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= PREFACE TO: SOLUTIONS MANUAL FOR
L4
ELECTROMECHANICAL DYNAMICS, PART I:
DISCRETE SYSTEMS

This manual presents in an informal format solutions to the problems found
at the ends of chapters in Part I of the book, Electromechanical Dynamics. It

is intended as an aid for instructors, and in special circumstances for use by
students. We have included a sufficient amount of explanatory material that
solutions, together with problem statements, are in themselves a teaching aid.
They are substantially as found in our records for the course 6.06 as taught at

M.1I.T. over a period of several years.

Typically, the solutions were originally written up by graduate student tutors
whose responsibility it was to conduct one-hour tutorials once a week with students
in pairs. These tutorials focused on the homework, with the problem solutions

reproduced and given to the students upon receipt of their own homework solutionms.

It is difficult to give proper credit to all of those who contributed to
these solutions, because the individuals involved range over teaching assistants,
instructors, and faculty who have taught the material over a period of more than
four years. However, a significant contribution was made by D.S. Guttman who took

major responsibility for the solutions in Chapter 6.

The manuscript was typed by Mrs. Barbara Morton, whose patience and expertise

were invaluable.

H.H. Woodson
J.R. Melcher

(]

Cambridge, Massachusetts
July, 1968






LUMPED ELECTROMECHANICAL ELEMENTS

PROBLEM 2.1
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We start with Maxwell's equations for a magnetic system in integral form:

éﬂ'di = j Jeda
< S
% Beda = 0
S
Using either path 1 or 2 shown in the figure with the first Maxwell
equation we find that

[ Jeda = ni

To compute the line integral of H we first note that whenever U+ we
must have H+»0 if B=pH is to remain finite. Thus we will only need to know
H in the three gaps (Hl,H2 and H3) where the fields are assumed uniform

because of the shortness of the gaps. Then

§H°di =.H1(c—b—y) + H3x = ni (a)
C
path 1
§H'di = H (c-b-y) + Hyy = ni (b)
path 2 ¢
1

(A



LUMPED ELECTROMECHANICAL ELEMENTS

Using the second Maxwell eqﬁation we write that the flux of B into the
movable slab equals the flux of B out of the movable slab

uoulLD = uoﬂzaD + u°H3bD
or
HlL = H2a + H3b . (c)

1,H2 and H3 in this last
equation we have let (a-x) = a, (b-y) 2 b to simplify the solution. This means

Note that in determining the relative strengths of H

that we are assuming that

x/a << 1, y/b << 1 (d)

Solving for H, using (a), (b), and (c)

1

ni(y/a + x/b)
B = 3 37a + x/b) ¥ L(y/a ~ =/b)

The flux of B through the n turns of the coil is then

(x,y,1) = nB.LD = nuoﬂ LD

1 1
uonz(y/a + x/b)LD {1
= Tcb-y) (y/a*x/b) + L(y/a*x/b)

Because we have assumed that the air gaps are short compared to their

cross—-sectional dimensions we must have

SE:%:XL << 1, y/a << 1 and x/b << 1

in addition to the constraints of (d) for our expression for A to be valid.
If we assume that a>L>c>b>(c~b) as shown in the diagram, these conditions

become
x <<b

y << b



PROBLEM 2.2

LUMPED ELECTROMECHANICAL ELEMENTS

b

3

.gz\

+ v, b

fg‘

v, +

Because the charge is linearly related to the applied voltages we

know that ql(vl’VZ’e) = ql(vl,O,G) + ql(O,vz,e)

[AY v

1

1l .1
ql(vl,o,e) = —= wl + eo-g— (Z + 6)RR

9;(0,V,,8) = - 35~

Hence

= g2.4
q,(V,,V,,8) = vlz(m +

PROBLEM 2.3

The device has
cylindrical symmetry
so that we assume that
the fields in the gaps
are essentially radial

and denoted as shown

Ra

ev
Z wl
0,

eo(n/4+e)R

€w
)=V, s

eo(n/é-e)R

= - &w W
q, (V;,V,,8) = -V, o= + vzsz(R + -
H\ ¥ Hm ‘-\L
4
| A
WYl o ‘_'J ! Hom 06| W
_______ e

in the figure.

Ampere's law can be

e e NP

integrated around each of the current loops to obtain the relations



LUMPED ELECTROMFCHANICAL .ELEMENTS

PROBLEM 2.3 (Continued)

ng + gHm = Nil (a)
g, - g = Ni, ®)

In addition, the net flux into the plunger must be zero, and so
uo(d-x)ZﬂrH1 - 2d(21rr)u°Hm - (d+x)(21rr)u°l-l2 (c)

These three equations can be solved for any one of the intensities. In
particular we are interested in Hl and Hz, because the terminal fluxes can

be written simply in terms of these quantities. For example, the flux linking
the (1) winding is N times the flux through the air gap to the left

A, = uoN(d—x)(an)H1 (d)

1

Similarly, to the right,

A, = uoN(d+x)(2ﬂr)H2 (e)

2

Now, if we use the values of Hl and Hz‘found from (a) - (c), we obtain the

terminal relations of Prob. 2.3 with

2
L o- uowrN d
o 2g
PROBLEM 2.4
13 N
.* — .
™ M ._%_ \
B N
N




LUMPED ELECTROMECHANICAL ELEMENTS

PROBLEM 2.4 (Continued)

Part a
2
Jf, =Ma=M 3‘-2-
i dt
dx
dx 1
EpavpEr = "B 3t 3 feouwr © HaMe G
i dx
|___1_
dt
2
d'x dx
M—5 = f(t)-B—+ f
dt2 dt coul
2 dx
d"x dx 1
or M—-5+B-d—t=f(t)-udMgEt—
dt —_—
dx
|2
dt
Part b
“dx
First we recognize that the block will move so that T > 0, hence
dx1
fcoul = -udMg;dt >0
Then for t > 0
2
d’x dx
M—2+ BE -leMg
dt
which has a solution
u Mg
rd ~-(B/M)t
x(t) -3 t + c1+c2 e
Equating singjlarities at t = 0
Md—zx-(O) =1 (t) or 125(0) =I—° (v)
2 ouo 2 M uo

dt dt

- dx, .- dzx -
Then since x(0 ) = EE(O )=—50)=0
dt



LUMPED ELECTROMECHANICAL ELEMENTS

PROBLEM 2.4 (Continued)

I
dx, +. o +.
Zo") =25 x(0") =0

u Mg 1
d :M 2 -
Hence x(t) = u—l(t)[- B— t + (B_o. + udg E) )(l-e (B/M)t)]

Actually, this solution will only hold until to’ where %%(to) = (0, at which

point the mass will stop.

A dx
T, -l At
s
o~ to ..
?‘\\\‘\s\\ 4
|
|
|
4L X(t) i
I
x‘:.llo.x ________
i
!
|
|
: t
£, i

PROBLEM 2.5
Part a
Equation of motion

2
Md—’25+3%=f(t)
dt

(1) f(t) = Iouo(t)

1 .
x(t) = u_l(t) _B_o (l_e_(B/H)t) .



LUMPED ELECTROMECHANICAL ELEMENTS

PROBLEM 2.5 (Continued)

as shown in Prob. 2.4 with My = 0. {(t)
X
(2) £(£) = F_ u_(t)
Integrating the answer in (1) M
Fo -(B/M)t
x(t) = ——-[t + (e “Dlu_, (t)
B
Part b -
Consider the node connecting the D P
damper and the spring; there must be no
net force on this node or it will
suffer infinite acceleration.
dx
dt: + K(y-x) 0
or
dx
B/K at + x = y(t) )
g(t)
i
1. Let y(t) = Au (t)
K, Xo
Bdt y x=0 t>0
K dt .
- *x (&)
x(t) = ¢ e K/Bt t>0
But at t = 0
%E’E(),Au 0) i e

Now since x(t) and (t) are zero for t < 0

x(0+) = %K- =C

(K/B)t

x(t) = u_ (t) all t

2. Let &(t) = Au_l(t)



LUMPED ELECTROMECHANICAL ELEMENTS

PROBLEM 2.5 (Continued)
Integrating the answer in (1)

-(K/B)t
x(t) = u_l(t) Yo(l-e all ¢

PROBLEM 2.6

Part a

QED‘““\QJLQJLir‘<- M;

oAt

dx

3. -
f K3(x

=833 3 5

1 -t—Lo)

27%3
f. = K,(x,-x,-t-L ); £, = B g—(x -x,)
3 271 72 o'’ 74 2 dt71 72

f5 = Kl(h—xl-Lo)

Part b

Summing forces at the nodes and using Newton's law

a (¥17%9)
Kl(h-xl-Lo) = Kz(xl-xz—t—Lo) + B, it
d2x1
+ M
1 dt2
(x,-x,)
d 1 =2
Kz(xl—xz—t-Lo) + B2 It ,
d X,
= K. (x,-x.-t-L ) + M
372 73 (o} 2 dt2
dx3 d2x3
K3(x2—x3-t-L°) = f(t) + B3 T + M -d—t-z—



LUMPED ELECTROMECHANICAL ELEMENTS

PROBLEM 2.6 (Continued)

Let's solve these equations for the special case

Ml=‘M2=M3=B2=B3=Lo=O'

Now nothing is left except three springs pulled by force f£(t). The three

equations are now

Kl(h-xl) = K2(x1-x2) (a)
Kz(xl-x2)= K3(x2-x3) (b)
K3(x2—x3)= f(t) ‘ (c)

We write the equation of geometric constraint
X3 + (xz—x3) + (xl-xz) + (h—xl)-h =0
or (h-x,) = (x,-x,) + (x,-x,) + (h-x.) (d)
3 273 172 1

which is really a useful identity rather than a new independent equation.

