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Dynamics of Electromechanical Continua

essentially the same features as that described here will result.* Often the
twisting motions that characterize the dynamics of the wire are found in
other electromechanical systems that involve an imposed magnetic field.
An example is the cyclotron wave of electron beam theory.t

10.5 DISCUSSION

In this chapter we have explored the consequences of continuum electro-
mechanical coupling with simple elastic continua. This has produced mathe-
matical analyses and physical interpretations of evanescent waves, absolute
instabilities, and waves and instabilities in convecting systems. The unifying
mathematical concept is the dispersion relation presented graphically in the
w-k plots.

Although our examples have been framed in terms of simple physical
situations, the phenomena we have discussed occur in the wide variety of
practical situations indicated in Section 10.0 and throughout the chapter.

PROBLEMS

10.1. The current-carrying wire described in Section 10.1.2 is attached to a pair of dashpots
with damping coefficients B and driven at x = -1, as shown in Fig. 10P.1.

(a) What is the boundary condition at x = 0?
(b) Compute the power absorbed in the dashpots for o < co, given the amplitude 0o

and other system parameters.

x

Fig. 10P.1

* Film Cartridge, produced by the National Committee for Fluid Mechanics Films,
Current-InducedInstabilityofa Mercury Jet, may be obtained from Education Development
Center, Inc., Newton, Mass. The instability seen in this film is convective, as would be the
case here if the string were in motion with U > v,.
f W. H. Louisell, Coupled Modes andParametricElectronics, Wiley, 1960, p. 51.
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Problems

10.2. Consider the same physical situation as that described in Section 10.1.2, except with
the current-carrying wire constrained at x = 0, so that (a8/ax)(O, t) = 0, and driven at
x = -1 such that (--1, t) = E cos wat.

(a) Find analytical expressions for C(x, t) with wc > w~ and c, < we.
(b) Sketch the results of (a) at an instant in time for cases in which wa = 0, w, < w,d

od > COC.
(c) How could the boundary condition at z = 0 be realized physically?

10.3. The ends of the spring shown in Fig. 10.1.2 and discussed in Sections 10.1.2 and
10.1.3 are constrained such that

- (0, t) = 0,

(-1, t) = 0.

(a) What are the eigenfrequencies of the spring with the current as shown in Fig.
10.1.2?

(b) What are these frequencies with I as shown in Fig. 10.1.9?
(c) What current I is required to make the equilibrium with & = 0 unstable? Give a

physical argument in support of your answer.

10.4. In Section 10.1.2 a current-carrying wire in a magnetic field was described by the
equation of motion

82& a28
m = f _x -_ Ibý + F(x, t), (a)

where Fis an externally applied force/unit length. We wish to consider the flow of power on
the string. Because F la/8t is the power input/unit length to the string, we can find a
conservation of power equation by multiplying (a) by a8/at. Show that

aW aP
Pin =-- + -, (b)

where Pin = F a8/at,

W = energy stored/unit length

4m + + Ib(2,

P = power flux

aý a8
= -f 8t-atx t

10.5. Waves on the string in Problem 10.4 have the form

E(x, t) = Re[t+ei(Wt-k) + .ei(wt+kz)J.

This problem makes a fundamental point of the way in which power is carried by ordinary
waves in contrast to evanescent waves. The instantaneous power P carried by the string is
given in Problem 10.4. Sinusoidal steady-state conditions prevail.

(a) Compute the time average power carried by the waves under the assumption that
k is real. Your answer should show that the powers carried by the forward and

·



Dynamics of Electromechanical Continua

backward waves are independent; that is,

(P> = kf -

where 4* is the complex conjugate of ý.
(b) Show that if k =jfl,# real we obtain by contrast

KP) _=-_-

A single evanescent wave cannot carry power.
(c) Physically, how could it be argued that (b) must be the case rather than (a) for an

evanescent wave?

