the EQS 
equation curlE = 0, so too is (1) the “integral” of (8.0.2). Remember that we 
could add an arbitrary constant to Φ without affecting E. In the case of the vector 
potential, we can add the gradient of an arbitrary scalar function to A without 
affecting H. Indeed, because � × (�ψ) = 0, we can replace A by A� = A + �ψ. 
The curl of A is the same as of A�. 

We can interpret (1) as the specification of A in terms of the assumedly known 
physical H field. But as pointed out in the introduction, to uniquely specify a vector 
field, both its curl and divergence must be given. In order to specify A uniquely, we 
must also give its divergence. Just what we specify here is a matter of convenience 
and will vary in accordance with the application. In MQS systems, we shall find it 
convenient to make the vector potential solenoidal 

� · A = 0 (2) 

Specification of the potential in this way is sometimes called setting the gauge, and 
with (2) we have established the Coulomb gauge. 

We turn now to the evaluation of A, and hence H, from the MQS Ampère’s 
law and magnetic flux continuity law, (8.0.1) and (8.0.2). The latter is automatically 
satisfied by letting the magnetic flux density be represented in terms of the vector 
potential, (1). Substituting (1) into Ampère’s law (8.0.1) then gives 

�× (�× A) = µoJ (3) 

The following identity holds. 

�× (�× A) = �(� · A)−� 2A (4) 

The reason for defining A as solenoidal was to eliminate the � · A term in this 
expression and to reduce (3) to the vector Poisson’s equation. 

� 2A = −µoJ (5) 

The vector Laplacian on the left in this expression is defined in Cartesian co­
ordinates as having components that are the scalar Laplacian operating on the 
respective components of A. Thus, (5) is equivalent to three scalar Poisson’s equa­
tions, one for each Cartesian component of the vector equation. For example, the 
z component is 

� 2Az = −µoJz (6) 

With the identification of Az Φ and µoJz ρ/�o, this expression becomes the → →
scalar Poisson’s equation of Chap. 4, (4.2.2). The integral of this latter equation 
is the superposition integral, (4.5.3). Thus, identification of variables gives as the 
integral of (6) 

µo 
� 

Jz(r�)
Az = dv� (7)

4π V � |r− r�|
and two similar equations for the other two components of A. Reconstructing the 
vector A by multiplying (7) by iz and adding the corresponding x and y compo­
nents, we obtain the superposition integral for the vector potential. 
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µo 
� 

J(r�)
A(r) = dv� 

(8)4π V � |r− r�| 

Remember, r� is the coordinate of the current density source, while r is the coor­
dinate of the point at which A is evaluated, the observer coordinate. Given the 
current density everywhere, this integration provides the vector potential. Hence, 
in principle, the flux density µoH is determined by carrying out the integration and 
then taking the curl in accordance with (1). 

The theorem at the end of Sec. 8.0 makes it clear that the solution provided 
by (8) is indeed unique when the current density is given everywhere. 

In order that � × A be a physical flux density, J(r) cannot be an arbitrary 
vector field. Because div(curl) of any vector is identically equal to zero, the diver­
gence of the quasistatic Ampère’s law, (8.0.1), gives � · (�× H) = 0 = � · J and 
thus 

� · J = 0 (9) 

The current distributions of magnetoquasistatics must be solenoidal. 
Of course, we know from the discussion of uniqueness given in Sec. 8.0 that 

(9) does not uniquely specify the current distribution. In an Ohmic conductor, sta­
tionary current distributions satisfying (9) were determined in Secs. 7.1–7.5. Thus, 
any of these distributions can be used in (8). Even under dynamic conditions, (9) 
remains valid for MQS systems. However, in Secs. 8.4–8.6 and as will be discussed 
in detail in Chap. 10, if time rates of change become too rapid, Faraday’s law de­
mands a rotational electric field which plays a role in determining the distribution 
of current density. For now, we assume that the current distribution is that for 
steady Ohmic conduction. 

Two­Dimensional Current and Vector Potential Distributions. 
Suppose a current distribution J = izJz(x, y) exists through all of space. Then 

the vector potential is z directed, according to (8), and its z component obeys the 
scalar Poisson equation 

µo 
� 
Jz(x�, y�)dv�

Az = (10)
4π |r − r�| 

But this is formally the same expression, (4.5.3), as that of the scalar potential 
produced by a charge distribution ρ(x�, y�). 

1 
� 
ρ(x�, y�)dv�

Φ = (11)
4π�o |r − r�| 

It was inconvenient to integrate the above equation directly. Instead, we determined 
the field of a line charge from symmetry and Gauss’ law and integrated the resulting 
expression to obtain the potential (4.5.18) 

λlΦ = − 
2π�o 

ln
� 

r

r 

o 

� 
(12) 
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where r is the distance from the line charge r = 
�

(x − x�)2 + (y − y�)2 and ro 

is the reference radius. The scalar potential can thus be evaluated from the two­
dimensional integral 

1 
� � �

Φ =
2π�o 

ρ(x�, y�)ln
��

(x − x�)2 + (y − y�)2/ro dx
�dy� (13)− 

The vector potential of a two­dimensional z­directed current distribution obeys the 
same equation and thus has a solution by analogy, after a proper interchange of 
parameters. 

Az = − 
2
µ

π 
o 

� 
Jz(x�, y�)ln

��
(x − x�)2 + (y − y�)2/ro 

�
dx�dy� (14) 

Two important consequences emerge from this derivation. 

(a) Every two­dimensional EQS potential Φ(x, y) produced by a given charge
 
distribution ρ(x, y), has an MQS analog vector potential Az(x, y) caused by
 
a current density Jz(x, y) with the same spatial distribution as ρ(x, y). The
 
magnetic field follows from (1) and thus
 

� 
∂ ∂ 

� 

µoH = �× A = ix 
∂x 

+ iy
∂y 

× izAz 

�
∂Az ∂Az 

� 
(15)= −iz × ix 

∂x 
+ iy 

∂y 

= −iz ×�Az 

Therefore the lines of magnetic flux density are perpendicular to the gradient
 
of Az. A plot of field lines and equipotential lines of the EQS problem is trans­
 
formed into a plot of an MQS field problem by interpreting the equipotential
 
lines as the lines of magnetic flux density. Lines of constant Az are lines of
 
magnetic flux.
 

(b) The vector potential of a line current of magnitude i along the z direction is
 
given by analogy with (12),
 

Az = − 
2
µ

π 
o 
i ln (r/ro) (16) 

which is consistent with the magnetic field H = iφ(i/2πr) given by (1.4.10),

if one makes use of the curl expression in polar coordinates,


µoH =
1 ∂Az ir − 

∂Az iφ (17)
r ∂φ ∂r 

The following illustrates the integration called for in (8). The fields associated 
with singular current distributions will be used in later sections and chapters. 

Example 8.1.1. Field Associated with a Current Sheet 
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Fig. 8.1.1 Cross­section of surfaces of constant Az and lines of mag­
netic flux density for the uniform sheet of current shown. 

A z­directed current density is uniformly distributed over a strip located between x2 

and x1 as shown in Fig. 8.1.1. The thickness of the sheet, Δ, is very small compared 
to other dimensions of interest. So, the integration of (14) in the y direction amounts 
to a multiplication of the current density by Δ. The vector potential is therefore 
determined by completing the integration on x� 

x1 

Az = 
µoKo 

� 
ln 

��
(x − x )2 + y2/ro 

� 
dx� (18)− 

2π 
� 

x2 

where Ko ≡ JzΔ. 
This integral is carried out in Example 4.5.3, where the two dimensional elec­

tric potential of a charged strip was determined. Thus, with σo/�o µoKo, (4.5.24) →
becomes the desired vector potential. 

The profiles of surfaces of constant Az are shown in Fig. 8.1.1. Remember, 
these are also the lines of magnetic flux density, µoH. 

Example 8.1.2. Two­Dimensional Magnetic Dipole Field 

A pair of closely spaced conductors carrying oppositely directed currents of mag­
nitude i is shown in Fig. 8.1.2. The currents extend to + and − infinity in the z 
direction, so the resulting fields are two­dimensional and can be represented by Az. 
In polar coordinates, the distance from the right conductor, which is at a distance 
d from the z axis, to the observer location is essentially r − d cos φ. The Az for 
each wire takes the form of (16), with r the distance from the wire to the point of 
observation. Thus, superposition of the vector potentials due to the two wires gives 

Az = − 
µ

2
o

π

i 
[ln(r − d cos φ)− lnr] = − 

µ

2
o

π

i
ln

�
1− 

d

r 
cos φ) (19) 

In the limit d � r, this expression becomes 

id cos φ 
Az = µo (20)

2π r 
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Fig. 8.1.2 A pair of wires having the spacing d carry the current i in 
opposite directions parallel to the z axis. The two­dimensional dipole 
field is shown in Fig. 8.1.3. 

Fig. 8.1.3 Cross­sections of surfaces of constant Az and hence lines
 
of magnetic flux density for configuration of Fig. 8.1.2.
 

Thus, the surfaces of constant Az have intersections with planes of constant z that
 
are circular, as shown in Fig. 8.1.3. These are also the lines of magnetic flux density,
 
which follow from (17).
 

µoid 
� 

sin φ cos φ 
� 

µoH =
2π 

− 
r2 

ir + 
r2 

iφ (21) 

If the line currents are replaced by line charges, the resulting equipotential
 
lines (intersections of the equipotential surfaces with the x − y plane) coincide with
 
the magnetic field lines shown in Fig. 8.1.3. Thus, the lines of electric field intensity
 
for the electric dual of the magnetic configuration shown in Fig. 8.1.3 originate on
 
the positive line charge on the right and terminate on the negative line charge at
 
the left, following lines that are perpendicular to those shown.
 

8.2 THE BIOT­SAVART SUPERPOSITION INTEGRAL 

Once the vector potential has been determined from the superposition integral of
 
Sec. 8.1, the magnetic flux density follows from an evaluation of curl A. However, in
 
certain field evaluations, it is best to have a superposition integral for the field itself.
 
For example, in numerical calculations, numerical derivatives should be avoided.
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The field superposition integral follows by operating on the vector potential 
as given by (8.1.8) before the integration has been carried out. 

1 1 
� � 

J(r�) 
�

H = = dv� (1) 
µo 
�× A

4π
�× 

V � |r− r�| 

The integration is with respect to the source coordinates denoted by r�, while the 
curl operation involves taking derivatives with respect to the observer coordinates 
r. Thus, the curl operation can be carried out before the integral is completed, and 
(1) becomes 

1 
� � 

J(r�) 
�

H =
 dv�
 (2)
4π V � 

�× |r − r�|
The curl operation required to evaluate the integrand in this expression can 

be carried out without regard for the particular dependence of the current density 
because the derivatives are with respect to r, not r�. To make this evaluation, 
observe that the curl operates on the product of the vector J and the scalar ψ = 
r− r� −1, and that operation obeys the vector identity | | 

�× (ψJ) = ψ�× J +�ψ × J (3) 

Because J is independent of r, the first term on the right is zero. Thus, (2) becomes 

1 
� � 

1 
�

H =
4π V � 

� 
r − r� 

× Jdv� (4) | | 

To evaluate the gradient in this expression, consider the special case when r� 
is at the origin in a spherical coordinate system, as shown in Fig. 8.2.1. Then 

1 �(1/r) = ir (5) 
r2

− 

where ir is the unit vector directed from the source coordinate at the origin to the 
observer coordinate at (r, θ, φ). 

We now move the source coordinate from the origin to the arbitrary location 
r�. Then the distance r in (5) is replaced by the distance |r − r�|. To replace the 
unit vector ir, the source­observer unit vector ir�r is defined as being directed from 
an arbitrary source coordinate to the observer coordinate P . In terms of this source­
observer unit vector, illustrated in Fig. 8.2.2, (5) becomes 

� 
1 

� 
ir�r 

2
� 

r− r� 
= −|r− r�| (6) 

Substitution of this expression into (4) gives the Biot­Savart Law for the magnetic 
field intensity. 

1 
� 

J(r�)× ir�rH = dv�
4π V � |r − r�|2 (7) 
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Fig. 8.2.1 Spherical coordinate system with r� located at origin. 

Fig. 8.2.2 Source coordinate r� and observer coordinate r showing unit vec­
 
tor ir�r directed from r� to r.
 

In evaluating the integrand, the cross­product is evaluated at the source coordinate 
r�. The integrand represents the contribution of the current density at r� to the field 
at r. The following examples illustrate the Biot­Savart law. 