Substituting in (a) and (b) into (d)

K3(x2—x3) K3(x2-x3) K3(x2—x3)

(h-x) =
K) K3 K2 Kl
1 1 1
= K, (x,-x,) G—+ 3+ )
3*72 73 K3 K2 Kl
which can be plugged into (¢)
1 .1 1.7t
Gttt (hexgy)=f(r)
3 2 1
which tells us that three springs in series act like a spring with
' -1
K' = (%— +-%— +-%—)
3 2 1



LUMPED ELECTROMECHANICAL ELFMENTS

PROBLEM 2.7

: \
\
'/{1. X "1 ¥
+ f
b * Xe C) ".
Bl g
dxl
b & 5,28
d(x,-x.)
2 1
=B, —gr 4 = Ka(xp7xy)
Node equations:
dxl d(xz-xl)
Node 1 B1 I + lel = B2 — + Kz(xz-xl)
d(xz—xl)
Node 2 BZ N T + K2(x2-x1) = f
To find natural frequencies let f = 0
dx
1 st
Bl ‘F + lel 0 Let xl e
Bls + Kl =0 sl = - KI/BI
d(x,-x,)
2 1 . st
32 — 3 + Kz(xz—xl) = 0 Let (xz-xl) = e
st+l(2=0 sz=-K2/B
The general solution when £ = 0 is then
X, = ¢ e—(K]‘/BI)t
1 1
X, = (x,~%,) + %, = ¢ e_(KI/Bl)t + ¢ e-(Klez)t
2 2 71 1 1 2

10



LUMPED ELECTROMECHANICAL ELEMENTS

PROBLEM 2.8
- “_AG _
) P ‘t‘_(t-g-ot)
o (B4nt) - X -
) 17 a0
1Y) LOA
.
v(cfAf) Zr(t)
A8 v(z) ot +ot)

e(t)

From the diagram, the change in ir in the time At is ieAe. Hence

di
= A = 48
- 1lim i, — =1  —
dt A0 0 At 6 dt
Similarly,
ai
= A8 - df
—= lim-4i —=-1 -—
dt At+0 At r dt

Then, the product rule of differentiation on v gives

dia d

- di 2
dv rdr , - d°r de dé
at “f;g*ﬁ‘ra)““rw

dt dt dt 6 dt

and the required acceleration follows by combining these equations.

11

(a)

(b)

(c)



LUMPED-PARAMETER ELECTROMECHANICS

PRORLEM 3.1

This problem is a simple extension of that considered in Sec. 3.2, having
the purpose of emphasizing how the geometric dependence of the electrical force

depends intimately on the electrical constraints.

Part a
The system is electrically linear. Henge, W; =-% L 12 and the force f
that must be applied to the plunger is
e 1 Lo12
f=-f = Ja zz—:-é;f (a)

The terminal equation can be used to write this force in terms of A
e 2
f=-f =2 /2aL° (b)

Part b

With the current constant, the force decreases rapidly as a function of
the plunger gap spacing x, as shown by (a) and the sketch below

fi

Z: constant

Ll
With the current constant, the drop in Iﬁ'di across the gap increases with x,

and hence the field in the gap is reduced by increasing x.
Part ¢

By contrast with part b, at constant A, the force is independent of x

£

Y
X

12



LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.1 (Continued) :
FTRODLEM 3.1 . P

With this constraint, the field in the gap must remain constant, independent

of the position x.

PROBLEM 3.2 %7_
Part a %
The terminal relations are b AL K3
V1 = St S,
- (a)
Vo = 53191 * 5509 ,
' B
Energy input can result only through A A
the electrical terminal pairs, because C:
_the mechanical terminal pairs are '
constrained to constant position. Thus, o .
, - > 4,

W, = Jvldq1 + v,dq, (b)

First carry out this line integral along the contour A: from a*b, 9 = 0, while

from b->c, dq2 = 0. Hence,

) Q
we = Io v2(0,q2)dq2 + Jo vl(ql,Qz)dq1 (c)
and using (a),
’ Q2 Ql N
W, = fo S9p9d9, * Jo (81491 + 5159049, (d)
and for path A,
21 2 2
We =7 S0 + 51,09 + 5,0 (e)

If instead of path A, we use C, the roles of q, and q, are simply reversed.
MaEhematically this means 12 and 2-+1 in the above. Hence, for path C

/ _1 2 2
) We =7 51191 + 55700 * 5,59, (£)

|
[ To use path B in carrying out the integration of (b), we relate q, and q

j
\
J

13



LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.2 (Continued)

Q
q2 = 6_ ql (2)
1
Then, (a) becomes,
5,,Q
12 2 2272

"and, from (b), where dq2 and deql/Q‘1

Q Q Q Q Q
1 12 2 + (1 22 2, 2
W f (s ]q {s,, +—5"Iaq dq, (1)
e n*t 199, * Jo 21 Q, 170
or
1 2 .1 1 1
We =3 51200 + 3 5150,0 * 5 55,010, + 5 55,05 S0
Part b
The integrations along paths A, B and C are the same only if 821 = S12
as can be seen by comparing (e), (f) and (3).
Part c
Conservation of energy requires
awe awe .
av_(q,,q,) = v,dq, + v,dq, ='—3q1 dq, + 5;1-2- dq, (k)
Since a and q, are independent variables
Bwe awe
Vv, =5 — 3 V, =+ ¢))
3q1 2 8q2

Taking cross derivatives of these two expressions and combining gives
1 - 2 (m)

or, from (a), S12 = 821.
PROBLEM 3.3

The electric field intensity between the plates is

E = v/a i (a)

14
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LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.3 (Continued)

Hence, the surface charge adjacent to the free space region on the upper

plate is

Og = € v/a

while that next to the nonlinear dielectric slab is

+ €
(o]

wl|w
W<

Cf=a

]

It follows that the total charge on the upper plate is

dxeov av3 eov
.+ d(l—x)[—;§ + —;—]

q=

The electric co-energy is

2
'
W' = dv = d €oV + d(l—x)av4
e L 2a 4 3
a

Then, the force of electrical origin is
) 1
£ = awe o - dav4

ax 4a3

PROBLEM 3.4

Part a

(b)

(C)

(d)

(e)

(f)

The magnetic field intenéity in the gap must first be related to the

excitation current. From Ampere's law,

Ni = dH, + xH
d X

where the fields Hd and Hx are directed counterclockwise around the magnetic

(a)

circuit when they are positive. These fields are further related because

the magnetic flux into the movable member must equal that out of it
uowbHd = UowaHx
From these two expressions

da
Hx = Ni/(b— + x)

15

(b)

(c)

AN

/ol



LUMPED-PARAMETER ELECTROMECHANICS.

PROBLEM 3.4 (Continued)

The flux linked by the electrical terminals is A = Nuoawa which in view of
(c) 1s N2uoaw
A=1Li; L= ~a (d)
a
= + %

Part b

The system is electrically linear. Hence, Wm = % A2/L (See Sec. 3.1.2b)

and from (d),
1 2(§a+")
L R — (e)

m
N M aw
Part ¢

From conservation of energy £% = —melax, Wm=wm(k,x). Hence,
e 1.2 2
£ == AT/ M aw) ()

Part d

In view of (d) the current node equation can be written as (remember

that the terminal voltage 1s dA/dt)

da
A= + x)
S A & S W
I(t) = R dt + Nz aw (g)
uo

Part e

The inertial force due to the mass M must he equal to two other forces,
one due to gravity and the other £€. Hence,

2 2
M%:Mg_—%—TA___
dt N uoaw

(h)

(g) and (h) are the required equations of motion, where (A,x) are the

dependent variables.