10.6. Use the results of Problem 10.4 to show that the group velocity vg = dowdk is given
by the ratio of the time average power to the time average energy/unit length: v, = (P)/( W).
Attention should be confined to the particular case of Problem 10.4 with F = 0.

10.7. A pair of perfectly conducting membranes has equilibrium spacing d from each other
and from parallel rigid walls (Fig. 10P.7). The membranes and walls support currents such

Ho

Fig. 10P.7

that with & = 0 and &z= 0 the static uniform magnetic field intensities H0 are as shown.
As the membranes deform, the flux through each of the three regions between conductors
is conserved.

(a) Assume that both membranes have tension S and mass/unit area am. Write two
equations of motion for X1and 5,.

(b) Assume that 5z = Re i, expj(wt - kx) and 25,= Re , expj(wt - kx) and find
the dispersion equation.

(c) Make an w-k plot to show complex values of k for real values of wto.Show which
branch of this plot goes with E1 =-- and which with 1-= -- . What are the
respective cutoff frequencies for these odd and even modes?

(d) The membranes are fixed at x = 0 and given the displacements 5,(-1, t) =
-- 2(-1, t) = Re expojwt. Find 1EandX 2 and sketch for wt = 0.

10.8. An electromagnetic wave can be transmitted through or reflected by a plasma,
depending on the frequency of the wave relative to the plasma frequency ow,. This phenom-
enon, which is fundamental to the propagation of radio signals in the ionosphere, is
illustrated by the following simple example of a cutoff wave. In dealing with electromagnetic
waves, we require that both the electric displacement current in Ampere's law and the
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Ex (z, t)
ov (z, 0)

Fig. 10P.8

magnetic induction in Faraday's law (see Section B.2.1) be accounted for. We consider
one-dimensional plane waves in which E = iE#(z, t) and H = i,H,(z, t).

(a) Show that Maxwell's equations require that

aE _ - pyH, 8aH, 8eoE,
az at az at

(b) The space is filled with plasma composed of equal numbers of ions and electrons.
Assume that the more massive ions remain fixed and that n, is the electron
number density, whereas e and m are the electronic charge and mass. Use a
linearized force equation to relate E. and v,,where v, is the average electron
velocity in the x-direction.

(c) Relate v. and J to linear terms.
(d) Use the equations of (a)-(c) to find the dispersion equation for waves in the

form of expj(cot - kz).

(e) Define the plasma frequency as cw, = Vn e2/com and describe the dynamics of a
wave with w < w,.

(f) Suppose that a wave in free space were to be normally incident on a layer of
plasma (such as the ionosphere). What would you expect to happen? (See
Problem 10.9 for a similar situation.)

10.9. A current-carrying string extends from x = -- oo to x = + oo. The section -1 <
x < 0 is subjected to a magnetic field with the distribution shown in Fig. 10.1.2. Hence the
sections of string to the left of z = -1 and to the right of x = 0 support ordinary waves,
whereas the section in between can support cutoff waves. Sinusoidal steady-state conditions

-1 0

No magnetic String in magnetic No magnetic
field field field

(a) (b)
Fig. 10P.9
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prevail, with waves incident from the left producing a deflection ý(-1, t) = Re oejwt,
w < wo.Assume that waves propagating to the right are completely absorbed at x -- co
so that in interval (b) $b = Re Ibe(wt--kbz), kI = co/v,.

(a) Find the attenuation factor &b]0for a wave passing through the cutoff section.
(b) What is 4b/•O as -I- 0? As I - co ?

10.10. A rigid straight rod supports a charge Q coulombs per unit length and is fixed. Just
below this rod an insulating string is stretched between fixed supports, as shown in Fig.

Fixed line charge Q
(coulombs/unit length)

d

.9 -q coulombs/unit length
I<l on a flexible string

Side view End view
Fig. 10P.10

O1P.10. This string, which has a tensionf and mass per unit length m,supports a charge per
unit length -q, where q << Q and both Q and q are positive.