Example 8.2.1. On Axis Field of Circular Cylindrical Solenoid 

The cross­section of an N ­turn solenoid of axial length d and radius a is shown in
 
Fig. 8.2.3. There are many turns, so the current i passing through each is essentially
 
φ directed. To keep the integration simple, we confine ourselves to finding H on the
 
z axis, which is the axis of symmetry.
 

In cylindrical coordinates, the source coordinate incremental volume element
 
is dv� = r�dφ�dr�dz�. For many windings uniformly distributed over a thickness Δ,
 
the current density is essentially the total number of turns multiplied by the current
 
per turn and divided by the area through which the current flows.
 

Ni 
= iφ (8)J ∼ 

Δd 

The superposition integral, (7), is carried out first on r�. This extends from r� = a
 
to r� = a + Δ over the radial thickness of the winding. Because Δ � a, the source­
 
observer distance and direction remain essentially constant over this interval, and
 
so the integration amounts to a multiplication by Δ. The axial symmetry requires
 
that H on the z axis be z directed. The integration over z� and φ� is
 

1 
� −d/2 � 2π
 � Ni� (iφ × ir�r)z


Hz = adφ�dz� (9)
4π d |r − r�|2 

d/2 0 

In terms of the angle α shown in Fig. 8.2.3 and its inset, the source­observer unit
 
vector is
 

ir�r = −ir sin α− iz cos α (10) 
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Fig. 8.2.3 A solenoid consists of N turns uniformly wound over a 
length d, each turn carrying a current i. The field is calculated along 
the z axis, so the observer coordinate is at r on the z axis. 

so that 

(iφ × ir� r)z = sin α = �
a2 + ( 

a

z� − z)2 
; |r − r�| 2 = a 2 + (z� − z)2 (11) 

The integrand in (9) is φ� independent, and the integration over φ� amounts to 
multiplication by 2π. 

Ni 
� d/2 

a 2dz�
Hz = (12)

2d −d/2 
[a2 + (z� − z)2]3/2 

With the substitution z�� = z� − z, it follows that 

Ni z�� d 
2−z


Hz = ] d
−z
2d 
�

a2 + z��2 − 2 

d z d z (13)
Ni

� 
2a 
− 

a 2a 
+ 

a 

� 
= + 

2d 
�

1 +
� 

2 
d
a 
− z 

�2 
�

1 +
� 

2 
d + z 

�2 

a a a 

In the limit where d/2a � 1, the solenoid becomes a circular coil with N turns 
concentrated at r = a in the plane z = 0. The field intensity at the center of this 
coil follows from (13) as the amp­turns divided by the loop diameter. 

Ni 
Hz (14)→ 

2a 

Thus, a 100­turn circular loop having a radius a = 5 cm (that is large compared to 
its axial length d) and carrying a current of i = 1 A would have a field intensity of 
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Fig. 8.2.4 Experiment for documenting the axial H predicted in Ex­
ample 8.2.1. Profile of normalized Hz is for d/2a = 2.58. 

1000 A/m at its center. The flux density measured by a magnetometer would then 
be Bz = µoHz = 4π × 10−7(1000) tesla = 4π gauss. 

Further implications of this finding are discussed in the following demonstra­
tion. 

Demonstration 8.2.1. Fields of a Circular Cylindrical Solenoid 

The solenoid shown in Fig. 8.2.4 has N = 141 turns, an axial length d = 70.5 
cm, and a radius a = 13.6 cm. A Hall­type magnetometer measures the magnitude 
and direction of H in and around the coil. The on­axis distribution of Hz predicted 
by (13) for the experimental length­to­diameter ratio d/2a = 2.58 is shown in Fig. 
8.2.4. With i = 1 amp, the flux density at the center approaches 2.5 gauss. The 
accuracy with which theory and experiment agree is likely to be limited only by such 
matters as the care with which the probe can be mounted and the calibration of the 
magnetometer. Care must also be taken that there are no magnetizable materials, 
such as iron, in the vicinity of the coil. To avoid contributions from the earth’s 
magnetic field (which is on the order of a gauss), ac fields should be used. If ac is 
used, there should be no large conducting objects near by in which eddy currents 
might be induced. (Magnetization and eddy currents, respectively, are taken up in 
the next two chapters.) 

The infinitely long solenoid can be regarded as the analog for MQS systems 
of the “plane parallel plate capacitor.” Just as the capacitor can be constructed to 
create a uniform electric field between the plates with zero field outside the region 
bounded by the plates, so too the long solenoid gives rise to a uniform magnetic 
field throughout the interior region and an exterior field that is zero. This can be 
seen by probing the field not only as a function of axial position but of radius as 
well. For the finite length solenoid, the on­axis interior field designated by H in∞
Fig. 8.2.4 is given by (13) for locations on the z axis where d/2 � z. 

� 
d/2a 

�
Ni 

Hz H (15)→ ∞ ≡ �
1 +

� 
2 
d
a 

�2 d 

In the limit where the solenoid is also very long compared to its radius, where 
d/2a � 1, this expression becomes 

Ni 
H (16)∞ → 

d 
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Fig. 8.2.5 A line current i is uniformly distributed over the length of the 
vector a originating at r +b and terminating at r + c. The resulting magnetic 
field intensity is determined at the observer position r. 

Probing of the field shows the field maintains the value and direction of (16) 
over the interior cross­section as well. It also shows that the magnetic field intensity 
just outside the windings at an axial location that is several radii a from the coil 
ends is relatively small. 

Continuity of magnetic flux requires that the total flux passing through the 
solenoid in the z direction must be returned in the −z direction outside the solenoid. 
How, then, can the exterior field of a long solenoid be negligible compared to that 
inside? The outside flux returns in the −z direction through a much larger exte­
rior area than the area πa2 through which the interior flux passes. In fact, as the 
coil becomes infinitely long, this return flux spreads out over an exterior area that 
stretches to infinity in the x and y directions. The field intensity just outside the 
winding tends to zero as the coil is made very long. 

Stick Model for Computing Fields of Electromagnet. The Biot­Savart su­
perposition integral can be completed analytically for relatively few configurations. 
Nevertheless, its evaluation amounts to no more than a summation of the field con­
tributions from each of the current elements. Thus, on the computer, its evaluation 
is a straightforward matter. 

Many practical current distributions are, or can be approximated by, con­
nected straight­line current segments, or current “sticks.” We will now use the 
Biot­Savart law to find the field at an arbitrary observer position r associated with 
a current stick having an arbitrary location. The result is a practical resource, be­
cause a numerical summation over differential volume current elements can then be 
replaced by one over the sticks. 

The current stick, shown in Fig. 8.2.5, is represented by a vector a. Thus, the 
current is uniformly distributed between the base of this vector at r+b and the tip 
of the vector at r + c. The source coordinate r� is located along the current stick. 
The objective in the following paragraphs is to carry out an integration over the 
length of the current stick and obtain an expression for H(r). Because the current 
stick does not represent a solenoidal current density at its ends, the field derived 
is of physical significance only if used in conjunction with other current sticks that 
together represent a continuous current distribution. 

The detailed view of the current stick, Fig. 8.2.6, shows the source coordinate 
ξ denoting the position along the stick. The origin of this coordinate is at the point 
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Fig. 8.2.6 View of current element from Fig. 8.2.5 in plane containing b and 
c, and hence a. 

on a line through the stick that is closest to the observer coordinate. 
The projection of b onto a vector a is ξb = a b/ a . Thus, the current stick · | |

begins at this distance from ξ = 0, as shown in Fig. 8.2.6, and terminates at ξc, the 
projection of c onto the axis of a, as also shown. 

The cross­product c × a/|a| is perpendicular to the plane of Fig. 8.2.6 and 
equal in magnitude to the projection of c onto a vector that is perpendicular to 
a and in the plane of Fig. 8.2.6. Thus, the shortest distance between the observer 
position and the axis of the current stick is ro = c × a / a . It follows from this 
fact and the definition of the cross­product that 

| | | | 

� 
c×a

�
a

ds× ir� r = dξ | | (17) |r− r�| 

where ds is the differential along the line current and 

|r− r�| = (ξ2 + ro
2)1/2 

Integration of the Biot­Savart law, (7), is first performed over the cross­section 
of the stick. The cross­sectional dimensions are small, so during this integration, 
the integrand remains essentially constant. Thus, the current density is replaced by 
the total current and the integral reduced to one on the axial coordinate ξ of the 
stick. 

H = 
i 

� ξc ds× ir�r (18)
4π ξb 

|r − r�|2 

In view of (17), this integral is expressed in terms of the source coordinate integra­
tion variable ξ as 

i 
� ξc c× adξ

H =
4π ξb 

a (ξ2 + ro
2)3/2 

(19) | |
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Fig. 8.2.7 A pair of square N ­turn coils produce a field at P on the 
z axis that is the superposition of the fields Hz due to the eight linear 
elements comprising the coils. The coils are centered on the z axis. 

This integral is carried out to obtain 

H =
4
i

π 

c × 
a

a
� 

ro 
2[ξ2 +

ξ

ro 
2]1/2 

�ξ

ξ

c

b 

(20) | | 

In evaluating this expression at the integration endpoints, note that by definition, 

(ξc 
2 + ro

2)1/2 = c ; (ξb 
2 + ro

2)1/2 = b (21)| | | | 

so that (20) becomes an expression for the field intensity at the observer location 
expressed in terms of vectors a, b, and c that serve to define the relative location 
of the current stick.1 

i c× a 
� 

a c a b
�

H = 
· · 

4π c 2 c b (22)| × a| | | − | | 

The following illustrates how this expression can be used repetitively to determine 
the field induced by currents represented in a piece­wise fashion by current sticks. 
Expressed in Cartesian coordinates, the vectors are a convenient way to specify the 
sticks making up a complex winding. On the computer, the evaluation of (22) is 
then conveniently carried out by a subroutine that is used many times. 

Example 8.2.2. Axial Field of a Pair of Square Coils 

Shown in Fig. 8.2.7 is a pair of coils, each having N turns carrying a current i in 
such a direction that the fields induced by each coil reinforce along the z axis. The 
four linear sections of the two coils comprise the sides of a cube, centered at the 
origin and with dimensions 2d. 

1 Private communication, Mr. John G. Aspinall. 
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Fig. 8.2.8 Demonstration of axial field generated by pair of square coils
 
having spacing equal to the side lengths.
 

We confine ourselves to finding H along the z axis where, by symmetry, it has 
only a z component. Thus, for an observer at (0, 0, z), the vectors specifying element 
(1) of the right­hand coil in Fig. 8.2.7 are 

a = 2dix 

b = −dix + diy + (d− z)iz (23) 

c = dix + diy + (d− z)iz 

Evaluation of the z component of (22) then gives the part of Hz due to element (1). 
Because of the axial symmetry, the field induced by elements (2), (3), and (4) in 
the same coil are the same as already found for element (1). The field induced by 
element (5) in the second coil is similarly found starting from vectors that are the 
same as in (23), except that d → −d in the z components of b and c. Here too, 
the other three elements each contribute the same field as already found. Thus, the 
axial field intensity, the sum of the contributions from the individual coils, is 

2iN 
� 

1 
Hz = − 

πd ��
1− z 

�2 
+ 1

��
2 +

�
1− z 

�2�1/2 

d d 

1 
� (24) 

+ ��
1 + z

d

�2 
+ 1

��
2 +

�
1 + 

d
z 
�2�1/2 

This distribution is plotted on the inset to Fig. 8.2.8. Because the fields induced by 
the separate coils reinforce, the pair can be used to produce a relatively uniform 
field in the midregion. 
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Demonstration 8.2.2. Field of Square Pair of Coils 

In the experiment of Fig. 8.2.8, the axial field is probed by means of a Hall magne­
tometer. The output is connected to the vertical trace of a high persistence scope. 
The probe is mounted on a carriage that is attached to a potentiometer in such a 
way that there is an output voltage proportional to the horizontal position of the 
probe. This is used to control the horizontal scope deflection. The result is a trace 
that follows the predicted contour. The plot is shown in terms of normalized coordi­
nates that can be used to compare theory to experiment using any size of coils and 
any level of current. 

8.3 THE SCALAR MAGNETIC POTENTIAL 

The vector potential A describes magnetic fields that possess curl wherever there 
is a current density J(r). In the space free of current, 

�× H = 0 (1) 

and thus H ought to be derivable there from the gradient of a potential. 