16



LUMPED-PARAMETER ELECTRCMECHANICS

PROBLEM 3.5

Part a

From Ampere's Law

\\ Hl(a+x) + H,(a~x) = N1, + Ny,

EESS* Because §§'ﬁda =0
H, ~H, -
k S

HolyA) = WA,

solving for H

1
. LRSS A

1 A A

a(l + 59 + x(1 - 1)

2 2

Now the flux ¢ in each air gap must be the same because
¢ = uoHIAl = u°H2A2

and the flux linkages are determined to be Al = Nf¢ and 12 = Ngp. Using

these ideas

2
Al = NlL(x)i1 + N1N2L(x)i2

2
A2 = N2N1L(x)11 + NZL(x):L2
u_A
where L(x) = Z 1 ry
1 1
8(1 + 'A—-) + x(l - T)
2 2

Part b

From part a the system is electrically linear, hence

v 1,22 1.2.2 .
w L(x)[2 Nji] * N1N21112 +3 N212]
u A
where L(x) = oAl A
1 1
a(l +A—) + x(1 - —A—)
2 2

17

i



LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.6
Part a

Conservation of energy requires that

aw = 1dX - £%dx . (a)
In addition,

o= an s Mgy (b)
so that

L R - ()

Now if we take cross-derivatives of these last relations and combine,

o1 At
Eri C)

This condition of reciprocity between the electrical and mechanical terminal
pairs must be satisfied if the system is to be conservative. For the given

terminal relations,

I 3 2
o1 o, A A
- "alrn T 6o ]/(1+—) (e)
o o
_g_f_e e E.g[.k_ + L]/(l + E)z (f)
3 a A 3 a '
o A
o
and the system is conservative. V
Part b
The stored energy is
I 2 4
1A 12
W Iid)\n O (=8 4 = 2 (2)
e [1+X 2h 452

18



LUMPED-PARAMETER ELECTROMECHANICS

»
bor

PROBLEM 3.7

To find the co-energy from the
electrical terminal relations alone,
we must assume that in the absence
of electrical excitations there 1is no
force of electrical origin. Then, the A 'C‘O
system can be assembled mechanically,
with the currents constrained to zero,

and there will be no contribution of < =0

co-energy in the process (see o &
z

Sec. 3.1.1). The co—-energy input through the electrical terminal pairs with the

mechanical system held fixed is

! =
W I)\ldil + A, di, (a)
For the path shown in the (11,12) plane of the figure, this becomes
i2 i1
t = ] ' ] '
Wm ﬁo )\Z(O,iz)di2 + IO Al(i ,12)d11 (b)

amd in view of the given terminal relations, the required co-energy is

ig+bxx:li N (c)

1 - €
=% X 1%40 Y 7 %

2
PROBLEM 3.8

Steps (a) and (b) establish the flux in the rotor winding.

AZ =AI°Lm (a)

With the current constrained on the stator coil, as in step (c), the current
11 is known, and since the flux Xz'is also known, we can use the second
terminal equations to solve for the current in the rotor winding as a function

of the angular position

)

m
12 = f; [I° - I(t)cosf]) (b)

This is the electrical equation of motion for the system. To complete the
picture, the torque equation must be found. From the terminal relations,

the co-energy is

19



LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.8 (Continued)

' _1 2 1.2
wm fkldil + A d12 =3 Llil + 1112Lm cosh + 2 12L2 (c)

and hence, the electrical torque is
'
e

m
T = 35 - —ilisz sin6 (d)

Now, we use this expression in the torque equation, with 12 given by (b)
and 1, = I(t)

1
2
2 1T,
Jd g = - _fm (I -I(t)cosB)sind (e)
dt 2 °

This is the required equation of motion. Note that we did not substitute

12 from (b) into the co-energy expression and then take the derivative with
respect to 0. This gives the wrong answer because we have assumed in using

the basic energy method to find the torque that 11,12 and 0 are thermodynamically

independent variables.
PROBLEM 3.9
Part a

From the terminal relations, the electrical co-energy is (Table 3.1.1)

= t
Ikldil + )\Zdi2 (a) iLLI
or
———
v l 2 4 2
wm =% 111 bxleili2 f
1 2.4
+ % cx212 (b) X ,
> (2
Part b
It follows that the required forces are
awl -
e 1 4 2
f 3x = axlil + bxzili2 (c)
!
e__ m_ 1 4
f2 = 5;; 2bx2x11112 + = 5 212 (d)

20



LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.9 (Continued)
Part ¢

There atre four equations of motion in the dependent variables 11,12,x1 and
Xyt two of these are the electrical. voltage equations, which in view of the

terminal equations for the A's, are

2.3

d

—ilR1 = E?(axlil + bx 2) (e)

3
v, (t)- 12 9 = (bxlei1 + cx, 2) (£)

and two are the mechanical force equations
_1 4 2

0= 2 axli1 + bx21112 le (g)

dx

1 4 2
0= 2bx2x11112 +3 cx212 B P (h)

PROBLEM 3.10
Part a

Because the terminal relations are expressed as functions of the current

and x, it 18 most appropriate to use the co-energy to find the force. Hence,

]
wm [Aldil + A d12 ' (a)
which becomes,
1 2 2 2 1 .2
L = =]
wm 5 L il + Ai1 2% + 2Loi2 ) (b)
From this it follows that the force is, =
. ’ L S a4
e _ 1 ,.2.72 )
£ > Aili2 (c)

4

Part b

The currents il and 12 and x will be used as the dependent variables.
Then, the voltage equations for the two electrical circuits can be written,

using thé electrical terminal equations, as
d 2
el(t) = ilR1 + EE(Loil + Ailizx) (d)

ez(t) = 12R2 + (Ai1 9% + Loiz) (e)

21



r.,_

——— e o = — e -~ -

LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.10 (Continued)

A

The equation for mechanical equilibrium of the mass M 1s the third equation
of motion
2
d"x 1,.2,2
M 7 = —K(x—xo) + 5 Aili2 (£)
dt
PROBLEM 3.11

Part a

The electrical torques are simply found by taking the appropriate
derivatives of the co-energy (see Table 3.1.1)

e My
T, =35 = -M sinBcosy 1112 (a)
W'
T = —B = oM cosOsiny 1.1 (b)
2 Y 172

Part b

The only torques acting on the rotors are due to the fields. In view
of the above expressions the mechanical equations of motion, written using

0,9, 1, and i, as dependent variables, are

2
a%e
J == = -M sinfcosy 1,1 (c)
2 172
dt
2
dy
J — = -M cosfsiny 1112 (d)
dt

Remember that the terminal voltages are the time rates of change of the res-
pective fluxes. Hence, we can make use of the terminal equations to write

the current node equations for each of the circuits as

2
d

Il(t) = C ;:E(Llil + Mizcosecosw) + 11 (e)
d

Iz(t) = G T (Milcosecosw + inz) + 12 (f)

Thus, we have four equations, two mechanical and two electrical, which involve
the dependent variables 6,9, il and 12 and the known driving functions

I1 and IZ'
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LUMPED PARAMETER-ELECTROMECHANICS

PROBLEM 3.12

We can approach this problem in two ways. First from conservation of

energy,
' k—1
dWm deil + deiz + X3d13
and aw; aw; 3Wé .
aW' = =B g+ = at, + s dig
m 311 1 312 2 313
Hence, ' W' ov'

A, = =23 A, =t A, = mn
1 aib 2 312 3 313

Taking combinations of cross—-derivatives, this gives

31, " 31, ' 31 3L, ' 8L, 81,
or
Lyg = Lyyi Lyg = Lgps Lgy = Lyy

(a)

()

(c)

(d)

(e)

Another way to show the same thing is to carry out the integrations along

the three different paths shown

L3 cy

¢ <

Since

W= I)\ldil + 2,41, + Agdiy

23
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LUMPED—PARAMETER\ELECTROMECHANICS

PROBLEM 3.12 (Continued)

these paths of integration lead to differing results. For path (a), we
have

1.2 1 2 1 2
Woo= gl + Lpylyly #5 Lyplhy + Ly dydg 4 Laydydy + 5 Lagdy

(g)
while for path (b)

1. .2 1 2.1, .2
Woo= 5 Lygly + Logplpdy + 5 Lagiy + 5 Lygiy + Lyplydy + L4140 ()

and path (c)

Sl 42,1, 2 Wl g2
Wo = g Lagly + 5 Lpgi) + Lygialy + Lyt + 5 Lyply + Lygtgly (1)

These equations will be identical only if (e) holds.
PROBLEM 3.13
Part a

When 6 = 0, there is no overlap betweer the stator and rotor plates,
as compared to complete overlap when © =,ﬂ/2, Because the total exposed
area between one pair of stator and rotor plates is ﬂR2/2, at an angle 0
the area is ,

2
A=lr_R__i.= eRz (a)

2 L

&)
There are 2N-1 pairs of such surfaces, and hence the total capacitance is
C = (2N—1)9R2e0/g (b)

The required terminal relation is then q = Cv.