(a) What should qQ be in order that the string have the static equilibrium E = 0 in
spite of the gravitational acceleration g ?

(b) What is the largest value of m that is consistent with the equilibrium of part (a)
being stable?

(c) How would you alter this physical situation to make the static equilibrium
stable even with m larger than given by (b)?

10.11. A wire with the mass/unit length mand tensionfis stretched between fixed supports,
as shown in Fig. 10P.11. The wire carries a current I and is subject to the gravitational

t'

Io

-U -- -

Fig. 10P.11

acceleration g. An adjacent wire carries the much larger current Io. Because I, >> I, the
magnetic field produced by I can be ignored.

(a) Given all other system parameters, what value of I is required to hold the wire
in static equilibrium with $' = 0?

(b) Write the differential equation of motion for vertical displacements ý'(x, t) of
the wire from a horizontal equilibrium at & = 0,.

(c) Under what conditions will the equilibrium be stable?
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Ft

-L
I

Fig. 10P.12

10.12. The conducting wire shown in Fig. 10P.12 is stressed by a transverse electric field
and hence has transverse displacements that satisfy the force equation:

m- =f f-- + Pý,

where m, f, and P are known constants. (P arises from the electric field.) The ends of the
string are constrained by springs, but are otherwise free to move in the transverse direction.

(a) Write the boundary conditions in terms of $(x, t) at a = 0 and x = 1.
(b) Find an expression for the natural frequencies and illustrate its solution

graphically. What effect does raising P have on the lowest eigenfrequency?
(c) What is the largest value of P consistent with stability in the limit where K - 0?

10.13. A pair of perfectly conducting membranes are stretched between rigid supports at
x = 0 and x = L, as shown in Fig. 10P.13. The membranes have the applied voltage Vo
with respect to each other and with respect to plane-parallel electrodes.

x=L

Fig. 10P.13

(a) Write a pair of differential equations in E,(x, t) and $2(x, t) which describe the
membrane motions. Assume that ýi and e2 are small enough to warrant linear-
ization and that the wavelengths are long enough that the membranes appear flat
to the electric field at any one value of x.

n~annsm~aan~nna~n

~ABanmaa~aa~aa~ao~in

-·

&X(, 0 
d

-

Vo

Vo

Vo=
x=•0O
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(b) Assume that
1= Re eij(at-kcx)

ý2 = Re i1ei(wt
- k z )

and find a dispersion equation relating w and k.
(c) Make an w-k plot showing the results of part (b), including imaginary values of

o for real values of k. (This equation should be biquadratic in w.)
(d) At what potential V0 will the static equilibrium , -=0 and 2 = 0 first become

unstable? Describe the mode of instability.

10.14. A spring is immersed in a viscous fluid so that damping forces of the type discussed
in Section 10.1.4 are important. The spring is fixed at x = 0 and x = -1. When t = 0, it is
static and released from the initial deflection shown.

(a) Find 6(x, t) in terms of the system normal modes and o0.
(b) Compare this physical situation with that developed in Section 7.1.1.

-l

S(x, 0)

0

Fig. 10P.14

10.15. A string with tension f and mass/unit length m moves in the x-direction with the
velocity U > I'flm. The string may be regarded as infinitely long. When t = 0, the string
has no deflection: [ý(x, 0) = 0]. It has, however, the transverse velocity (a/8t)(x, 0) given in
Fig. 10P.15. Find an analytical expression for $(x, t) and sketch it as a function of (x, t).
(Your sketch should have an appearance similar to that of Figs. 10.2.4 and 10.2.5.)

V,

•- (X,0)

x=0 x= b x
Fig.10P.15

10.16. A string with the tension f and mass/unit length m has an equilibrium velocity U
in the x-direction, where U > 'Xflm.At z = 0 it is constrained such that

W(0, t) = coscot,

(0, t) 0.