H = (2)−�Ψ 

Because 
� · µoH = 0 (3) 

we further have 

� 2Ψ = 0 (4) 

The potential obeys Laplace’s equation. 

Example 8.3.1. The Scalar Potential of a Line Current 

A line current is a source singularity (at the origin of a polar coordinate system if 
it is placed along its z axis). From Ampère’s integral law applied to the contour C 
of Fig. 1.4.4, we have 

H ds = 2πrHφ = J da = i (5)· · 
C S 

and thus 
i 

Hφ = (6)
2πr 

It follows that the potential Ψ that has Hφ of (6) as the negative of its gradient is 

i 
Ψ = φ (7)− 

2π 



� 
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Fig. 8.3.1 Surface spanning loop, contour following loop, and contour for� 
H ds.· 

Note that the potential is multiple valued as the origin is encircled more than once. 
This property reflects the fact that strictly, H is not curl free in all of space. As the 
origin is encircled, Ampère’s integral law identifies J as the source of the curl of H. 

Because Ψ is a solution to Laplace’s equation, it must possess an EQS analog. 
The electroquasistatic potential 

V 
Φ = − 

2π
φ; 0 < φ < 2π (8) 

describes the fringing field of a capacitor of semi­infinite extent, extending from 
x = 0 to x = +∞, with a voltage V across the plates, in the limit as the spacing 
between the plates is negligible (Fig. 5.7.2 with V reversed in sign). It can also 
be interpreted as the field of a semi­infinite dipole layer with the dipole density 
πs = σsd = �oV defined by (4.5.27), where d is the spacing between the surface 
charge densities, ±σs, on the outside surfaces of the semi­infinite plates (Fig. 5.7.2 
with the signs of the charges reversed). We now have further opportunity to relate 
H fields of current­carrying wires to EQS analogs involving dipole layers. 

The Scalar Potential of a Current Loop. A current loop carrying a current 
i has a magnetic field that is curl free everywhere except at the location of the 
wire. We shall now determine the scalar potential produced by the current loop. 
The line integral 

� 
H ds enclosing the current does not give zero, and hence paths · 

that enclose the current in the loop are not allowed, if the potential is to be single 
valued. Suppose that we mount over the loop a surface S spanning the loop which is 
not crossed by any path of integration. The actual shape of the surface is arbitrary, 
but the contour Cl is defined by the wire which is its edge. The potential is then 
made single valued. The discontinuity of potential across the surface follows from 
Ampère’s law 

H ds = i (9) 
C 

· 

where the broken circle on the integral sign is to indicate a path as shown in Fig. 
8.3.1 that goes from one side of the surface to a point on the opposite side. Thus, 
the potential Ψ of a current loop has the discontinuity 

� 
H ds = 

� 
(−�Ψ) ds = ΔΨ = i (10)· · 
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Fig. 8.3.2 Solid angle for observer at r due to current loop at r�. 

We have found in electroquasistatics that a uniform dipole layer of magnitude 
πs on a surface S produces a potential that experiences a constant potential jump 
πs/�o across the surface, (4.5.31). Its potential was (4.5.30) 

πsΦ(r) = Ω (11)
4π�o 

where Ω is the solid angle subtended by the rim of the surface as seen by an observer 
at the point r. Thus, we conclude that the scalar potential Ψ, a solution to Laplace’s 
equation with a constant jump i across the surface S spanning the wire loop, must 
have a potential jump πs/�o i, and hence the solution → 

i
Ψ(r) = Ω

4π (12) 

where again the solid angle is that subtended by the contour along the wire as seen 
by an observer at the point r as shown by Fig. 8.3.2. In the example of a dipole 
layer, the surface S specified the physical distribution of the dipole layer. In the 
present case, S is arbitrary as long as it spans the contour C of the wire. This is 
consistent with the fact that the solid angle Ω is invariant with respect to changes 
of the surface S and depends only on the geometry of the rim. 

Example 8.3.2. The H Field of Small Loop 

Consider a small loop of area a at the origin of a spherical coordinate system 
with the normal to the surface parallel to the z axis. According to (12), the scalar 
potential of the loop is then 

i ir iza ia cos θ 
Ψ = = (13)

· 
4π r2 4π r2 



20Magnetoquasistatic Fields: Superposition Integral and Boundary Value Points of View Chapter 8 

This is the potential of a dipole. The H field follows from using (2) 

ia 
H = −�Ψ =

4πr3 
[2 cos θir + sin θiθ] (14) 

As far as its field around and far from the loop is concerned, the current loop can
 
be viewed as if it were a “magnetic” dipole, consisting of two equal and opposite
 
magnetic charges ±qm spaced a distance d apart (Fig. 4.4.1 with q qm). The
→
magnetic charges (monopoles) are sources of divergence of the magnetic flux µoH
 
analogous to electric charges as sources of divergence of the displacement flux density
 
�oE. Thus, if Maxwell’s equations are modified to include the action of a magnetic
 
charge density
 

qm
ρm = lim 

ΔV 0 ΔV→ 

in units of voltsec/m4, then the new magnetic Gauss’ law must be 

� · µoH = ρm (15) 

in analogy with

� · �oE = ρ (16)


Now, magnetic monopoles have been postulated by Dirac, and recent searches for the
 
existence of such monopoles have been apparently successful2. Because the search
 
is so difficult, it is apparent that, if they exist at all, they are very rare in nature.
 
Here the introduction of magnetic charge is a matter of convenience so that the
 
field produced by a small current loop can be pictured as the field of a magnetic
 
dipole. This can serve as a mnemonic for the reconstruction of the field. Thus, if it
 
is remembered that the potential of the electric dipole is
 

p ir�rΦ = (17)
· 

4π�o|r − r�|2 

the potential of a magnetic dipole can be easily recalled as 

pm ir�rΨ = (18)
· 

4πµo|r − r�|2 

where
 
pm ≡ qmd = µoia = µom (19)
 

The magnetic dipole moment is defined as the product of the magnetic charge, qm,
 
and the separation, d, or by µo times the current times the area of the current
 
loop. Another symbol is used commonly for the “dipole moment” of a current loop,
 
m ≡ ia, the product of the current times the area of the loop without the factor µo.
 
The reader must gather from the context whether the words dipole moment refer
 
to pm or m = pm/µo. The magnetic field intensity H of a magnetic dipole at the
 
origin, (14), is
 

m 
H = = (2 cos θir + sin θiθ) (20)−�Ψ

4πr3 

Of course, the details of the field produced by the current loop and the magnetic
 
charge­dipole differ in the near field. One has � · µoH �= 0, and the other has a
 
solenoidal H field.


2 Science Vol. 216, (June 4, 1982). 



Sec. 8.4 Perfect Conductors 21 

8.4 MAGNETOQUASISTATIC FIELDS IN THE 
PRESENCE OF PERFECT CONDUCTORS 

There are physical situations in which the current distribution is not prespecified 
but is given by some equivalent information. Thus, for example, a perfectly conduct­
ing body in a time­varying magnetic field supports surface currents that shield the 
H field from the interior of the body. The effect of the conductor on the magnetic 
field is reminiscent of the EQS situations of Sec. 4.6, where charges distributed 
themselves on the surface of a conductor in such a way as to shield the electric field 
out of the material. 

We found in Chap. 7 that the EQS model of a perfect conductor described the 
low­frequency response of systems in the sinusoidal steady state, or the long­time 
response to a step function drive. We will find in Chap. 10 that the MQS model of 
a perfect conductor represents the high­frequency sinusoidal steady state response 
or the short­time response to a step drive. 

Usually, we use the model of perfect conductivity to describe bodies of high 
but finite conductivity. The value of conductivity which justifies use of the perfect 
conductor model depends on the frequency (or time scale in the case of a transient) 
as well as the geometry and size, as will be seen in Chap. 10. When the material 
is cooled to the point where it becomes superconducting, a type I superconductor 
(for example lead) expels any mangetic field that might have originally been within 
its interior, while showing zero resistance to currrent flow. Thus, even for dc, the 
material acts on the magnetic field like a perfect conductor. However, type I mate­
rials also act to exclude the flux from the material, so they should be regarded as 
perfect conductors in which flux cannot be trapped. The newer “high temperature 
ceramic superconductors,” such as Y1Ba2Cu3O7, show a type II regime. In this 
class of superconductors, there can be trapped flux if the material is cooled in a dc 
field. “High temperature superconductors” are those that show a zero resistance at 
temperatures above that of liquid nitrogen, 77 degrees Kelvin. 

As for EQS systems, Faraday’s continuity condition, (1.6.12), requires that 
the tangential E be continuous at a boundary between free space and a conductor. 
By definition, a stationary perfect conductor cannot have an electric field in its 
interior. Thus, in MQS as well as EQS systems, there can be no tangential E at 
the surface of a perfect conductor. But the primary laws determining H in the free 
space region, Ampère’s law with J = 0 and the flux continuity condition, do not 
involve the electric field. Rather, they involve the magnetic field, or perhaps the 
vector or scalar potential. Thus, it is desirable to also state the boundary condition 
in terms of H or Ψ. 

Boundary Conditions and Evaluation of Induced Surface Current Den­
sity. To identify the boundary condition on the magnetic field at the surface 
of a perfect conductor, observe first that the magnetic flux continuity condition 
requires that if there is a time­varying flux density n µoH normal to the surface on · 
the free space side, then there must be the same flux density on the conductor side. 
But this means that there is then a time­varying flux density in the volume of the 
perfect conductor. Faraday’s law, in turn, requires that there be a curl of E in the 
conductor. For this to be true, E must be finite there, a contradiction of our defini­
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Fig. 8.4.1 Perfectly conducting circular cylinder of radius R in a mag­
netic field that is y directed and of magnitude Ho far from the cylinder. 

tion of the perfect conductor. We conclude that there can be no normal component 
of a time­varying magnetic flux density at a perfectly conducting surface. 

n µoH = 0 (1)· 

Correspondingly, if the H field is the gradient of the scalar potential Ψ, we find 
that 

∂Ψ 
= 0	 (2)

∂n 

on the surface of a perfect conductor. This should be contrasted with the boundary 
condition for an EQS potential Φ which must be constant on the surface of a perfect 
conductor. This boundary condition can be used to determine the magnetic field 
distribution in the neighborhood of a perfect conductor. Once this has been done, 
Ampère’s continuity condition, (1.4.16), can be used to find the surface current 
density that has been induced by the time­varying magnetic field. With n directed 
from the perfect conductor into the region of free space, 

K = n× H (3) 

Because there is no time­varying magnetic field in the conductor, only the tangential 
field intensity on the free space side of the surface is required in this evaluation of 
the surface current density. 

Example 8.4.1.	 Perfectly Conducting Cylinder in a Uniform Magnetic 
Field 

A perfectly conducting cylinder having radius R and extending to z = ±∞ is 
immersed in a uniform time­varying magnetic field. This field is y directed and has 
intensity Ho at infinity, as shown in Fig. 8.4.1. What is the distribution of H in the 
neighborhood of the cylinder? 

In the free space region around the cylinder, there is no current density. Thus, 
the field can be written as the gradient of a scalar potential (in two dimensions) 

H = (4)−�Ψ 

The far field has the potential 

Ψ = −Hoy = −Hor sin φ; r →∞	 (5) 
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Fig. 8.4.2 Lines of magnetic field intensity for perfectly conducting 
cylinder in transverse magnetic field. 

The condition ∂Ψ/∂n = 0 on the surface of the cylinder suggests that the boundary 
condition at r = R can be satisfied by adding to (5) a dipole solution proportional 
to sin φ/r. By inspection, 

Ψ = −Ho sin φR
� r 

+ 
R� 

(6)
R r 

has the property ∂Ψ/∂r = 0 at r = R. The magnetic field follows from (6) by taking 
its negative gradient 

H = −�Ψ = Ho sin φir
�
1− 

R

r 

2 � 
+ Ho cos φiφ

�
1 + 

R

r 

2 � 
(7)

2 2 

The current density induced on the surface of the cylinder, and responsible for 
generating the magnetic field that excludes the field from the interior of the cylinder, 
is found by evaluating (3) at r = R. 