Part b
The system is electrically linear. Hence, W; = % Cv2 and
' (2n-1)R% v2
Te = e _ o (C)
a6 2g

Part c

There are three torques acting on the shaft, one due to the torsional

spring,  the second from viscous damping and the third the electrical torque.
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LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.13 (Continued)

2 2
2 v (2N-1)R"e .
470 de ., 1 o
J dtz -K(6-a) - B T + 5 . (d)

Part d

The voltage circuit equation, in view of the electrical terminal equation

is simply 2
(2N-1)R eeov
v (t) =R Fr [———g—————] +v (e)
Part e

When the rotor is in static equilibrium, the derivatives in (d) vanish
and we can solve for 0-a,
v2 (28-1)R%
[ o

2gK ()

0-a =

This equation would comprise a theoretical calibration for the voltmeter if
effects of fringing fields could be ignored. In practice, the plates are shaped

so as to somewhat offset the square law dependence of the deflectionms.
PROBLEM 3.14

Part a

Fringing fields are ignored near the ends of the metal coaxial cylinders.
In the region between the cylinders, the electric field has the form
E = Air/r, where r is the radial distance from the axis and A 18 a constant
determined by the voltage. This solution 1s both divergence and curl free,
and hence satisfies the basic electric field equations (See Table 1.2)
everywhere between the cylinders. The boundary conditions on the surfaces of
the dielectric slab are also satisfied because there is no normal electric field
at a dielectric interface and the tangential electric fields are continuous.

To determine the constant A, note that
’ Edr = -v = Aln(); A = ~v/1n(®) - (a)
a ¥ v g a

‘The surface charge on the inner surface of the outer cylinder in the regions

adjacent to free space is then
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LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.14 (Continued)

vE
o, = 2 (b)
£ o (%)b

while that adjacent to regions occupled by the dielectric is

g, = __V_E_ (C)

£ L, b
ln(a)b

It follows that the total charge on the outer cylinder is

q=v "b [L(s°+e)—x(e-eo)] - (d)

1n(;)

Part b

Conservation of power requires

dg dwe dx
vae " a Yl (e)

Parts ¢ and d

It follows from integration of (c) that

2
= X4 R S
we > ¢ ©f We 2 Cv (£)
where
C= "b [L(e +€)-x(e-€ )]
o o
In(=)
a
Part e
The force of electrical origin is therefore
!
e _ e _ _ 1 2 Ll _
£ 9x 2 v b (e eo) (8)

In (;)

Part f
The electrical constraints of the system have been left unspecified.

The mechanical equation of motion, in terms of the terminal voltage v, is

2 2
M ﬂ—’z‘ = —R(x-0)- % Y2 (e-e) (h)
dt ln(;)
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LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.14 (Continued)

Part g
In static equilibrium, the inertial term makes no contribution, and (h)

can be simply solved for the equilibrium position x.

1)

PROBLEM 3.15

Part a
Call r the radial distance from the origin 0. Then, the field in the gap

to the right is, (from Ampere's law integrated across the gaps at a radius r

H; = Ni/(B-0-8)r (directed to the right)
(a)
and to the left
Hg = Ni/(B-a+8)r (directed to the left)
(b)

These fields satisfy the conditions that VxH =0 and V+B=0 in the gaps. The
flux is computed by integrating the flux density over the two gaps and multiply-
ing by N

b
L r
A= uoDN Ja(He + He)dr (c)
which, in view of (a) and (b) becomes,
2, b 1 1
A=Li, L= IJODN ln(z) [m + BT—G—] (a)

Part b

The system is electrically linear, and hence the co-energy is simply
(See Sec. 3.1.2b)

1
' e =
wm 2 Li (e)

Part c

The torque follows from (e) as
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LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.15 (Continued)

- - 1y e —L— - ——4? €3
(B-a+0) (B-0~0)
Part d
The torque equation is then
2
1483 = ko +1° (8)
dt

Part e
This equation is satisfied if 6=0, and hence it is possible for the wedge
to be in static equilibrium at this position.

PROBLEM 3.16

We ignore fringing fields. Then the electric field is completely between
the center plate and the outer plates, where it has the value E = v/b. The
 constraints on the electrical terminals further require that v = Vo—Ax.
The surface charge on the outer plates is eov/b and hence the total

charge q on these plates is

deo
q = 2(a-x)— Vv (a)
It follows that the co-energy is
de 9
W' = (a-x)—2 v (b)
e
b
and the electrical force is
! de
££=—2=--2 v2 (c)
ax b
Finally, we use the electrical circuit conditions to write
e deo 2
f = - 5 (Vo-Ax) (d)

The major point to be made in this situation is this. One might substitute the
voltage, as it depends on x, into (b) before taking the derivative. This clearly
gives an answer not in agreement with (d). We have assumed in writing (e¢) that
the variables (v,x) remain thermodynamically independent until after the force

has been .found. Of course, in the actual situation, external constraints
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LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.16 (Continued)

relate these variables, but these constraints can only be introduced with care

in the energy functions.

the force has been found.
PROBLEM 3.17

Part a

The magnetic field intensities in

the gaps can be found by using Ampere's

law integrated around closed contours

To be safe they should not be introduced until after

passing through the gaps. These give
4
Hg = N{, + i,)/g (a) W,
Hl = Nilld (b)
H, = Niz/d (c)

In the magnetic material, the

flux densities are

aN3i3 u Ni
1 + -0
d3 d

1

an13 u Ni
2 o)
3t T4
d

2

(d)

(e)

The flux linking the individual coils can now be computed as simply the

flux through the appropriate gaps. For example, the flux Al is

1

A, = ND[!?,uoHg + xu°H1+(£—x)Bll

(£)

which upon substitution from the above equations becomes the first terminal relation.

The second is obtained in a similar manner.

Part b

The co-energy is found by integrating, first on 11 with 1
on 12 withi, fixed at its final value.

1

Hence,

29
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LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.17 (Continued)

= I)‘ldil +A,di, (g)
1 d 1 X, b d

=3 L(1+ g)i + 3 LB -Piy+ L . 1,1,
1 44

+4L08@2 L(1+)i

Part c (:k— \)

The force of electrical origin follows from the co-energy functions as,

L8 S

e 1. B,4,17
N Tt (h)
PROBLEM 3.18
Part a
Assuming simple uniform E fields o @ °
+ : e +
in the gaps

E) = (Vp-V ) /g; Ep = Vy/d = E

3 YO LA /A AR Y, S

S

E4 = E5 = Vr/d

These fields leave surface charge densities on the top electrodes

9 = eo(vl-vr)/g’ %

2
0, = [aVy /)™ € 1(V,/d)

=€, Vzld

0, = la(v /)% + € 1(v_/d)

05 = eo(vr/d)

These surface charge densities cause net charges on the electrodes of

€ wb eoval 3
q, = (Vv + 272+ av(Lx) (——)
€ wb eowL Vr 3
q. = (V_=Vp) + —— V. + aw(x-g) ()
7
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LUMPED~PARAMETER ELECTROMECHANICS

PROBLEM 3.18 (Continued)

Part b
% )
' =
W I qzdy£+f q 4V,
) - o -
1,70 S|
2 v 4
cewl ey 2, w0 Vo
- Eow(g + d) 2 + 4 (d )
b L vr2 egb o (x-g)d vra
+ EOW(—g- + U ‘—g Vzvr + A (d—)
v 4 v 4

L}
fe = %g— = g%g [(EE) —(E&) ] (pulled to side with more voltage)

PROBLEM 3.19

Part a

The rotating plate forms a simple capacitor plate with respect to the
other two curved plates. There is no mutual capacitance if the fringing fields
are ignored. For example, the terminal relations over the first half cycle

of the rotor are

(a+8)RDE v (a-8)RDe v
_a<e<a; q]_ = ___TL]; 3 q2 = —.—Ao—z (a)
2aRDeov1
o<f<m-a; 9= x5 9 = 0 (b)

So that the co-energy can be simply written as the sum of the capacitances

for the two outer electrodes relative to the rotor.

DR EARS £ (©
The dependence of this quantity on 8 is as shown below
/
JWe
(d)

// dRD e,\J:‘/A\

dRDEVE /A

4

-+

—a ol T-o ™Mo
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" LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.19 (Continued)

Part b
The torque is the spatial derivative of the above function

IT¢
z a2
ape (W -%)/20
’ n-o N vl
- oL ot
Part c
The torque equation is then
2
3 d g = T
dt
where T° 1s graphically as above.
PROBLEM 3. 20
Part a
The electric energy is
1 2
we 5 /C (a)
where
C = ea/d(1+ 22 (b)

€d
o
It follows that the force on the upper plate due to the electric field is,
W 2
feflen 2o 10
Ix 2 EOA

‘4

-4

a/ae.A

b -
>
X

So long as the charge on the plate is constant, so also is the force.
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LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.20 (Continued)

Pért b

The electric co-energy is

1l .2
' o 2
We 2 Cv (c)
and hence the force, in terms of the voltage is
t
9x 2 2

2 £X
d Eo(l + Eo—d)

— X

The energy converted to mechanical form is ffe dx. The contribution to this

integral from d+*c and b*a in the figure 1s zero. Hence,

Zsod/e
Energy converted to mechanical form = fe(2Qo,x)dx
eod(?
fo%/e e 3 in
+ £7(Q,x)dx == 7 = (e)

That is, the energy 3dQ§/2Ae is converted from mechanical to electrical form.