(a) Find the sinusoidal steady-state response E(x, t).
(b) Sketch the results of (a) at an instant in time.
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(x, t)

111
x=
x=O

x= -1

Fig. 10P.17

10.17. A string with the longitudinal velocity U is excited sinusoidally at x = -1,
$(-1, t) = Re foe ji t , and constrained to zero deflection at x = 0 by pairs of rollers.

(a) Find the driven response ý(x, t) in the interval -1 < x < 0.
(b) What are the natural frequencies of the system? How do they depend on U?
(c) For what values of U are the results of (a) and (b) physically meaningful?

10.18. A wire under the tension fis closed on itself as shown. The resulting loop rotates
with the constant angular velocity Q. We consider deflections ýfrom a circular equilibrium
which have short wavelengths compared with the radius R. Hence each section of the wire
is essentially straight and effects of the curvature on the dynamics can be ignored.

(a) Show that the partial differential equation of motion is

m -+0' R2,2

where m, f, and R are given constants.
(b) For t < 0 the pulse of deflection (Fig. 10P.18b) is imposed externally and is

stationary when t = 0. At t = 0 this pulse is released. You are given that
OR = 2 /f/m. Plot the deflection M(0, t) for 0 < t < 27rR//f/m.

Wire under tension f
and with mass/unit

length m

to7

0 7r/4

(b)

Fig. 10P.18
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Dynamics of Electromechanical Continua

10.19. A string has the velocity U in the x-direction and is subject to arbitrary inputs of
energy from a distributed force F(x, t). Use the equation of motion to find a conservation

aW aP
of power equation in the form Pi, = • •. (See Problem 10.4.)at x'

10.20. Find the sinusoidal steady-state response for the conditions outlined in Problem
10.16 with the additional effect of a destabilizing force included (see Section 10.2.3).
Sketch the deflections at an instant in time under conditions in which the response takes the
form of an amplifying wave.

10.21. A perfectly conducting membrane with the tension S and mass per unit area a,, is
ejected from a nozzle along the x-axis with a velocity U. Gravity acts as shown in Fig.

Vo

V U
Fig. 10P.21

10P.21. A planar electrode above the membrane has the constant potential Vo relative to
the membrane.

(a) What value of Vo is required to make the membrane assume an equilibrium
parallel to the electrode?

(b) Now, under the conditions in (a), the membrane is excited at the frequency oid;
what is the lowest frequency ofexcitation that will not lead to spatially growing

deflections? Assume that U > VS/lo.
10.22. An elastic membrane with tension S and mass/unit area an is closed on itself, as
shown in Fig. 10P.22. When it is in a steady-state equilibrium, the membrane has radius R

Membrane tension S
m

th d into paper

Vo

Fig. 10P.22



Problems

and rotates with angular velocity Q. Any point on its surface has an azimuthal velocity
U = OR. At a distance a to either side of the membrane are coaxial electrodes which, like
the membrane, are perfectly conducting. There is a constant potential difference V0 between
the membrane and each of the electrodes. The radius R is very large, so that effects of the
membrane and electrode curvatures can be ignored. In addition, wavelengths on the mem-
brane are much greater than a.

(a) Show that the equation of motion for membrane deflections takes the form

+ ý 8 a + me0 ; 0, and mr,=?

(b) Assume that solutions have the form E- Re ý expj(wt - mO) and find the
w-m relation. Plot complex en for real m and complex m for real w.

(c) Under what conditions is this system absolutely stable?

10.23. A pair of perfectly conducting membranes move in the x-direction with the velocity
U. The membranes have the applied voltage V0 with respect to one another and to plane-
parallel electrodes. They enter the region between the plates from rollers at a = 0.

Vo

S>x

x=0

Fig. 10P.23

(a) Write a pair of differential equations in 41(x, t) and 4s(x, t) to describe the
membrane motions. Assume that 4j and ,2are small enough to warrant
linearization and that the wavelengths are long enough for the membrane to
appear flat to the electric field at any one value of x.