K = n × H = izHφ(r = R) = iz2Ho cos φ (8) 

The field intensity of (7) and this surface current density are shown in Fig. 8.4.2. 
Note that the polarity of K is such that it gives rise to a magnetic dipole field 
that tends to buck out the imposed field. Comparison of (7) and the field of a 
two­dimensional dipole, (8.1.21), shows that the induced moment is id = 2πHoR

2 . 
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Fig. 8.4.3 A coil having terminals at (a) and (b) links flux through surface 
enclosed by a contour composed of C1 adjacent to the perfectly conducting 
material and C2 completing the circuit between the terminals. The direction 
of positive flux is that of da, defined with respect to ds by the right­hand 
rule (Fig. 1.4.1). For the effect of magnetic induction to be negligible in the 
neighborhood of the terminals, the coil should have many turns, as shown by 
the inset. 

There is an analogy to steady conduction (H J) in the neighborhood of ↔
an insulating rod immersed in a conductor carrying a uniform current density. In 
Demonstration 7.5.2, an electric dipole field also bucked out an imposed uniform 
field (J) in such a way that there was no normal field on the surface of a cylinder. 

Voltage at the Terminals of a Perfectly Conducting Coil. Faraday’s law 
was the underlying reason for the vanishing of the flux density normal to a perfect 
conductor. By stating this boundary condition in terms of the magnetic field alone, 
we have been able to formulate the magnetic field of perfect conductors without 
explicitly solving for the distribution of electric field intensity. It would seem that 
for the determination of the voltage induced by a time­varying magnetic field at the 
terminals of the coil, knowledge of the E field would be necessary. In fact, as we now 
take care to define the circumstances required to make the terminal voltage of a coil 
a well­defined variable, we shall see that we can put off the detailed determination 
of E for Chap. 10. 

The EMF at point (a) relative to that at point (b) was defined in Sec. 1.6 as 
the line integral of E ds from (a) to (b). In Sec. 4.1, where the electric field was · 
irrotational, this integral was then defined as the voltage at point (a) relative to 
(b). We shall continue to use this terminology, which is consistent with that used 
in circuit theory. 

If the voltage is to be a well­defined quantity, independent of the layout of 
the connecting wires, the terminals of the coil shown in Fig. 8.4.3 must be in a 
region where the magnetic induction is negligible compared to that in other regions 
and where, as a result, the electric field is irrotational. To determine the voltage, 
the integral form of Faraday’s law, (1.6.1), is applied to the closed line integral C 
shown in Fig. 8.4.3. � 

d 
� 

C 

E · ds = − 
dt S 

µoH · da (9) 
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The contour goes from the terminal at (a) to that at (b) along the coil wire 
and closes through a path outside the coil. However, we know that E is zero along 
the perfectly conducting wire. Hence, the entire contribution to the line integral 
comes from the short path between the terminals. Thus, the left side of (9) reduces 
to 

a a� 

C1+C2 

E · ds = 
� 

b C2 

E · ds = − 
� 

b C2

�Φ · ds 
(10) 

= −(Φa − Φb) = −v 

It follows from Faraday’s law, (9), that the terminal voltage is 

dλ 
v = 

dt (11) 

where λ is the flux linkage3 

� 
µoH daλ ≡ 

S 

· 
(12) 

By definition, the surface S spans the closed contour C. Thus, as shown in Fig. 
8.4.3, it has as its edge the perfectly conducting coil, C1, and the contour used to 
close the circuit in the region where the terminals are located, C2. If the magnetic 
induction is negligible in the latter region, the electric field is irrotational. In that 
case, the specific contour, C2, is arbitrary, and the EMF between the terminals 
becomes the voltage of circuit theory. 

Our discussion has emphasized the importance of having the terminals in 
a region where the magnetic induction, ∂µoH/∂t, is negligible. If a time­varying 
magnetic field is significant in this region, then different arrangements of the leads 
connecting the terminals to the voltmeter will result in different voltmeter readings. 
(We will emphasize this point in Sec. 10.1, where we develop an appreciation for 
the electric field implied by Faraday’s law throughout the free space region sur­
rounding the perfect conductors.) However, there remains the task of identifying 
configurations in which the flux linkage is not appreciably affected by the layout 
of leads connected to the terminals. In the absence of magnetizable materials, this 
is generally realized by making coils with many turns that are connected to the 
outside world through leads arranged to link a minimum of flux. The inset to Fig. 
8.4.3 shows an example. The large number of turns assures a magnetic field within 
the coil that is much larger than that associated with the wires that connect the 
coil to the terminals. By intertwining these wires, or at least having them close 
together, the terminal voltage becomes independent of the detailed wire layout. 

Demonstration 8.4.1. Surface used to Define the Flux Linkage 

3 We drop the subscript f on the symbol λ for flux linkage where there is no chance to mistake 
it for line charge density. 
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Fig. 8.4.4 To visualize the surface enclosed by the contour C1 +C2 of 
Fig. 8.4.3, imagine filling it in with yarn strung on a frame representing 
the contour. 

The surface S used to define λ in (12) is often geometrically complex. It is helpful 
to picture the surface in terms of a model. Shown in Fig. 8.4.4 is a three­turn coil. 
The surface is filled in by stringing yarn between a vertical rod joining the terminals 
in the external region and points on the wire. The surface is filled in by connecting 
points of decreasing altitude on the rod to points of increasing distance along the 
wire. Note from Fig. 8.4.3 that da and ds are related by the right­hand rule, where 
the latter is directed along the contour from the positive terminal to the negative 
one. 

Another way of demonstrating the relationship of the surface to the coil ge­
ometry takes advantage of the phenomenon familiar from blowing bubbles. A small 
coil, closed along the external segment between the terminals, can be dipped into 
materials like soap solution to form a continuous film having the wire as one contin­
uous edge. In fact, if the film is formed from a material that hardens into a plastic 
sheet, a permanent model for the surface is obtained. 

Inductance. When the flux linked by the perfectly conducting coil of Fig. 
8.4.3 is due entirely to a current i in the coil itself, λ is proportional to i, λ = Li. 
Thus, the inductance L, defined as 

λ 
�

S 
µoH da 

=L ≡ · 
i i (13) 

becomes a parameter that is only a function of geometric variables and µo. In this 
case, the terminal voltage given by (11) assumes a form familiar from circuit theory. 

di 
v = L 

dt (14) 

The following example illustrates this rule. 

Example 8.4.2. Inductance of a Long Solenoid 



Sec. 8.4 Perfect Conductors	 27 

In Demonstration 8.2.1, we examined the field of a long N ­turn solenoid and found 
that in the limit where the length d becomes very large, the field intensity along the 
axis is 

Ni 
Hz =	 (15)

d 

where i is the current in each turn. 
For an infinitely long solenoid this is not only the field on the axis of symmetry 

but everywhere inside the solenoid. To see this, observe that a uniform magnetic field 
intensity satisfies both Ampère’s law and the flux continuity condition throughout 
the free space interior region. (A uniform field is irrotational and solenoidal.) Further, 
with the field given by (15) inside the coil and taken as zero outside, Ampère’s 
continuity condition (1.4.16) is satisfied at the surface of the coil where Kφ = Ni/d. 
The normal flux continuity condition is automatically satisfied, since there is no flux 
density normal to the coil surface. 

Because the field is uniform over the circular cylindrical cross­section, the 
magnetic flux Φλ 

4 passing through one turn of the solenoid is simply the cross­
sectional area A of the solenoid multiplied by the flux density µoH. 

µoAN 
Φλ = µoHzA = i	 (16)

d 

The flux linkage, defined by (12), is obtained by summing the contributions of all 
the turns. 

λ = 
� 

Φλ = 
µoN

2A
i	 (17)

d 
turns 

Thus, from (13), 
λ µoN

2A 
L = =	 (18)

i d 

For the circular cylindrical solenoid of radius a, A = πa2 . The same arguments 
used to see that the interior field of a solenoid of circular cross­section is given by 
(15) show that the solenoid can have an arbitrary cross­sectional geometry and the 
field will still be given by (15) everywhere inside and be zero outside. Thus, (18) is 
applicable to a solenoid of arbitrary cross­section. 

Example 8.4.3.	 Dipole Moment Induced in Perfectly Conducting Sphere 
by Imposed Uniform Magnetic Field 

If a highly conducting material is immersed in a magnetic field, it will modify 
the field in its vicinity via a surface current that cancels the field in its interior. If 
the material is spherical, we can superimpose the field of a dipole and the uniform 
field to exactly satisfy the boundary condition on the conducting surface. For a 
sphere having radius R in an imposed field Hoiz, as shown in Fig. 8.4.5, what is the 
equivalent dipole moment m? 

The imposed field is conveniently analyzed into radial and azimuthal compo­
nents. Then the irrotational and solenoidal field proposed to satisfy the boundary 
conditions is the sum of that uniform field and the field of a dipole at the origin, as 
given by (8.3.14) together with the definition (8.3.19). 

H = Ho

� 
cos θir − sin θiθ

� 
+ 

m � 2 cos θ 
ir + 

sin θ 
iθ

� 
(19)

4π r3 r3 

4 We use the symbol Φλ for the flux through one turn of a coil or a loop. 



28Magnetoquasistatic Fields: Superposition Integral and Boundary Value Points of View Chapter 8 

Fig. 8.4.5 Immersed in a uniform magnetic field, a perfectly conduct­
ing sphere has the same effect as an oppositely directed magnetic dipole. 

Fig. 8.4.6 One­turn solenoid. 

By design, this field already approaches the uniform field at infinity. To satisfy the 
condition that n µoH = 0 at r = R,· 

2m 
µoHr(r = R) = 0 cos θ + Ho cos θ = 0 (20)⇒ 

4πR3


It follows that the equivalent dipole moment is


m = −2πHoR
3 (21) 

The surface currents induced in the sphere which buck out the imposed magnetic 
flux are responsible for the dipole moment, as illustrated in Fig. 8.4.5. 

Example 8.4.4. One­Turn “Solenoid” 

The structure of perfectly conducting sheets shown in Fig. 8.4.6 has width w much 
greater than a and is excited by a uniform (in the z direction) current per unit 
length K at y = −b. 

The H­field solution that satisfies the boundary condition n H = 0 and · 
n × H = K on the perfect conductor is 

Hz = −K (22) 
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What is the voltage that appears across the current generator? From (11) and 
(12) we conclude 

dλ 
v = (23)

dt 

with � 
ab 

λ = µoH da = µoKab = µo i 
w 

· 

where i is the total current supplied by the generator. The voltage is thus 

di 
v = L (24)

dt 

where 
ab 

L = µo 
w 

8.5 PIECE­WISE MAGNETIC FIELDS 

In a typical physical situation to which the scalar potential is applicable, layers 
of wire are used to make a winding that is thin compared to other dimensions of 
interest. Currents are then confined to surfaces that separate the regions where H 
is irrotational. Thus, the sources of the magnetic field intensity can be represented 
as surface currents. The field produced by these currents is then found by choosing 
source­free solutions in the space surrounding the current­carrying surfaces and 
“connecting” these solutions across the surfaces by the proper boundary conditions. 
This procedure is analogous to finding EQS potentials produced by charge sheets 
in Chap. 5. Solutions to Laplace’s equation were set up on the two sides of a charge 
sheet and the jump in normal �oE adjusted to equal the surface charge density. 

In the MQS situation, the H field obeys Ampère’s continuity condition, (1.4.16). 

n × (Ha − Hb) = K (1) 

At this same surface, the magnetic flux continuity condition, (1.7.6), also applies. 

n (µoHa − µoHb) = 0 (2)· 
Remember that in Chap. 5, continuity of tangential E was implied by making the 
electric potential continuous. By contrast, according to (1), where there is a surface 
current density, the tangential H is discontinuous and this implies that the magnetic 
scalar potential Ψ is not generally continuous. To see this, consider the application 
of Ampère’s integral law to an incremental surface that is pierced by the surface 
current density, as shown in Fig. 8.5.1. If H is finite, then in the limit where the 
width w goes to zero, the contributions to the line integral from the segments 
B B� and A� A vanish, and so → →

H ds = J is = K in (3) 
C 

· 
S 

· da ⇒ −(�Ψa −�Ψb) · · 
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Fig. 8.5.1 Contour enclosing surface current density K on surface having 
normal n. Integration of Ampère’s law on surface enclosed by the contour 
shows that the magnetic scalar potential is, in general, discontinuous across 
the surface. 

where the unit vectors is and in are defined in Fig. 8.5.1. 
Multiplication of (3) by the incremental line element ds and integration over 

the length of the incremental surface gives 

B 

(�Ψa isds = K inds (4)− 
� 

A

B 

−�Ψb) · 
� 

A 

· 

In view of the gradient integral theorem, (4.1.16), the integrals on the left can be 
carried out to obtain 

� B 

(ΨB − ΨA)− (ΨB� − ΨA� ) = K inds (5)− 
A 

· 

Now think of A−A� as a fixed reference position on the surface, where ΨA is defined 
as being equal to ΨA� . It then follows that the discontinuity in Ψ at the location 
B − B� is a measure of the net current passing normal to the strip joining A− A� 
to B − B�. 