PROBLEM 3.21
Part a

The magnetic energy stored in the coupling is

_1,2
wm =3 AS/L (a)

- x
where L = L°/(1 + a)

Hence, in terms of A, the force of electrical origin is
W
e m 2
-t = e —— - b
f=f 5 A"/2al (b)
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LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.21 (Continued)
Part b
According to the terminal equation, i depends on (A,x) according to

A X
i"—"L—(l"';) (C)

Thus, the process represented in the A-x plane has the corresponding path

in the i-A plane 1

T

P

! ' >
D

Path ¢
At the same time, the force traverses a loop in the f-x plane which,

from (b) is,

A
20l
z/ZQ o | !
b g ; - - < ~t D
wzall A
¥ : s >
X, X. %
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LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.21 (Continued)

Part d
The energy converted per cycle to mechanical form is [fedx. Hence,

C A

£dx + J £2dx (d)

Energy converted to mechanical form = f
D

B
= -2 x,-x,) /2aL (e)
2 1Y 2 o

That is, the energy converted to electrical form per cycle is

(Ag—ki)(xz-xl)/ZaLo. (Note that the energy stored in the coupling, summed

around the closed path, is zero because the coupling is conservative.)

PROBLEM 3.22
Part a

The plates are pushed apart by the fields. Therefore energy is converted
from mechanical form to either electrical form or energy storage in the
coupling as the plate is moved from Xb to Xa' To make the net conversion
from mechanical to electrical form, we therefore make the current the largest

during this phase of the cycle or, Il>12.

Part b
With the currents related as in part a, the cycle appears in the i-x plane

as shown

H
A
A

3
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LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.22 (Continued)

Quantitatively, the ﬁagnetic field intensity into the paper is H = I/D so that
A= uOIxh/D. Hence,

U xh
vy o1 .0 2
W= 2 5T (a)
and
W' uh
e m 1 0 2
£ = 9x 5'( D )1 (b)

Because the cycle is closed, there is no net energy stored in the coupling,

and the energy converted to electrical form is simply that put in in mechanical

form:
B e e
Mechanical to electrical energy per cycle = - f fdx - I f dx (e)
A C
U h
=10 - 2_12
= 5 (X, ~X_) (13-T5) (@
Part c

From the terminal equation and the defined cycle conditions, the cycle

in the A~x plane can be pictured as

rd
7
'hﬂ A/ L:J'MOI|“/D
-7 =y T h/o
’/'/ | >
Ve < /// - - c
k-~ . .
X. X x

The energy converted to electrical form on each of the legs is
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LUMPED-PARAMETER ELECTROMECHANICS

PROBLEM 3.22 (Continued)

2
u I.X h/D u Ih
(A+B) -|rar=- (012 Idx=-°1(x-xb) (e)
1l uollxbh/D 1 D a
(B—C) - [mx a- fu°lzxah/n ADdAh =- u°X"‘h(lg—12) )
X D 1
u I.X h/D Yo" a
o1 a
) uolgh
(cop) - flzdx = 54 (X_-X,) (8)
u th
=-0b .2 .2
(D—4A) - Jidl =< (I2 11) (h)

The sum of these is equal to (c). Note however that the mechanical energy in-
put on each leg is not necessarily converted to electrical form, but can be

stored in the coupling.
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ROTATING MACHINES

K, =,

i
PROBLEM 4.1 }Z(fw‘?)
Part a X sjn ‘})

With stator current acting alone
the situation is as depicted at the
right. Recognizing by symmetry that
Hrs(w+w)= —Hts(W) we use the contour

shown and Ampere's law to get

YT Nsis

24  (W)g = Lp [m sin ¥')(R+g)dy’ = N_1i_cosy

from which mbejnd:wu
N 1 cosy
S 8
2g .

H (9

and
uoNsiscosw
2g

B, (V)

Part b
Following the same procedure for rotor excitation alone we obtain

u Nrircos(w—e)

0
B W) = =50

Note that this result is obtained from part (a) by making the replacements
Ns — Nr
is ~— 1r
v —» ({¥-6)
Part ¢
The flux density varies around the periphery and the windings are distributed,
thus a double integration is required to find inductances, whether they are found
from stored energy or from flux linkages. We will use flux linkages.
The total radial flux density is

u
0
Br = Brs + Brr = T [Nsiscosw + Nrircos(w-e)]
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ROTATING MACHINES

PROBLEM 4.1 (Continued)

Taking first the elemental coil
on the stator having sides of angular
span dy at positions Y and Y47 as
illustrated. This coil links an amount
of flux

N, YT
D=rrgy S10¥] (Reg)ay —J B_(V') (Rig) Ldy'

~

number of turns in flux linking one turn
elemental coil of elemental coil
uoNB(R+g)2 X YT , . .
dxs= - ]}:EE"__—'Si“wdw J [Nsiscosw + Nrircos(w —Gﬂdw
1
H N, (Rtg)p
dAs = ——iizgj——— sinW[Nsissinw + Nrirsin(w-e)]dw
To find the total flux linkage with the stator coil we add up all of the
contributions
uoNs(R+g)£ m .
As= _-EEE——__— Jo sinw[Nsissinw + Nrirsin(w—e)]dw
u N (Rtg)l
A= —241——-——{£-N 1 +2N14 cosf]
s 28 2 s 2'rr

This can be written as
A =L1 + Mi cosf
8 s's T
where 2
T N"RE
L =28
s ;F:Eg
nuoNsNrRz
W 28

and we have written R+g < R because g << R.

M =

When a similar process is carried out for the rotor winding, it yields
A_=L4i + Mi cosh
r rr 3
where m Nle
L = —2F
r  \4Zs

and M is the same as calculated before.
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ROTATING MACHINES

Conkour of
inteqration
PROBLEM 4.2

Part a
Application of Ampere's law
with the contour shown and use of the

symmetry condition

H _(pm= -H (V) yields

Zﬂrs(w)g = Nsis(l— %ﬂ); for0 <P <m
. 2H__ g = N1 (-%#2Y; for m <y <zn

The resulting flux density is sketched below

Far'w<‘#<2ﬂ'
Eﬁs A ,ﬂgAL‘; [ - g:g)
2:1 ( v |
!
ar |
O 1 zt'rr ?"1]
!
|
| HNoks 5 éjH)
Zj (—Sf fr
Part b

st- -Lj 1r(£+a)

<= L 7 (R f‘?)
for o< ¥<T

The same process applied to excitation of the rotor winding yields

Bl’“ Z ,é/‘,/\/ I‘/r

_ 2029

.

2
|
| "
0 ) +
|
|
|

| 2w 2ree

|

{ .

VP U i, [_31, 24 e)]
Zj r
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ROTATING MACHINES

PROBLEM 4.2 (Continued)
Part c

For calculating inductances it will be helpful to have both flux densities
and turn densities in terms of Fourier series. The turn denéity on the stator

is expressible as

4Ns 1
n,=——— ) =sinny

s ﬂz(R+g) nodd ©

and the turn density on the rotor is
4Nr 1
n =— ] = sin(y-0)
7 R nodd

and the flux densities are expressible as

AuoNsis
Brs = 7 2 cos nY
nodd T gn
4uoNrir
Btr = Z —5 5 cos n(Y-0)
° nodd T gn

The total radial flux density is

B =38 +8B
r rs rr

First calculating stator flux
linkages, we first consider the
elemental coil having sides dy

long and ™ radians apart
P
dAs = ns(R+g)dw -Iw Br(w')(R+g)fdw'

NN

number of flux linking one
turns turn of elemental
coil
Substitution of series for Br yields
8u N 1 8u N 1
dA =n (R+g)29,dw Z —25 8 gin ny + Z —2 T sin n(y-0)
s s 2 3 2 3
nodd T gn nodd T gn

The total flux linkage with the stator coil is

32u N_(R+g) & (T N i N 4

A = _O_S—_ z ..1. Sinml} Z ..s_s_sin nw + z ﬁsin n(w-e) d(p

8 4 n 3 3
Tg 0 nodd nodd n nodd n
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ROTATING MACHINES

PROBLEM 4.2 (Continued)
Recognition that

T
I sin nY sin m(Y~98)dy = 0 when m # n

0
simplifies the work in finding the solution
32u°Ns(R+g)2 ﬂNsis nNrir
As = G—-7r-+ 7 cos n6)
mTg nodd 2n 2n

This can be written in the form

A =L1i + J M cosnbi
s s's n r

nodd
where 2
L. 16u°NSR2 1
s n3g nodd n
16u N N R%
osr
L N
n mgn

In these expressions we have used the fact that g << R to write Rtg xR,
A similar process with the rotor winding yields
A_=L4i_+ ) M cosnb i
r rr n s
nodd
where 2
L 16u°NsR2. Z 1
=_—3——— —

£ g nodd n4

and Mn is as given above.