(b) Assume that
4 = Re ý1ei(wt-k),

S= Re £ei(wt-kz)
and find a dispersion equation relating ewand k.

(c) Make an w-k plot to show the results of part (b), including complex values of
k for real values of w. This equation can be factored into two quadratic equations
for k. Assume that U > '/S/am.

(d) One of the quadratic factors in part (c) describes motions in which 1,(x, t) =
4(x, t), whereas the other describes motions in which 41(x, t) = - 2(, t).
Show that this is true by assuming first that $1= 4s and then that el = -- in
parts (a) and (b).

(e) Now suppose that the rollers at a = 0 are given the sinusoidal excitation
E4(0, t) = Re teimt = -$2(0, t), where j is the same real constant for each
excitation. Also, 0 = a4/lax = 8a/ax at x = 0. Find ýE(x, t) and $4(X,t).

(f) What voltage Vo is required to make the waves excited in part (e) amplify?
(g) Sketch the spatial dependence of 4,and $, at an instant in time with V0 = 0 and

with Vo large enough to produce amplifying waves.
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y

Fig. 10P.24

10.24. A perfectly conducting membrane with tension S and mass/unit area cr is fixed at
a = 0 and x = a and at y = 0 and y = b. Perfectly conducting plane-parallel electrodes
have an equilibrium distance s from the membrane and a potential Vo relative to the
membrane.

(a) What is the largest value of V0 that will still allow the membrane to be in a
state of stable static equilibrium? You may assume that a >> s and b > s.

(b) What are the natural frequencies of the membrane?
(c) Given that the membrane is stationary when t = 0 and that

where uo is the unit impulse and Jo is an arbitrary constant, find the response
(x, y, t).

10.25. A membrane with tension S and mass/unit area ao is fixed along its edges at y = 0
and y = a. It is also fixed along the edge x = b. At x = 0 it is driven and has the displace-
ment shown in Fig. 10P.25b. Find the sinusoidal steady-state driven response 6(x, y, t).

y

(b)

Fig. 10P.25

I
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y

End view

U

I

V0o 'lo

Side view
Fig. 10P.26

10.26. A pair of conductors, separated by a distance 2a, carries currents Io0 (amperes) in
the - z-direction, as shown in Fig. 10P.26. A conducting wire of mass density/unit length m
is stretched along the z-axis and carries a current I(I << I). Deflections of the wire from the
z-axis are given by u(z, t)ix + v(z, t)i,.

(a) Show that the equations of motion for the wire in the magnetic field have the
form

a2u a2 u
m -ý- =f -z - Ibu,

a2v a2v
m 2= f •z2 + Ibv,

under the assumption that deflections u and v are small. What is the constant b
in terms of I0 and a? What fundamental law requires that if Ibu appears with a
positive sign in the second equation it must appear with a negative sign in the
first equation?

(b) Consider solutions that have the form u = Re dej(c(t-kz) and v = Re iei(wt-kz)

and find the relationship between w-k for x and for y displacements. Make
dimensioned plots in each case of real and imaginary values of k for real values
of wo.Make dimensioned plots in each case of real and imaginary values of o
for real values of k. (Throughout this problem consider Io > 0, 1 > 0.)

(c) The wire is now fixed at z = 0 and, given the deflection

u(-l,t)ix + v(-l, t)i, = uo cos woti, + vo sin o•oti (wo is real).

Find u(z, t) and v(z, t).
(d) For what values of the currents (I, 10) will it be possible to establish the sinusoidal

steady-state solution of part (c)? For what values of wo, in terms off, m, and I,
will the wire support evanescent waves as x-deflections and remain stable?

(e) The frequency wo is set wo = (r/21)'/f1m. Sketch the peak deflections u and v
as functions of z for several values of I(starting with I = 0). Summarize in words
how the deflections will change as the current I is raised.
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10.27. This is a continuation of Problem 10.26. Now the wire has an equilibrium velocity
U along the z-axis with U > <-jim.