A further contrast with the electric field comes from the normal field continuity 
condition, (2). At a surface carrying a surface current density in free space, the 
normal derivative of Ψ is continuous. 

The following example shows how to find Ψ, and hence H, when a surface 
current distribution is given. 

Example 8.5.1. The Spherical Coil 

The magnetic field intensity produced inside a properly wound spherical coil has 
the important property that it is uniform. This should be contrasted with the field 
of a long solenoid that is uniform only to the extent that the fringing field can be 
neglected. 

The coil is wound of thin wire so that the turns density is sinusoidally dis­
tributed between the north and south poles of a sphere. To the extent that we can 
disregard the slight pitch in the coil needed to connect the loops with each other, 
loops of appropriately varying diameter, spaced evenly as projected onto the z axis, 
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Fig. 8.5.2 Cross­section of “flux ball” consisting of sphere with wind­
ing on its surface that is of uniform turns density with respect to the z 
axis. 

automatically simulate such a distribution. The coil, with a radius R and a wire 
carrying the current i, is shown in Fig. 8.5.2. 

To deduce the surface current density representing this winding, note that 
the density of turns on the surface is the total number, N , divided by the total 
length, 2R, and so the number of turns in the incremental length dz is (N/2R)dz. 
Because z = r cos θ, a differential length dz corresponds to an angular increment dθ: 
dz = − sin θRdθ. Therefore, the number of turns in the differential length Rdθ as 
measured along the periphery of the sphere is (N/2R) sin θ. With each turn carrying 
the current i, the surface current density is 

N 
K = iφ i sin θ (6)

2R 

In the spaces interior and exterior to the surface of the sphere, H is both 
irrotational and solenoidal. Hence, it is represented by scalar magnetic potentials. 

The φ component of (1) is the link between the surface current density and 
the induced field. 

N 
Hθ

a − Hθ
b = i sin θ (7)

2R 

To obtain Hθ, the derivative of Ψ with respect to θ must be taken, and this suggests 
that the θ dependence of Ψ be taken as cos θ. The field is finite at the origin and 
zero at infinity, so, from the three solutions to Laplace’s equation given in Sec. 5.9, 
we select 

Ψ = C(r/R) cos θ; r < R (8) 

Ψ = A(R/r)2 cos θ; r > R (9) 

The continuity conditions, used now to determine the coefficients A and C, are in 
terms of the field intensity. Thus, (8) and (9) are used to write H in the two regions 
as 

C 
H = − 

R
(ir cos θ − iθ sin θ); r < R (10) 

H = 
A 

(R/r)3(ir2 cos θ + iθ sin θ); r > R (11)
R 

Substitution of the appropriate components into the continuity conditions, (2) and 
(7), gives 

C 2A − 
R 

= 
R 

(12) 
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Fig. 8.5.3 Magnetic field intensity of “flux­ball” shown in Fig. 8.5.2. 

A C Ni 

R 
− 

R 
=

2R 
(13) 

Thus, the magnetic field intensity of (10) and (11) is evaluated by setting C = 
−2A = −Ni/3. 

Ni 
H = (ir cos θ − iθ sin θ); r < R (14)

3R 

Ni 3H = (R/r) (ir2 cos θ + iθ sin θ); r > R (15)
6R 

The exterior lines of magnetic field intensity are those of a dipole, while the 
interior field is uniform. Thus, the total picture, shown in Fig. 8.5.3, is one of field 
lines circulating from south to north inside the sphere and back from north to south 
on the outside around currents that follow lines of equilatitude around the sphere. 

The magnetic potential follows by substituting C = −2A = −Ni/3 for C and 
A in (8) and (9). 

Ni r 
Ψ = cos θ; r < R (16)− 

3 R 

Ni 2Ψ = (R/r) cos θ; r > R (17)
6 

Note that these potentials are equal at the equator of the sphere and become 
increasingly disparate as the poles are approached. With the vertical dimension used 
to denote Ψ, a sketch of Ψ evaluated in a plane of fixed φ would appear as shown 
in Fig. 8.5.4. Inside, Ψ slopes linearly from its highest value at the south pole to its 
lowest at the north. Outside, Ψ has its highest value at the north pole and lowest at 
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Fig. 8.5.4 Magnetic scalar potential for “flux ball” of Fig. 8.5.2. The 
vertical axis is Ψ. A line of H closes on itself as it circulates around 
surface current, going down the potential “hills” inside and outside the 
sphere and recovering its altitude at the surfaces of discontinuity at 
r = R, containing the surface current density. 

the south. This is consistent with the picture afforded by Fig. 8.5.1 and (5). Even 
though it closes on itself, the line of H shown goes continuously “down hill.” The 
potential Ψ regains its altitude in the region of discontinuity. 

Finally, we illustrate the computation of the inductance of a coil modeled 
by a surface current and represented in terms of the magnetic scalar potential. To 
compute the total flux linked by the winding, first consider the flux linked by one 
turn at the location r = R and θ = θ�. Using the flat surface at z� = R cos θ� that is 
enclosed by this circular turn, the flux is 

R sin θ�� 
2Φλ = µoHz2πrdr = π(R sin θ�) µoHz (18) 

0 

In this particular problem, Hz is uniform inside the sphere, so this integration 
amounts to multiplying the area enclosed by the turn by the normal flux density. 

The turns density multiplied by Rdθ gives the number of turns linking this 
flux in an increment of peripheral length. Thus, the total flux is obtained by carrying 
out a second integration over all of the turns. 

π π� 
N 

� 
πN2Rµo 3λ = Φλ sin θ�Rdθ� = i sin θ�dθ� = Li (19)

2R 6
0 0 

2 2L ≡ πN µoR (20)
9 

Demonstration 8.5.1. Field and Inductance of a Spherical Coil 

In the experiment shown in Fig. 8.5.5, the “flux ball” has 64 turns and a radius of 
R = 5 cm. The turns are wound on a plastic sphere that essentially has the magnetic 
properties of free space. 
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Fig. 8.5.5 Demonstration of fields surrounding the magnetic “flux ball.” 

The Hall magnetometer makes it possible to probe the magnitude and direc­
tion of the field outside the coil. For example, at the north pole, where the magnetic 
flux density is perpendicular to the sphere surface, the flux density is vertical and 
for i = 1 A predicted by either (14) or (15) to be µoNi/3R = 5.36 × 10−4T = 5.36 
gauss. The inductance is determined by measuring the voltage and current, varying 
the frequency to determine that it is high enough to assure that the resistance of the 
coil plays a negligible role in the terminal impedance (the impedance should be of 
magnitude ωL, and hence vary linearly with frequency). The inductance predicted 
by (20) is 180 µH, and the value measured using the oscilloscope is typically within 
10 percent. 

8.6 VECTOR	 POTENTIAL AND THE BOUNDARY VALUE POINT OF 
VIEW 

We have found that many interesting MQS cases can be treated by the use of the 
scalar potential obeying Laplace’s equation. The vector potential, defined by (8.1.1), 
is necessary when analyzing fields with nonzero curl. There are other cases as well 
in which its use may be advantageous. The vector potential is the natural variable 
for evaluating the flux passing through a surface. In view of (8.1.1), integration of 
the flux density over the open surface S of Fig. 8.6.1 gives 

λ = 
S 

µoH · da = 
S 

�× A · da	 (1) 

and it follows from Stokes’ theorem that this flux is equal to the line integral of 
A ds around the contour enclosing the surface. · 

λ = A ds 
C	

· 
(2) 
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Fig. 8.6.1 Open surface S having area element da enclosed by contour C 
having directed differential length ds. 

Fig. 8.6.2 Surface S with sides of length l parallel to the z axis at locations 
(a) and (b). The contour direction is consistent with the flux being positive, 
as shown. 

In certain important cases, A has only one component and a vector field is 
again represented in terms of one scalar function. Two such cases are identified in 
the following subsections. 

Vector Potential for Two­Dimensional Fields. Suppose that the flux density 
is parallel to the x− y plane and is independent of z. It can then be represented by 
a vector potential having only a z component. 

A = Az(x, y)iz (3) 

Note that the divergence of this A is automatically zero and that in Cartesian 
coordinates, the components of the flux density are given in terms of Az by 

∂Az ∂Az 
µoH = �× A = 

∂y 
ix − 

∂x 
iy (4) 

Consider now the evaluation of the net flux of magnetic flux density through 
a surface S that has length l in the z direction, as shown in Fig. 8.6.2. The points 
(a) and (b) denote the coordinates of the corners of the contour enclosing S. The 
contour consists of a pair of parallel straight segments of length l parallel to the z 
axis, one at the location (a) in the x − y plane and the other at (b), and contours 
joining (a) and (b) in x− y planes. Contributions to the contour integral, (2), from 
these latter segments of C are zero, because A is perpendicular to ds. Integration 
along the z­directed segments amounts to multiplication of Az evaluated at (a) or 
(b) by the length of the segment. Thus, (1) becomes 

λ = l(Az
a − Ab)z (5) 
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Fig. 8.6.3 Difference between axisymmetric stream function Λs evaluated 
at (a) and (b) is net flux through surface enclosed by the contour shown. 

The vector potential at (a) relative to (b) is the net magnetic flux per unit 
length passing through a surface of unit length in the z direction subtended between 
the two points and a corresponding pair at unity distance along the z axis. Note 
that the flux has a sign, relative to the direction of the contour integration, governed 
by the right­hand rule (Fig. 1.4.1). 

Vector Potential for Axisymmetric Fields in Spherical Coordinates. 
If the magnetic flux density is invariant with respect to rotation around the z axis, 
having components in the r and θ directions only, the vector potential again has a 
single component. 

A = Aφ(r, θ)iφ (6) 

The net flux through the annular surface “spanned” over the contour shown in Fig. 
8.6.3, having constant outer and inner radii denoted by (a) and (b), respectively, 
is given by the contributions to (2) of the azimuthal segments, Aφ multiplied by 
the circumferences. The contour is closed by adjacent oppositely directed segments 
joining points (a) and (b) in a plane of constant φ. Thus, the contributions to the 
line integral of (2) from these segments cancel, even if A had components in the 
direction of ds on these segments. Thus, the net flux through the annulus is simply 
the axisymmetric stream function Λ at (a) relative to that at (b).5 

λ = Λa
s − Λb 

s (7) 

where 
Λs ≡ 2πr sin θAφ (8) 

Lines of flux density are tangential to the axisymmetric surfaces of constant 
Λs. Just as Az provides a ready visualization of the flux lines in two dimensions, 
Λs portrays the axisymmetric flux lines. 

5 With A used to represent the velocity distribution of an incompressible fluid, Λs (or Λs/2π) 
is called Stokes’ stream function. 
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Fig. 8.6.4 Surfaces of constant Az and hence lines of magnetic field 
intensity for field trapped between perfectly conducting electrodes. 

Boundary Value Solution by “Inspection”. In two­dimensional configura­
tions, any surface of constant Az can be replaced by the surface of a perfect conduc­
tor. Moreover, in the free space region between conductors, Az satisfies Laplace’s 
equation. Thus, any two­dimensional configuration from Chaps. 4 and 5 can be 
replaced by one where the potential lines are field lines. The equipotential (con­
stant Φ) surfaces of the EQS perfect conductors become the perfectly conducting 
(constant Az) surfaces of an MQS system. 

Illustration. Field Trapped between Hyperbolic Perfect Conductors 

The two­dimensional potential distribution of Example 4.1.1 suggests the vector 
potential Az = Λoxy/a2. The lines of magnetic field intensity, which are the surfaces 
of constant Az, are shown in Fig. 8.6.4. Here, the surfaces Az = ±Λo are taken as 
being the surfaces of perfect conductors. Thus, the current density on the surfaces of 
these conductors are, given by using (4) to determine H and, in turn, (8.4.3) to find 
Kz. These currents shield the fields from the volume of the perfect conductors. The 
net flux per unit length passing downward between the upper pair of conductors is 
[in view of (7)] simply 2Λo. 