PROBLEM 4.3
Wwith reference to the solution of Prob. 4.2, if the stator winding is
sinusoidally distributed, Xs becomes

32u N _(R+g)L W N1

A = —25 | siny|Nisin Y+ [ L sin n(y-6) |dy

s 4 s’s 3
mTg o nodd n )

T

Because J sin ¥ sin n(y~08) = O when n # 1
o

_ N (Rep)2

s ﬂ4g

A

[0}

1
I sinl,b|}lsis sin ¥ + Nrir sin(lp—e)}dlb

and the mutual inductance will contain no harmonic terms.

Similarly, if the rotor winding is sinusoidally distributed,
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ROTATING MACHINES

PROBLEM 4.3 (Continued)
32u N (R+g)2 ¢m
As = : 2 J Z %-sin ny Z Nsis sin np + N_1i_sin(y-6) |dy
TE o |[nodd nedd n3 rr

Using the orthogonality condition

il
f sin nY sin(Y-0)dy = 0 when n#l
[+]

i 32u_N_(Rtg)2

A
8

T Ncis 2
f Z —-Z~sin ny + Nrir siny sin(y~0) |dyY

Tg o[nodd n

and the mutual inductance once again contains only a space fundamental term.
PROBLEM 4.4
Part a
The open-circuit stator voltage 1s
dx

s d Mo
Ve = d¢ ~ac ! ) —Z ¢os nuwt
nodd n

wMoI
v (t) = - Z ——sin nwt
s
nodd n

Part b

\ \'
1L 13 5 83 o %—-% 4 percent

sl n sl 7

<3
<3

This indicates that uniform turn density does not yield unreasonably high values

of harmonics.
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ROTATING MACHINES

PROBLEM 4.4 (Continued)
Part ¢

Plot shown below

A
i-oT (Y
wM,I /
087

06T
0'4_ E

021

: »
2110 360 (b (Degreey

PROBLEM 4.5

Given electrical terminal relations are
A =L41 + Mi_ cosf®
] s’ s r
A_ =ML cosb +L 1
r [ r'r
System is conservative so energy or coenergy is independent of path. Select
currents and 6 as independent variables and use coenergy (see Table 3.1).

Assemble system first mechanically, then electrically so torque is not needed

in calculation of coenergy. Selecting one of many possible paths of integration
for i and 1_ we have
8 r
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ROTATING MACHINES

PROBLEM 4.5 (Continued)

i i
s r
' = ' ' '
wm(is,ir,e) Io As(is,o,e)dis + Io Ar(is,ir,e)di;
' _ 1 2 1 2
wm(is,ir,e) =3 Lsis + Miris cosf + 5 Lrir
w' (1 _,1_,6)
Te = _Li__r__ = - M 1 cosf
36 r's
PROBLEM 4.6

The conditions existing at the time the rotor winding terminals are short-

circuited lead to the constant rotor winding flux linkages

A_ =M
r o

This constraint leads to a relation between ir and 1s = {1(t)
MI = Mi cosf + L_1
o rr

i =

s
r [Io-i(t)cosel

rlx

r
The torque equation (4.1.8) is valid for any terminal constraint, thus
e M2
T = -Miriscose = - f: i(t)[Io-i(t)coselsine

The equation of motion for the shaft is then

2 2
3 é_g = -2 1(e)[1_-1(t)cosB]sind
L o
dt r

PROBLEM 4.7
Part a

Coenergy is

. 1. .21 .2
Wm(is,ir,e) =3 Lsis + 3 Lrir + Lsr(e)isir
L
- - me(is,ir,e) iy dLsr(e)
T a6 s’r dao

e
T = '1sir["151“9 + 3M3sin36]

Part b
With the given constraints

e——
T = IsIrsinwst sinwrt[Mlsin(wmt+Y)+ 3M3sin3(wmt+¥)]
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PROBLEM 4.7 (Continued) . . -
Repeated application of trigonometric identities leads to:

M.II
¢ = - 148 r é’sin[(mm+ws-wr)t+Y]+ sin[(wm—ws+wr)t+Y1

-gsinf (u)m+ws-Hur) t+y]- sinf (wm-ws-wr) t+y ]}

- { sin{ (Swmms-wr) t+3y)+ sinl (3wm—ms+mr) t+3y]

-ginf (3wm+1ns+1ur) t+3y]- sin([( 3wm-ws—wr) t+3y ]}

To have a time-average torque, one of the coefficients of time must equal

zero. This leads to the eight possible mechanical speeds
wg * v
w = i w .-_3.__

+w
m s —

and w_ = +
T m -

For

w, =t - w)

e _ MIIsIr

avg 4

sin v
For
w = _-t(ws + wt)

e MIIsIr

avg 4

sin v

For
(ws-wr)
3
e 3M3IsIt

T =-—Z———sin3Y

€
n
i+

For
(ug+wr)

3
e 3M3Ia’.Ir

Tavg = — sin 3y

£
]
1+

PROBLEM 4.8

From 4.1.8 and the given constraints the instantaneous torque is
e
T = -IrM sinwrt cos (wmt+y) (Islsinwst + Is3sin 3wst)

Repeated use of trigonometric identities leads to:
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PROBLEM 4.8 (Continued)
II .M
T®= - _rsl cos[ (w_+w -w )t+y]-cos[w_+w_+w ) t+y]
4 r m s r m s
+ cos[(wr-wm-ws)t-yl-cos[(wr—wm+ws)t-y{gz
I1
r

M
- ——7f51- é;cos[(wr+wm-3ws)t+yl—cos[(wr+wm+3ws)t+7]

+ cos[(wr-wm-3ws)t-yl—cos[(mr—wm+3ws)t-y]j%

For a time-average torque one of the coefficients of t must be zero. This leads

to eight values of W

w =+w_ +w and w =+ w_+ 3w
m — r—'s - r—"'8
For
W, = +(w -w )
e Ir slM
T = - cos Y
avg
For
w = i(wr + ws)
e - IrIslM cos
avg 4 Y
For
wy = *lw, - 3w)
I1I
e r s3
Tavg - A cos Y
For

PROBLEM 4.9

Electrical terminal relations are 4.1.19-4.1.22, For conservative system,
coenergy is independent of path and if we bring system to its final mechanical
configuration before exciting it electrically there is no contribution to the
coenergy from the torque term. Thus, of the many possible paths of integration

we choose one
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PROBLEM 4.9 (Continued)

ibs ar’ sl 0) =

as

J (i' ,0,0,0,8)4d1i’

as as
)

+rb

“os Uags 50,0008

o]

i
ar, 1! '
+ ar as ibs ar’ o’e)diar

(-]

r.brxbr(ias ibS ar’ il;r e)dibr

The use of 4.1.19-4.1.22 in this expression yields

ias ibs
[ ' ' U U
wm I Lsias ias + Io I"sibsdibs

o

i
+ J ATl 4' + ML cos® + Mi_ sinB)di'
o r ar as bs ar

fibr

o

(L ib - Mi sinB + Mib cose)dib

Evaluation of these integrals yields

volp 42 gl 42 gl 42 L 1,2
wm 2 Lsias + 2 Lsibs + 2 Lriar + 2 Lribr

+ ML 1 cosf + Mib i sinb
as ar s ar

- Miaéibr31n 0+ Mibsibrcose

The torque of electric origin is then (see Table 3.1)

e aw (ias ibs ar’ ibr’g)
96

e
T = —M[iasiarsinﬁ-ibsiarcos6+iasibrcose+ibsibrsine]

T

PROBLEM 4.10
Part a

Substitution of currents into given expressions for flux density

= +
Br Bra Brb

u N

Br = EE_ [I cos wt cos Y + Ib sin wt sin Y]
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PROBLEM 4.10 (Continued)
Part b
Application of trigonometric identities and simplification yield.

uON Ia Ia
Br = -Z—g— [T cos(wt-y) + 7 cos(wt + §)]
I I

+ ib-cos(wt-W)' Eb-cos(wt + 9]

u N

B_ = Zg— [(T+1)cos (wt- VI+H(I -1, ) cos (wt+)) ]

The forward wave is
uN(I +1)
‘0 a b
B ¢ ig cos (wt=y)