(a) Write the differential equations for the deflections u(z, t) and v(z, t), including
the effect of U.

(b) Consider solutions u = Re flei(wt-kz) and v = Re bel(0t- kz ) and find the
relationship between co-k for x and y displacements. Make dimensioned plots
in each case of real and imaginary values of k for real values of wo.Make
dimensioned plots in each case of real and imaginary values of acfor real
values of k (Io > 0, I > 0).

(c) Why would it not be possible to impose the boundary conditions of part (c) in
Problem 10.26 to solve this problem? The wire is driven at z = 0 by the de-
flection u(0, t)i, + v(0, t)iy = uo cos Wo0ti + v0 sin woti, with the slopes

au av
(0,t) = 0, (0,t) = 0.

Find u(z, t) and v(z, t).
(d) For a given driving frequency wosketch the peak deflections u and v as functions

of z for several values of I (starting with I = 0). Summarize in words how the
deflections would change as the current I is raised.

(e) How would you devise an experiment to demonstrate the results of the preceding
parts (i.e., what would you use as the moving "wire" and how would you excite
it?).

X

(9,z, t)

R\R 
Y

End view •-Elastic membrane Side view

S

' Membrane

/ ---
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\ / /
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2

Fig. 10P.28
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10.28. An elastic membrane with constant tension S has a circular cylindrical equilibrium
geometry, as shown in Fig. 10P28a. It is supported at z = 0 and at z = I by circular rigid
tubes. Intuitively, we expect that the membrane will collapse inward if the pressure inside
the membrane (pi) is not larger than that outside (po). We could imagine stopping up one of
the supporting tubes and pushing a cork into the end of the other tube just far enough to
maintain the required pressure difference, as might be done in extruding a hollow section of
molten glass or plastic or a soap film.

(a) Show that for a static equilibrium to exist with 0 = 0, Pi - Po = SIR.
(b) There is, of course, no guarantee that if we establish this pressure difference the

equilibrium will be stable. To examine this question write a linearized equation
of radial force equilibrium for a small section of the membrane. The sketches of
surface deformation shown in Fig. 10P.28b should be helpful in writing the force
per unit area due to the tension S. Your equation of motion should be

32$ Si 1 52$ a52$S-=SI- + - + I
m 

t
2  R

2  
R

2 O*2 Sz
2

(c) Under what conditions is the equilibrium stable?
(d) Describe the lowest modes of oscillation for the membrane.
(e) Reconsider Problem 10.22, taking into account the effect of the curvature.

aý

Fig. 10P.29

10.29. A membrane has the velocity U > v, in the x-direction, as described in Section
10.4.2. At x = 0, $ = 0, and 5/Sax has the distribution shown.
Assume that the membrane is infinitely wide in the y-direction.

(a) Find and sketch $(x, y) for x > 0. Assume that M 2 = 2.
(b) Describe how you would physically produce the postulated excitation at x = 0.

10.30. A membrane moves with the velocity U > v, in the x-direction (see Section 10.4.2).
Its edges are prevented from undergoing transverse motions along boundaries at y = 0 and

d

U

Membrane enters
undetected

Fig. 10P.30
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y = d, except for the segment 0 < x < a, where the membrane is constrained to have the
constant amplitude o0 . Assume that M 2 = 2 and find the resulting deflection ý(x, t). Your
answer should be presented as a sketch similar to Fig. 10.4.3.

10.31. Plot the w-k relation (10.4.30) for the example described in Section 10.4.3 to show
complex w for real k and complex k for real wo. Indicate the modes (fast wave or slow wave)
represented by each branch of the curves.

10.32. Consider the example of Section 10.4.3, but with the wire having a longitudinal
velocity U > vs.

(a) Find the revised dispersion equation.
(b) Sketch the wo-k relation and show complex values of k for real values of o.

(c) Describe the response of the wire to a sinusoidal excitation.