This solution is the superposition of the fields of four line currents. Two di­
rected in the +z direction are at infinity in the first and third quadrants, while two 
in the −z direction are in the second and fourth quadrants. 

Example 8.6.1.	 Field and Inductance of Oppositely Directed Currents 
in Parallel Perfectly Conducting Cylinders 

The cross­section of a pair of parallel perfectly conducting cylinders that extend 
to ±∞ in the z direction is shown in Fig. 8.6.5. The conductors have the same 
geometry as in the EQS case considered in Example 4.6.3. However, they should be 
regarded as shorted at one end and driven by a current source i at the other. Thus, 
current in the +z direction in the right conductor is returned in the left conductor. 
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Fig. 8.6.5 Cross­section of perfectly conducting parallel conductors 
having radius R and spacing 2l. Fields of oppositely directed line cur­
rents having spacing 2a are shown to satisfy normal flux boundary con­
dition on circular cylindrical surfaces of conductors. 

Although the net current in each conductor is given, its distribution on the surface 
of the conductors is to be determined. 

Example 4.6.3 suggests our strategy. Instead of superimposing the potentials 
Φ of a pair of line charges of opposite sign, we superimpose the Az of oppositely 
directed line currents. With r1 and r2 the distances from the observer coordinate to 
the source coordinates, defined in Fig. 8.6.5, it follows from the vector potential for 
a line current given by (8.1.16) that 

µoi 
Az = − 

2π 
(ln r1 − ln r2) (9) 

With the identification of variables 

µoi λl
Az Φ; (10)→ 

2π 
→ 

2π�o 

this expression is identical to that for the antidual EQS configuration, (4.6.18). We 

can conclude that the line currents should be located at a = (l2 − R2)1/2 , and that 
the constant k used in that deduction (4.6.20) is identified using (10). 

� 
2πΛ

� 
l + a 

k ≡ exp 
µoi 

= 
R 

(11) 

Here, the potential U in (4.6.20) is replaced by the flux per unit length Λ. Thus, the 
surfaces of constant Az are circular cylinders and represent the field lines shown in 
Fig. 8.6.6. 

The inductance per unit length L is now deduced from (11). 

L ≡ 
2Λ 

= 
µo 

ln
� l + a� 

= 
µo 

ln 

����
l 

+ 

�� l �2 − 1 

���� (12)
i π R π R R 

In the limit where the conductors represent wires that are thin compared to 
their spacing, the inductance per unit length of (12) is approximated using (4.6.28). 

µo
L ≈ ln

� 2l� 
(13)

π R 

Once the vector potential has been determined, it is possible to evaluate the 
distribution of current density on the conductors. Note that the currents tend to con­
centrate on the inside surfaces of the conductors, where the magnetic field intensity 
is more intense. 
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Fig. 8.6.6 Surfaces of constant Az and hence lines of magnetic field 
intensity for the parallel conductor configuration shown in the same 
cross­sectional view by Fig. 8.6.5. 

We are one step short of a general relationship between the capacitance per 
unit length and inductance per unit length of a pair of parallel perfect conductors, 
regardless of the cross­sectional geometry. With Φ and Az defined as zero on one 
of the conductors, evaluated on the other conductor they represent the voltage and 
the flux linkage per unit length, respectively. Thus, with the understanding that Φ 
and Az are evaluated on the second conductor, L = Az/i, and C = λl/Φ, (4.6.5). 
Here, i and λl, respectively, are the line current and line charge density that give 
rise to the same fields as do those sources actually on the surfaces of the conductors. 
These quantitities are related by (10), so we can conclude that regardless of the 
cross­sectional geometry, the product of the inductance per unit length and the 
capacitance per unit length is 

Azλl 1 
LC = = µo�o = (14)

iΦ c2 

where c is the velocity of light (3.1.16). 
Note that inductance per unit length of parallel circular conductors given 

by (12) and the capacitance per unit length for the same conductors under “open 
circuit” conditions (4.6.27) satisfy the general relation (14). 

Method of Images. In the presence of a planar perfect conductor, the zero 
normal flux condition can be satisfied by symmetrically mounting source distribu­
tions on both sides of the plane. This approach is familiar from Sec. 4.7, where the 
boundary condition required a plane of symmetry on which the tangential electric 
field was zero. Here we require that the field intensity be tangential to the bound­
ary. For two­dimensional configurations, the analogy between the electric potential 
and Az makes the image method of Sec. 4.7 directly applicable here. In both cases, 
the symmetry plane is one of constant potential (Φ or Az). 
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Fig. 8.6.7 With the frequency high enough so that the currents dis­
tribute themselves with a negligible normal flux density on the conduc­
tors, the field intensity tangential to the conducting plane is that pre­
dicted by (16) and shown by the graph. At low frequencies, the current 
tends to be uniformly distributed in the planar conductor. 

The most obvious example is an infinitely long line current at a distance d/2 
from a perfectly conducting plane. If Fig. 4.7.1 were a picture of line charges rather 
than point charges, this would be the dual situation. The appropriate image is then 
an oppositely directed line current located at a distance d/2 to the other side of the 
perfectly conducting plane. By making a pair of symmetrically located line currents 
the image for this pair of currents, the boundary condition on yet another plane 
can be satisfied, the analog to the configuration of Fig. 4.7.3. 

The following demonstration is intended to emphasize that the perfectly con­
ducting symmetry plane carries a surface current that terminates the field in the 
region of interest. 

Demonstration 8.6.1. Surface Currents Induced in Ground Plane by Over­
head Conductor 

The metal cylinder mounted over a metal ground plane shown in Fig. 8.6.7 is 
familiar from Demonstration 4.7.1. Rather than being insulated from the ground 
plane and driven by a voltage source, this cylinder is shorted to the ground plane at 
one end and driven by a current source at the other. The height l is small compared 
to the length, so that the two­dimensional model describes the field distribution in 
the midregion. 

A probe is used to measure the magnetic flux density tangential to the metal 
ground plane. The distribution of this field, and hence of the surface current density 
in the adjacent metal, can be determined by recognizing that the ground plane 
boundary condition of no normal flux density is met by symmetrically mounting a 
distribution of oppositely directed currents below the metal sheet. This is just what 
was done in determining the fields for the pair of cylindrical conductors, Fig. 8.6.5. 
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Thus, (9) is the image solution for the region x ≥ 0. In terms of x and y, 

µoi 
�

(a − x)2 + y2 

Az = − 
2π 

ln�
(a + x)2 + y2 

(15) 

The flux density tangential to the ground plane at the location y = Y is 

∂Az i 
� 

1 
� 

µoHy(x = 0) = − 
∂x 

(x = 0) = −µo 
πa 1 +

� 
Y 

�2 
(16) 

a 

Normalized to Ho = i/πa, this distribution is shown as a function of the probe 
position, Y , in the inset to Fig. 8.6.7. 

The role of the surface current density implied by this tangential field is demon­
strated by the same probe measurement of the magnetic flux density normal to the 
conducting sheet. Provided that the frequency is high enough so that the sheet does 
indeed behave as a perfect conductor, this flux density is small compared to that 
tangential to the sheet. This is also true at the surface of the cylindrical conductor. 

To appreciate the physical origins of this distribution, a dc current source is 
used in place of the ac source. The distribution of current in the sheet is then dictated 
by the rules of steady conduction, as enunciated in the first half of Chap. 7. If the 
sheet is long enough compared to its width, the current is uniformly distributed 
over the sheet and over the cross­section of the cylinder. By contrast with the high­
frequency ac case, where the field is terminated by surface currents in the sheet, the 
magnetic field now extends below the sheet. 

The method of images is not restricted to the two­dimensional situations where 
there is a convenient analogy between Φ and Az. In the following example, involving 
a three­dimensional field, the symmetry conditions are viewed without the aid of 
the vector potential. 

Example 8.6.2. Current Loop above a Perfectly Conducting Plane 

A current loop with time­varying current i is mounted a distance h above a perfectly 
conducting plane, as shown in Fig. 8.6.8. Its axis is inclined at an angle θ with respect 
to the normal to the plane. What is the net field produced by the current loop and 
the currents it induces in the plane? 

To satisfy the boundary condition in the plane of the perfectly conducting 
sheet, an image loop is mounted as shown in Fig. 8.6.9. For each current segment 
in the actual loop, there is a segment in the image loop giving rise to an oppositely 
directed vertical component of H. Thus, the net normal flux density in the plane of 
the perfect conductor is zero. 

Two­Dimensional Boundary Value Problems. The vector potential of a 
two­dimensional field parallel to the x − y plane is z directed and thus only one 
scalar function describes fully the associated field, as already pointed out earlier. In 
problems in which currents are confined to the boundaries, the scalar potential can 
be used as effectively as the vector potential. The lines of steepest descent of the 
scalar potential are the lines of constant height of the vector potential. When the 
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Fig. 8.6.8 Current loop at distance h above a perfectly conducting plane. 

Fig. 8.6.9 Cross­section
 
of configuration of Fig. 8.6.8, showing image dipole giving rise to field
 
that cancels the flux density normal to the planar perfect conductor.
 

region of interest contains current distributions, then use of the vector potential is 
required. We shall consider both situations in the examples to follow. 

Example 8.6.3. Inductive Attenuator 

The cross­section of two conducting electrodes that extend to infinity in the ±z
 
directions is shown in Fig. 8.6.10. The time­varying current in the +z direction
 
in the electrode at y = b is returned in the −z direction through the �­shaped
 
electrode. This current is so rapidly varying that the electrodes behave as though
 
they were perfectly conducting. The gaps of width Δ insulating the electrodes from
 
each other are small compared to the other dimensions of interest. The magnetic
 
flux (per unit length in the z direction) passing through these gaps in the directions
 
shown is defined as Λ(t).
 

The magnetic fields are two dimensional and there are no sources in the region
 
of interest. Thus, µoH can be represented in terms of Az, which satisfies
 

2� Az = 0 (17) 

The walls are perfectly conducting in the sense that they are modeled as having no
 
normal µoH. This means that Az is constant on these walls. We define Az to be
 
zero on the vertical and bottom walls. Thus, Az must be equal to Λ on the upper
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Fig. 8.6.10 Cross­section of inductive attenuator. 

electrode, so that the flux per unit length in the z direction through the gaps is Λ. 

Az(0, y) = 0, Az(a, y) = 0, Az(x, 0) = 0, Az(x, b) = Λ (18) 

The boundary value problem is now formally identical to the EQS capacitive atten­
uator that was the theme of Sec. 5.5, with the identification of variables 

Φ Az, V Λ (19)→ → 

Thus, it follows from (5.5.9) that 

∞ 
sinh 

� 
nπ y

��
Az = 

n=1 

4Λ(t) 

nπ 
a 

sinh 
� 

nπb 
a 

� sin 
� nπ 

a 
x
� 

(20) 

odd 

The lines of magnetic flux density are the lines of constant Az. They are the equipo­
tential “lines” of Fig. 5.5.3, shown in Fig. 8.6.10 with arrows added to indicate the 
field direction. Remember, there is a z­directed surface current density that is pro­
portional to the tangential field intensity. For the flux lines shown, Kz is out of the 
page in the upper electrode and returned into the page on the side walls and (to an 
extent determined by b relative to a) on the bottom wall as well. 

From the cross­sectional view given by Fig. 8.6.10, the provision for the current 
through the driven plate at the top to recirculate through the side and bottom plates 
is not shown. The following demonstration emphasizes the implied current paths at 
the ends of the configuration. 

Demonstration 8.6.2. Inductive Attenuator 

One configuration described by Example 8.6.3 is shown in Fig. 8.6.11. Here the 
upper plate is shorted to the adjacent walls at the near end and driven at the far 
end through a step­down transformer by a 20 kHz oscillator. The driving voltage v(t) 
at the far end of the upper plate is measured by means of an oscilloscope. The lower 
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plate is shorted to the side walls at the far end and also connected to these walls at
 
the near end, but in such a way that the induced current i(t) can be measured by
 
means of a current probe.
 

The walls and upper and lower plates are made from brass or copper. To
 
insure that the resistances of the plate terminations are negligible, they are made
 
from heavy copper wire with the connections soldered. (To make it possible to adjust
 
the spacing b, braided wire is used for the shorts on the lower electrode.)
 

If the length w of the plates in the z direction is large compared to a and b, H
 
within the volume follows from (20). The surface current density Kz in the lower
 
plate then follows from evaluation of the tangential H on its surface. In turn, the
 
total current follows from integration of Kz over the width, a, of the plate.
 