For constant phase on the forward wave

wt - P = constant

=dl=
We =3qe = @

The backward wave is
uoN(Ia B Ib)

Brb = —4?-— cos(wt + Y)

For

wt + Y = constant

d
wy = Je-w

Part c
The ratio of amplitudes is

>
L]

-1
a

-2

This has simply reversed the phase sequence.
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PROBLEM 4.11

Part a
Br = Bra + Brb
u NI
B = 28 [cos wt cos Y + sin(wt + B)siny]
Part b

Using trigonometric identities

M _NI
Br = 28 {cos wt cos Y + cos B sin wt sin Y + sin B cos wt sin Y]
M NI
Br = gg [% cos (wt-y)+ % cos (wt+y)
+ cc2>sB cos (Wt-P)- cgsB cos (wt+8)
+ §%E§ sin(wt+y)- s;nB sin(wt-y)]
u NI »
B = ‘Zg [ (1+cosB) cos (wt-Y)-sinBsin (wt-P)

+ (1-cosB)cos (wtP)+sinBsin (we+y) ]

Forward wave is
U NI

B .= _ﬁg_ [ (1+cosB)cos (wt-P)-sinBsin (wt-Y) )

rf
For constant phase

wt - Y = constant

and
= _
We =g~ ¢
Backward wave 1is
MNT
Brb = —Zgr{ﬂrcosﬁ)cos(wt+w)+sinﬁsin(wt+¢)]

For constant phase
wt + P = constant

and

d
o
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PROBLEM 4.11 (Continued)
Part c

The ratio of amplitudes is

—_—
Brbm - V(l—cosB)2 + sinZB - V 1-cosB
B 1+cosB
rfm ‘/(1+cossB)2 + sinzB
as B + O, thm 0.
rfm
Part d

The forward wave amplitude will go to zero when B = m. The phase sequence

has been reversed by reversing the phase of the current in the b-winding.

PROBLEM 4,12
Equation 4.1.53 is

Pe = vasias + vbs:"bs
For steady state balanced conditions we can write
ias = I cos wt; ibs = 1 sin wt
Vs = V cos(wt+d); Vpg = V sin(wt+d)

then
P, = VI[coswtcos (wt+d)+sinwt sin(wt+)]

Using trigonometric identities
P, = VI cos¢

Referring to Fig. 4.1.13(b) we have the vector diagram

<>

ij'SIS
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PROBLEM 4.12 (Continued)
From this figure it is clear that

stIscos¢ = -Efsinﬁ

(remember that § < 0)
VE

Then P = BE; sin &

which was to be shown.

PROBLEM 4,13
For the generator we adopt the notation for one phase of the armature circuit

(see Fig. 4.1.12 with current convention reversed)

~ix::j(.Ul.ls
——
—_

A I A

A v

—_— ~
The vector diagram is then é}
€

From the vector diagram

cos 8-V

XI sin¢g = Ef

XI cos¢ = Ef sin §

Also, the mechanical power input is

EfV
P= X sin 6

Eliminating ¢ and § from these equations and solving for I yields
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PROBLEM 4.13 (Continued)

E, 2 E, 2 2
v f f PX
I=x| & -2\/<v—> -2t

Normalizing as indicated in the problem statement we define
Io = rated armature current

If°= field current to give rated voltage
on open circuit.

Po = rated power

)I:_. = "IL)E (i_f_)2+ 1-2 \/(——:f )2-({;—)2(¥)2
o o fo fo o V

Injecting given numbers and being careful about rms and peak quantities we have

I, 2 2

P
I .0.4%1 \/(Tf—) +1-2 \/(Ii) —3.92(§—)
fo

Io fo o
Ifo = 2,030 amps

and
I
(f—-) = 3.00
f
0 max

The condition that § = % is

PX
Ee=v

e X PX P
Gy =X _ K _ ;4P
Teo min PV - 2 o

For unity p.f., cos ¢ = 1, sin ¢ = O

Ef cos § =V and Ef sin § = IX

eliminating & we have

I,
I
o

53



ROTATING MACHINES

PROBLEM 4.13 (Continued)
for 0.85 p.f.

Ef sin § = 0.85 IX

Eg cos § - V = \/1—(0.85)2 X

eliminating 8, solving for I, and normalizing yields

1 If 2
E = 0.431 |[[-0.527 + (T_) - 0.722}
o fo

This is double-valued and the magnitude of the bracketed term is used.

The required curves are shown on the next page.
PROBLEM 4.14

The armature current limit is defined by a circle of radius VIo’ where Io
is the amplitude of rated armature current. )

To find the effect of the field current limit we must express the complex

power in terms of field current. Defining quantities in terms of this circuit

.
3 v
Ei?
@—
A
E
The vector diagram is
jXI
3
¢ v
A E. -V
f
I X
P+ 10 = v;* } VEf* \Y - VEfe _ !3
-3X X X
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PROBLEM 4.14 (Continued)
If we denote the voltage for maximum field current as Efo’ this expression

becomes
2 VE VE

P+jQ=-j;](—+ Xf° sind + J —

fo cos$

On a P+jQ plane this trajectory is as sketched below

Q N

Field Cacrent LimikE

— P

d //' . Acwabure Cavvent Limt
Vi
C

. . Sbab”{t
\I‘- . If\/iwn[; (Jj:—l’;)
= I
X

The stability limit (3= g§ is also shown in the sketch, along with the armature

current limit.

The capability curve for the generator of Prob. 4.13 is shown on the next
page.
P and Q are normalized to 724 MVA.
PROBLEM 4.15
The steady state deflection { of the rotatable frame is found by setting

sum of torques to zero

™ +71,=0=1" - gy (1)

where T¢ is electromagnetic torque. This equation is solved for V.

Torque T is found from
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PROBLEM 4.15 (Continued)

e aw (11’ 2) 39¢9w)

T 0

and the magnetic coenergy for this electrically linear system is

y_1.2.1..2 1.2
W= 2 L]+ 5 Ll + 5 Lty

+ Mili3cos(¢—w)+M1213sin(¢-¢)

from which

™ = Mi_ 1.sin(d-) - Mi,1,c08 (6-V)

173
For constant shaft speed w, the shaft position is

¢ = wt.
Then, with 13 = Io as given
dkl di1
ac = - wMI sin(wt-w)ﬂ. = -11R
and
d\ d12
qc = uMIocos (wt-yP)+L T = -12R
Using the given assumptions that
dil d12
lL'at—<< Ril’ and ‘LF<< Riz‘
we have
uMIo
11 = sin(wt-y)
wMIo
12=- R cos (wt-Y)
and the torque T 1s
e wMI 2 2
= MIO( R o)[sin (wt-YP)+cos” (wt-y) ]
Hence, from (1) 2
(MI )
Y= — w
KR

which shows that pointer displacement ¥ is a linear function of shaft speed w
which is in turn proportional to car speed.
Suppose we had not neglected the voltage drops due to self inductance.

Would the final result still be the same?
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PROBLEM 4.16

The equivalent circuit with parameter values as given is

jouséLs'WDT:jCL3 ok JLDSCLP-—AA);:Jleg-fL

+ i
Juhﬁdzaf4lf;~£L /;;
5

_01 o
~ s

\=|z's00 v

-

o—

From (4.1.82) the torque is
2

L R
k r T, .2
QE—)CE—)(E—)VS
e s s
T = N 2
[w, (1-k*)L_1°+(R /s)
2 2 w -“h
where k= L L and s =
.r's s

Soldﬁion‘pf (4.1.81) for Is yields

Rr 2 2 ¥
- (;-) + (wer) (VQ )
s R 2 w L
s's

5+ Ll k)]

: volt-ampere input is simply (for two phases)
(VA)in = vsIs

The electrical input power can be calculated in a variety of ways, the

simplest being to recognize that in the equivalent circuit the power dissipated

in‘Rr/s (for two phases) is just W times the electromagnetic torque, hence

e
Pin T ws

Finally, the mechanical power output is

e
Pmech T wm

These five quantities are shown plotted in the attached graphs. Numerical constants

used in the computations are
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PROBLEM 4.16 (Continued)

wsLs = wer = wsM + 0.3 = 4.80

2
2 4.5
k™ = (4.8) = (0,878
7
Te = —_—__ji—TTTTI newton-meters
0.342 + —if—
s
23.0 + Q:gl
s
I = ————————== 147 amps pPK,
s 0.342 + 9;%i P
s
sor = 0.188

PROBLEM 4.17
Part a
For ease in calculation it is useful to write the mechanical speed as

w = (1-s)u§
and the fan characteristic as
3 3
Tm -Bws(l-s)

With w, = 1207 rad/sec

Bw: = 400 newton-meters
The results of Prob. 4.16 for torque yields

117

S
0.342 +-SL%%L
-1

400(1-s)° =

Solution of this equation by cut-and-try for s yields:
s = 0.032

3 4
Then Pmech = (400) (1-s) w, = (400)(ws)(l-s)
P = 133 kilowatts into fan
mech
Pmech '