1 
∞ 

16Λ 1 
i = − 

µo 

� 

2nπ sinh 
� 

nπb 
� (21) 

n=1 a 
odd 

With the objective of relating this current to the driving voltage, note that (8.4.11)
 
gives
 

dΛ

v = w (22)

dt 

so that with the driving voltage a sinusoid of magnitude V , 

V 
v = V cos(ωt) Λ = sin(ωt) (23)⇒ 

wω 

Thus, in terms of the driving voltage, the output current is io sin(ωt), where it follows
 
from (21) and (23) that
 

∞ 
1 16V 

io = −I 
� 

2n sinh 
� 

nπb 
� ; I ≡ 

πwωµo 
(24) 

n=1 a 
odd 

We have found that the output current, normalized to I, has the dependence on
 
spacing between upper and lower plates shown by the inset to Fig. 8.6.11. With the
 
spacing b small compared to a, almost all of the current through the upper plate
 
is returned in the lower one, and the field between is essentially uniform. As the
 
spacing b becomes comparable to the distance a between the side walls, most of the
 
current through the upper electrode is returned in these side walls. Thus, for large
 
b/a, the normalized output current of Fig. 8.6.11 reflects the exponential decay in
 
the −y direction of the field.
 

Value is added to this demonstration if it is compared to its EQS antidual,
 
Demonstration 5.5.1. For the EQS configuration, the lower plate was properly con­
 
strained to essentially the same potential as the walls by connecting it to these side
 
walls through a resistance (which was then used to measure the induced current).
 
Up to frequencies above 100 Hz in the EQS case, this resistance could be as high as
 
that of the oscilloscope (say 1 MΩ) and still constrain the lower plate to essentially
 
the same zero potential as the walls. In the MQS case, we did not use a resistance to
 
connect the lower plate to the side walls (and hence provide a means of measuring
 
the output current), because that resistance would have had to be extremely low,
 
even at 20 kHz, to prevent flux from leaking through the gaps between the lower
 
plate and the side walls. We used the current probe instead. The effects of finite
 
conductivity in MQS systems are the subject of Chap. 10.
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Fig. 8.6.11 Inductive attenuator demonstration. 

In a final example, we exemplify how the particular and homogeneous solu­
tions are combined to satisfy boundary conditions while also illustrating how the 
inductance of a distributed winding is determined. 

Example 8.6.4.	 Field and Inductance of Distributed Winding Bounded 
by Perfect Conductor 

The cross­section of a distributed winding of radius a is shown in Fig. 8.6.12. It 
consists of turns carrying current i in the +z direction at a location (r, φ) and 
returning the current at (r, −φ) in the −z direction. The density of turns, each 
carrying the current i in the +z direction for 0 ≤ φ ≤ π and in the −z direction for 
π < φ < 2π, is 

n = no sin φ	 (25)| | 
The total number of wires N in the left­hand half of the coil is 

a π� �	
2N = no sin φrdrdφ = noa	 (26) 

0 0 

so that the current density is 

N 
J = izino sin φ = izi sin φ	 (27) 

a2 

The windings are very long in the z direction so that effects of the end turns are 
ignored and the fields taken as independent of z. 
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Fig. 8.6.12 Cross­section of two­dimensional distributed winding sur­
rounded by perfectly conducting material. A typical coil consists of wires 
carrying current in the +z direction at (r, φ) somewhere to the right 
(0 < φ < π), and returning it in the −z direction at (r,−φ) to the left. 

The coil is bounded at r = a by a perfect conductor. With the following 
steps we determine the field distribution throughout the winding and finally, its 
inductance. 

The vector potential is z independent and must satisfy Poisson’s equation 
(8.1.6). In polar coordinates, 

1 ∂ 
� 

∂Az 

� 
1 ∂2Az 

r + = −µoJz (28)
r ∂r ∂r r2 ∂φ2 

First we look for a particular solution. If it is to take a product form, inspection 
shows that sin φ is the appropriate φ dependence. Substitution of an r dependence 
r n shows that the equation can be satisfied if n = 2. Thus, we have “guessed” a 
particular solution. 

µoNi r 2 
Azp = − 

2 
sin φ (29)

3 a

The magnetic flux density normal to the perfectly conducting surface at r = a 
must be zero, so the total vector potential must be constant there. It follows that 
one must add a vector potential with no associated current density in the region 
r < a, a homogeneous solution Azh. At r = a, the homogeneous solution, Azh, must 
be the negative of the particular solution, Azp. 

µoNi 
[Azp + Azh]r=a = 0 Azh(r = a) = sin φ (30)⇒ 

3 

A linear combination of the two solutions to Laplace’s equation that have the same 
φ dependence as this condition is 

D 
Azh = Cr sin φ + sin φ (31) 

r 

The coefficient D must be zero so that the solution is finite at the origin. The 
coefficient C is then adjusted to make (31) satisfy the condition of (30). Hence, the 
sum of the particular and homogeneous solutions is 

µoNi
�� r �2 r 

� 
Az = sin φ (32)− 

3 a 
− 

a 
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Fig. 8.6.13 Graphical representation of the surfaces of constant Az 

for the system of Fig. 8.6.12 as the sum of particular and homogeneous 
solutions. 

A graphical representation of what has been accomplished is given in Fig. 
8.6.13, where the surfaces of constant Az (and hence the lines of field intensity) are 
shown for the particular, homogeneous, and total solutions. 

Each turn of the coil links a different magnetic flux. Thus, to determine the 
total flux linked by the distribution of turns, it is necessary to carry out an inte­
gration. To do this, first observe that the flux linked by the turns with their right 
legs within the area rdφdr in the neighborhood of (r, φ) and their left legs within a 
similar area in the neighborhood of (r, −φ) is 

Φλ = l[Az(r, φ)− Az(r,−φ)]no sin φrdφdr	 (33) 

Here,	 l is the length of the system in the z direction. 
The total flux linked by all of the turns is obtained by integrating over all of 

the turns. 
a π 

λ = lno [Az(r, φ)− Az(r,−φ)]r sin φdφdr (34) 
0 0 

Substitution for Az from (32) and use of (26) then gives 

π 2λ = Li with L ≡ lµoN	 (35)
36 

where L will be recognized as the inductance. 

8.7 SUMMARY 

Just as Chap. 4 was initiated with the representation of an irrotational vector field 
E, this chapter began by focusing on the solenoidal character of the magnetic flux 
density. Thus, µoH was portrayed as the curl of another vector, the vector potential 
A. 

The determination of the magnetic field intensity, given the current density 
everywhere, was pursued first using the vector potential. The integration of the 
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vector Poisson’s equation for A was the first of many exploitations of analogies 
between EQS and MQS descriptions. In Cartesian coordinates, the superposition 
integral for A, (8.1.8) in Table 8.7.1, has components that are analogous to the 
scalar potential superposition integral, (4.5.3), from Table 4.9.1. Similarly, the two­
dimensional superposition integral, (8.1.14), has as its analog (4.5.20) from Table 
4.9.l. 

Especially if a computer is to be used, it is often most practical to work directly 
with the magnetic field intensity. The Biot­Savart law, (8.2.7) in Table 8.7.1, gives 
H directly as an integration over the given distribution of current density. 

In many applications, the current distribution can be approximated by piece­
wise continuous straight­line segments. In this case, the total field is conveniently 
represented by the superposition of contributions given by (8.2.22) in Table 8.7.1 
due to the individual “sticks.” 

In regions free of current density, H is not only solenoidal, but also irrotational. 
Thus, like the electric field intensity of Chap. 4, it can be represented by a scalar 
potential Ψ, H = −�Ψ. The magnetic scalar potential is, in general, discontinuous 
across a surface carrying a surface current density. It is its normal derivative that 
is continuous. The scalar potential provides an elegant representation of the fields 
in free space regions surrounding current loops. The superposition integral, (8.3.12) 
in Table 8.7.1, is written in terms of the solid angle Ω. 

Through the combined effects of Faraday’s law, flux continuity, and Ohm’s 
law, currents are induced in a conductor by a time­varying magnetic field. In a 
perfect conductor, these currents are on the surface, distributed in such a way as to 
shield the magnetic field out of the conductor. As a result, the normal component 
of the magnetic flux density must be zero on the surface of a perfect conductor. 

Although useful for representing any solenoidal field, the vector potential is 
especially useful in the situations summarized by Table 8.7.2. It is especially con­
venient for describing systems with perfectly conducting boundaries. In two di­
mensions, the boundary condition on a perfect conductor is satisfied by making 
the vector potential constant on the boundary. The approaches of Chaps. 4 and 
5 apply equally well to solving MQS boundary value problems involving perfect 
conductors. In fact, the two­dimensional EQS and MQS configurations of perfect 
conductors in free space, exemplified by the configurations of Figs. 4.7.2 and 8.6.7, 
were found to be duals. Formally, the solution for H follows from that for E by 
identifying Φ Az, ρ/�o µoJz. However, while the electric field intensity E → →
is perpendicular to the surfaces of constant Φ, H is tangential to the surfaces of 
constant Az. 

The boundary conditions obeyed by the vector potential at surfaces of discon­
tinuity (containing surface currents) reflect the discontinuity in tangential H field 
and the continuity of the normal flux density. The vector potential itself must be 
continuous (a discontinuity of A would imply an infinite H in the surface) 

(Aa − Ab) = 0 (1) 

where Ampère’s continuity condition 

n × [(�× A)a − (�× A)b] = µoK (2) 

requires that curl A have discontinuous tangential components. The condition that 
A be continuous, (1), guarantees the continuity of the normal flux density. [Accord­
ing to (1), the integral of A ds around an incremental closed contour lying on one · 
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TABLE 8.7.1 

side of the surface is equal to that on the other. Thus, the normal flux which each 
of these integrals represents, is the same as well.] 

In fluid mechanics, the scalar Az would be called a “stream­function”, because 
in two dimensions, lines of constant vector potential constitute the flux lines. In 
axisymmetric configurations, the flux lines are lines of constant Λs, as defined in 
Table 8.7.2. Of course, a similar representation can be used for any solenoidal vector. 
For example, an expression for the two­dimensional lines of electric field intensity 
in a region free of charge density could be obtained by finding a vector potential 
representation of E. Thus, in these special cases, the vector potential is convenient 
for plotting any solenoidal field. 

The electric potential Φ of EQS systems, evaluated on the surface of a perfectly 
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TABLE 8.7.2 

conducting capacitor electrode, can be used to evaluate the terminal voltage. The 
vector potential is similarly related to the terminal characteristics of a lumped 
parameter element, this time an inductor. Indeed, we found in Sec. 8.6 that the 
flux per unit length linked by a pair of conductors in two dimensions was simply 
the difference of vector potentials evaluated on the two conductors. In Sec. 8.4, we 
found that the terminal voltage is the time rate of change of this flux linkage. 

The division of the field into particular and homogeneous parts makes possible 
a number of different approaches to obtaining the total field. The particular part 
can be obtained using the vector potential, using the Biot­Savart law, or by super­
imposing the fields of thin coils represented in terms the scalar magnetic potential. 
The homogeneous solution is both irrotational and solenoidal, so it is possible to use 
either the vector or the scalar potential to represent this part of the field everywhere. 
The vector potential helps determine the net flux, as required for calculating the 
inductance, but is of limited usefulness for three­dimensional configurations. The 
scalar potential does not directly portray the net flux, but does generally apply to 
three­dimensional configurations. 
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P R O B L E M S 

8.1 The Vector Potential and the Vector Poisson Equation 

8.1.1	 A solenoid has radius a, length d, and turns N , as shown in Fig. 8.2.3. The 
length d is much greater than a, so it can be regarded as being infinite. It 
is driven by a current i. 

(a) Show that Ampère’s differential law and the magnetic flux continuity 
law [(8.0.1) and (8.0.2)], as well as the associated continuity condi­
tions [(8.0.3) and (8.0.4)], are satisfied by an interior magnetic field 
intensity that is uniform and an exterior one that is zero. 

(b) What is the interior field? 
(c)	 A is continuous at r = a because otherwise the H field would have a 

singularity. Determine A. 

8.1.2∗	 A two­dimensional magnetic quadrupole is composed of four line currents 
of magnitudes i, two in the positive z direction at x = 0, y = ±d/2 and two 
in the negative z direction at x = ±d/2, y = 0. (With the line charges repre­
senting line currents, the cross­section is the same as shown in Fig. P4.4.3.) 
Show that in the limit where r � d, Az = −(µoid

2/4π)(r−2) cos 2φ. (Note 
that distances must be approximated accurately to order d2.) 

8.1.3	 A two­dimensional coil, shown in cross­section in Fig. P8.1.3, is composed 
of N turns of length l in the z direction that is much greater than the width 
w or spacing d. The thickness of the windings in the y direction is much 
less than w and d. Each turn carries the current i. Determine A. 

Fig. P8.1.3 

8.2 The Biot­Savart Superposition Integral 

8.2.1∗	 The washer­shaped coil shown in Fig. P8.2.1 has a thickness Δ that is 
much less than the inner radius b and outer radius a. It supports a current 
density J = Joiφ. Show that along the z axis, 

ΔJoiz 
� 

b a (a +
√
a2 + z2)

�
H =	

2 
√
b2 + z2 

− √
a2 + z2 

+ ln
(b+

√
b2 + z2)

(a) 
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Fig. P8.2.1 

Fig. P8.2.5 

8.2.2∗	 A coil is wound so that the wire forms a spherical shell of radius R with 
the wire essentially running in the φ direction. With the wire driven by a 
current source, the resulting current distribution is a surface current at r = 
R having the density K = Ko sin θiφ, where Ko is a given constant. There 
are no other currents. Show that at the center of the coil, H = (2Ko/3)iz. 

8.2.3	 In the configuration of Prob. 8.2.2, the surface current density is uniformly 
distributed, so that K = Koiφ, where Ko is again a constant. Find H at 
the center of the coil. 

8.2.4	 Within a spherical region of radius R, the current density is J = Joiφ, 
where Jo is a given constant. Outside this region is free space and no other 
sources of H. Determine H at the origin. 

8.2.5∗	 A current i circulates around a loop having the shape of an equilateral 
triangle having sides of length d, as shown in Fig. P8.2.5. The loop is in 
the z = 0 plane. Show that along the z axis, 

H = i
�

3/4
d2iz �

z 2 + 
d2 �−1� d2 

+ z 2
�−1/2	 (a)

4π 12 3 

8.2.6	 For the two­dimensional coil of Prob. 8.1.3, use the Biot­Savart superposi­
tion integral to find H along the x axis. 
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8.2.7∗	 Show that A induced at point P by the current stick of Figs. 8.2.5 and 
8.2.6 is 

µoi a 
� 

c
a 
·a + c

�	 

A =
4π a 

ln 
b

| 
a 

| 
+ 

|
b

|	
(a) · 

a
| | | | | | 

8.3 The Scalar Magnetic Potential 

8.3.1	 Evaluate the H field on the axis of a circular loop of radius R carrying a 
current i. Show that your result is consistent with the result of Example 
8.3.2 at distances from the loop much greater than R. 

8.3.2	 Determine Ψ for two infinitely long parallel thin wires carrying currents i in 
opposite directions parallel to the z axis of a Cartesian coordinate system 
and located along x = ±a. Show that the lines Ψ = const in the x−y plane 
are circles. 

8.3.3	 Find the scalar potential on the axis of a stack of circular loops (a coil) of 
N turns and length l using 8.3.12 for an individual turn, integrating over 
all the turns. Find H on the axis. 

8.4 Magnetoquasistatic Fields in the Presence of Perfect Conductors 

8.4.1∗	 A current loop of radius R is at the center of a conducting spherical shell 
having radius b. Assume that R � b and that i(t) is so rapidly varying 
that the shell can be taken as perfectly conducting. Show that in spherical 
coordinates, where R � r < b 

H = 
iπR2

�
2 cos θ

� 1 1	�
ir + sin θ

� 1
+	 

2 �
iθ 

� 

(a)
4π	 r3 

− 
b3 r3 b3 

8.4.2	 The two­dimensional magnetic dipole of Example 8.1.2 is at the center of a 
conducting shell having radius a � d. The current i(t) is so rapidly varying 
that the shell can be regarded as perfectly conducting. What are Ψ and H 
in the region d � r < a? 

8.4.3∗	 The cross­section of a two­dimensional system is shown in Fig. P8.4.3. A 
magnetic flux per unit length sµoHo is trapped between perfectly conduct­
ing plane parallel plates that extend to infinity to the left and right. At the 
origin on the lower plate is a perfectly conducting half­cylinder of radius 
R. 

(a) Show that if s � R, then
 

Ψ = HoR
� r 

+ 
R
� 

cos φ	 (a)
R r 
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Fig. P8.4.3 

Fig. P8.4.6 

(b) Show that a plot of H would appear as in the left half of Fig. 8.4.2 
turned on its side. 

8.4.4	 In a three­dimensional version of that shown in Fig. P8.4.3, a perfectly 
conducting hemispherical bump of radius s � R is attached to the lower of 
two perfectly conducting plane parallel plates. The hemisphere is centered 
at the origin of a spherical coordinate system such as in Fig. P8.4.3, with 
φ θ. The magnetic field intensity is uniform far from the hemisphere. →
Determine Ψ and H. 

8.4.5∗	 Running from z = −∞ to z = +∞ at (x, y) = (0,−h) is a wire. The wire 
is parallel to a perfectly conducting plane at y = 0. When t = 0, a current 
step i = Iu−1(t) is applied in the +z direction to the wire. 

(a) Show that in the region y < 0, 

i 
� −(y + h)ix + xiy (y − h)ix − xiy

�
H =	 + for t > 0 (a)

2π [x2 + (y + h)2] [x2 + (y − h)2] 

(b) Show that the surface current density at y = 0 is Kz = −ih/π(x2 + 
h2). 

8.4.6	 The cross­section of a system that extends to infinity in the ±z directions 
is shown in Fig. P8.4.6. Surrounded by free space, a sheet of current has 



55 Sec. 8.5 Problems 

Fig. P8.5.1 

Fig. P8.5.2 

the surface current density Koiz uniformly distributed between x = b and 
x = a. The plane x = 0 is perfectly conducting. 

(a) Determine Ψ in the region 0 < x. 
(b) Find K in the plane x = 0. 

8.5 Piece­Wise Magnetic Fields 

8.5.1∗	 The cross­section of a cylindrical winding is shown in Fig. P8.5.1. As pro­
jected onto the y = 0 plane, the number of turns per unit length is constant 
and equal to N/2R. The cylinder can be modeled as infinitely long in the 
axial direction. 

(a) Given that the winding carries a current i, show that 

Ni 
� 

(R/r) cosφ; R < r	Ψ =
4 −(r/R) cosφ; r < R 

(a) 
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and that therefore 

Ni 
� 

(R/r)2[cos φir + sinφiφ]; R < rH =
4R [cos φir − sin φiφ]; r < R 

(b) 

(b) Show that the inductance	 per unit length of the winding is	 L = 
πµoN

2/8. 

8.5.2	 The cross­section of a rotor, coaxial with a perfectly conducting “magnetic 
shield,” is shown in Fig. P8.5.2. Windings consisting of N turns per unit 
peripheral length are distributed uniformly at r = b so that at a given 
instant in time, the surface current distribution is as shown. At r = a, 
there is the inner surface of a perfect conductor. The system is very long 
in the z direction. 

(a) What are the continuity conditions on Ψ at r = b and the boundary 
condition at r = a? 

(b) Find Ψ, and hence H, in regions (a) and (b) outside and inside the 
winding, respectively. 

(c) With the understanding that the rotor is wound using one wire, so 
that each turn is in series with the next and a wire carrying the current 
in the +z direction at φ returns the current in the −z direction at 
−φ, what is the inductance of the rotor coil? Why is it independent 
of the rotor position φo? 

8.6 Vector Potential 

8.6.1∗	 In Example 1.4.1, the magnetic field intensity is determined to be that 
given by (1.4.7). Define Az to be zero at the origin. 

(a) Show that if Hφ is to be finite in the neighborhood of r = R, Az must 
be continuous there. 

(b) Show that A is given by 

A = 
µoJoR

2 
� 

3
1 (r/R)3; r < R 

(a)−iz 3 ln(r/R) + 1
3

	; r > R 

(c) The loop designated by C � in Fig. 1.4.2 has a length l in the z direc­
tion, an inner leg at r = 0, and an outer leg at r = a > R. Use A to 
show that the flux linked is 

λ = −lAz(a) = 
µoJoR

2l �
ln(a/R) + 

1� 
(b)

3 3 

8.6.2	 For the configuration of Prob. 1.4.2, define Az as being zero at the origin. 

(a) Determine Az in the regions r < b and b < r < a. 
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Fig. P8.6.5 

(b) Use A to determine the flux linked by a closed rectangular loop having 
length l in the z direction and each of its four sides in a plane of 
constant φ. Two of the sides are parallel to the z axis, one at radius 
r = c and the other at r = 0. The other two, respectively, join the 
ends of these segments, running radially from r = 0 to r = c. 

8.6.3∗	 In cylindrical coordinates, µoH = µo[Hr(r, z)ir + Hz(r, z)iz]. That is, the 
magnetic flux density is axially symmetric and does not have a φ compo­
nent. 

(a) Show that 
A = [Λc(r, z)/r]iφ (a) 

(b) Show that the flux passing between contours at r = a and r = b is 

λ = 2π[Λc(a)− Λc(b)]	 (b) 

8.6.4∗	 For the inductive attenuator considered in Example 8.6.3 and Demonstra­
tion 8.6.2: 

(a) derive the vector potential, (20), without identifying this MQS prob­
lem with its EQS counterpart. 

(b) Show that the current is as given by (21). 
(c) In the limit where b/a � 1, show that the response has the depen­

dence on b/a shown in the plot of Fig. 8.6.11. 
(d) Show that in the opposite limit, where	 b/a � 1, the total current 

in the lower plate (21) is consistent with a magnetic field intensity 
between the upper and lower plates that is uniform (with respect to 
y) and hence equal to (Λ/bµo)ix. Note that 

∞	� 1
=	 
π2	

(a) 
n2 8 

n=1 
odd 

8.6.5	 Perfectly conducting electrodes are composed of sheets bent into the shape 
of �’s, as shown in Fig. P8.6.5. The length of the system in the z direction 
is very large compared to the length 2a or height d, so the fields can be 
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Fig. P8.6.6 

regarded as two dimensional. The insulating gaps have a width Δ that is 
small compared to all dimensions. Passing through these gaps is a magnetic 
flux (per unit length in the z direction) Λ(t). One method of solution is 
suggested by Example 6.6.3. 

(a) Find A in regions (a) and (b) to the right and left, respectively, of 
the plane x = 0. 

(b) Sketch H. 

8.6.6∗	 The wires comprising the winding shown in cross­section by Fig. P8.6.6 
carry current in the −z direction over the range 0 < x < a and return 
this current over the range −a < x < 0. These windings extend uniformly 
over the range 0 < y < b. Thus, the current density in the region of 
interest is J = −ino sin(πx/a)iz, where i is the current carried by each 
wire and no sin(πx/a) is the number of turns per unit area. This region | |
is surrounded by perfectly conducting walls at y = 0 and y = b and at 
x = −a and x = a. The length l in the z direction is much greater than 
either a or b. 

(a) Show that 

b 

(a/π)2 sin 
� πx�� 

cosh πa 

�
y − 2

� �
A = izµoino

a cosh 
� 

πb
�	 − 1 (a) 

2a 

(b) Show that the inductance of the winding is 

L =	 n l 
4 
�� πb� − tanh 

� πb�� 

(b)2µo
2 
o π

a
3	 2a 2a 

(c) Sketch H. 

8.6.7	 In the configuration of Prob. 8.6.6, the rectangular region is uniformly filled 
with wires that all carry their current in the z direction. There are no of 
these wires per unit area. The current carried by each wire is returned in 
the perfectly conducting walls. 

(a) Determine A. 
(b) Assume that all the wires are connected to the wall by a terminating 

plate at z = l and that each is driven by a current source i(t) in the 
plane z = 0. Note that it has been assumed that each of these current 
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sources is the same function of time. What is the voltage v(x, y, t) of 
these sources? 

8.6.8	 In the configuration of Prob. 8.6.6, the turns are uniformly distributed. 
Thus, no is a constant representing the number of wires per unit area 
carrying current in the −z direction in the region 0 < x. Assume that the 
wire carrying current in the −z direction at the location (x, y) returns the 
current at (−x, y). 
(a) Determine A. 
(b) Find the inductance L. 
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