Pinput: = 1-s = 138 kilowatts

Circuit seen by electrical source is
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PROBLEM 4.17 (Continued)

J'O.'QD— Jo,3n.
— /7
A5 0.
\ %)4 1 2130
>

Input impedance is

} (44.5) (3.13+40.3) _ =2.79+115.0
Zin =303+ 5933548 = T3.13+14.8

= o _ o = (]
ézm 100.6 56.8 43.8

Hence,
p.f. = cosAfgin = 0.72 lagging

Part b

Electromagnetic torque scales as the square of the terminal voltage,

thus 117 v 2
e S S
T = )
0.342 + 94%1 Vso

s
where Vso = V2 500 volts peak. The slip for any terminal voltage is now

found from

1;7 vs 2
)
0.342 + uz)l Vso

]

400(1-s)° =

The mechanical power into the fan is

= +(1-8)%
Pmech 400 ws(l 8)
+ electrical power input is
P = Pmech
in 1-s
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PROBLEM 4.17 (Continued)
and the power factor is found as the cosine of the angle of the input impedance

of the circuit -

.50'30" JO.S_Q.

i L1110 mn
\ Jitsn Forn

These quantities are plotted as required on the attached graph.
PROBLEM 4.18
Part a
The solution to Prob. 4.1 can be used to find the flux densities here.
For the stator a-winding, the solution of Prob. 4.1 applies directly, thus,

the radial component of flux density due to current in stator winding a is

uoNsia
Bra(w) = g cosy

Windings b and ¢ on the stator are identical with the a winding except for the

indicated angular displacements, thus,

M N1
os

cos (Y- g—")

uNi{i

Brc(w) = 02: € cos (Y- %E)

The solution in Prob. 4.1 for the flux density due to rotor winding current
applies directly here, thus,
uNi

B (V) = °2; L cos(y-6)

Part b
pd
The method of part (c) of Prob. 4.1 can be used and the results of that

analysis applied directly by replacing rotor quantities by stator b-winding
quantities and 6 by 2m/3. The resulting mutual inductance is (assuming
g << R)
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PROBLEM 4.18 (Continued)

Lab = NUONSRQ cos8
2g 3
u NRE L
L =208 _ s
ab 4g 2

where Ls is the self inductance of one stator winding alone. Note that

Lac = Lab because of relative geometry.

Part c

The A-i relations are thus

L L
s s
Aa Lsia- 7 ib- 5 1c + Mcoseir
Ls Ls 27
Ab= -5 1a+Lsib- 5 1c + Mcos (8- 3—)ir
Ls . Ls 41
Ac= - 5—-18— 5 ib + Lsic + Mcos(6- 5—)1r

2T
Ar = Mcoseia + Mcos (6- S—Oib

4
+ Mcos(6- 3—)1c + Lrir

where from Prob. 4.1, :

2
. m NRR
s 2g
ﬂuoNsNtRl
M= —————
2g
2
nuoNrRQ
L = ———
T 2g

Part d
The torque of electric origin is found most easily by using magnetic
coenergy which for this electrically linear system is
' =1 2 2 2
wm(ia’ib’ic’ir’e) 2 Ls(ia + ib + ic)
1
+ E-Ls(iaib + iaic + ibic)+Mcoseir1a
2 4
+ Mcos (8- 3—)irib + Mcos (8- 3 )iric

The torque‘of:electric origin is
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PROBLEM 4.18 (Continued)

'
awm(ia’ib’ic’ir’e)
36

Te

e _ 2n 4
T = —Mir[iasine + ibsin(e— 3 )+ icsin(e- 3 )1

PROBLEM 4.19
Part a
Superimposing the three component stator flux densities from Part a

of Prob. 4.18, we have

uN
0's 27 4
Brs 28 [iacosw + 1bcos(w— 3 )+ iccos(w— 3 )]
Substituting the given currents
uoNs 27 2
Brs = 2% [Iacos wtcosy + Ibcos (wt- —3-—) cos (Y- 3—)

4 4
+ Iccos(wt- 3 ) cos (P~ 3 )
Using trigonometric identities and simplifying yields

u N I +1 +1
os [( a b c)cos(wt—w)

B =

rs 2g 2

cos am
b 3

1 4 2n
+ E(Ib sin — + Ic sin 3—)sin(wt+w)]

1 27
+ f(la +1 + Ic cos S—Qcos(wt+w)

3
Positive traveling wave has point of constant phase defined by

wt - Y = constant
from which

d_w=

ak - Y

This is positive traveling wave with amplitude

uoNs
Brfm = 4g (Ia + Ib + Ic)

Negative traveling wave has point of constant phase

wt + Y = constant

from which

W,

dt
This defines negative traveling wave with amplitude
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PROBLEM 4.19 (Continued)

N I 2 2
ran = e [0 ¢ 50 G

rbm 2

Part b

When three phase currents are balanced

Ia = Ib s Ic
and Brbm = 0 leaving only a forward (positive) traveling wave.
PROBLEM 4.20
Part a

Total radial flux density due to stator excitation is

Brs 2g

(iacos 2y + ibsin 2y)

Substituting given values for currents
u N

o
Brs 28 (Ia cos wt cos 2y + Ib sin wt sin 2y)
Part b
N I +1 I -
_ Mo a b a”" %
Brs =3 G——E———Jcos(wt—Zw) + f——if——ﬂcos(wt+2w)

The forward (positive-traveling) component has constant phase defined by

wt - 2y = constant
from which

v _w
dt 2

The backward (negative-traveling) component has constant phase defined by

wt + 2y = constant

from which

dt 2

a  _w

Part c
From part b, when Ia = Ib’ Ia - Ib = 0 and the backward-wave amplitude

goes to zero. When Ib = - Ia’ Ia + Ib = 0 and the forward-wave amplitude goes

to zero.
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PROBLEM 4.21 )
Referring to the solution for Prob. 4.20,

Part a
Brs P (ia cos pp + ib sin py)
uoN
Brs = EE_ (Ia cos wt cos pY + Ib sin wt sin pY)
Part b

Using trigonometric identities yields

uoN Ia + Ib Ia - Ib
rs = 25 ———75———)cos(wt-pw) + (——-5———)cos(wt+p¢)

Forward wave has constant phase

wt - pY = constant
from which

4 _w
dt P

Backward wave has constant phase

wt + pY = constant
from which

@ _w
dt P
Part c

From part b, when Ib = Ia’ Ia - Ib = (0, and backward-wave amplitude goes

to zero. When Ib = -Ia, Ia + I. = 0, and forward-wave amplitude goes to zero.

b
PROBLEM 4.22

This 1s an electrically linear system, so the magnetic coenergy is

w;(is,ir,e) = %(Lo + chos 26)15 +-% Lrii + Miris cos O
Then the torque is
'
T = w =-Mi_1_ sin 0 - L,1’ sin 20
PROBLEM 4.23
Part a
L

0
L = {120.25 cos 46 = 0.25 cos 80)
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PROBLEM 4.23 (Continued)
The variation of this inductance with 6 is shown plotted below.
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PROBLEM 4.23 (Continued)
From this plot and the configuration of Fig. 4P.23, it is evident that minimum

reluctance and maximum inductance occur when 8 = 0, w/2, ﬂ,...%'ﬂ,.... The

inductance is symmetrical about € = O, 12[ s+« and about 6 = %, %,... %+ ;—",...
as it should be. Minimum inductance occurs on both sides of 6 = %-which ought
to be maximum reluctance.

The general trend of the inductance is correct for the geometry of Fig.
4P.23 but the equation would probably be a better representation if the sign

of the 80 term were reversed.

Part b
For this electrically linear system, the magnetic stored energy is
2
1A
wm()"e) 7L
2
o A~ (1-0.25 cos 46 - 0.25 cos 86)
wm(x’e) 2L
o
The torque is then
P awm(x,e)
36

2
8 = - %L— (sin 40 + 2sin 86)
o]

Part c
With A = Ao cos wt and 8 = Qt + §
e Ai coszwt -
T = - ——iir-———-[sin(49t+46)+2 sin (8Qt+848) ]
(o)

Repeated use of trig identities yields for the instantaneous converted power
QAZ
1% - 772 [s1n(40t+48) + 2 sin(BQL+8S)
o
+ 3 sin(2ut + 40¢ + 48)+ 3 sin(40t - 2ut + 48)
+ sin(2wt + 80t + 88)+ sin(80t - 2wt + 86)]

This can only have a non-zero average value when # 0 and a coefficient of

t in one argument is zero. This gives 4 conditions

S 1
w
When Q = + 5 o2
e )
{ar ]avg - 8L° sin 46
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PROBLEM 4.23 (Continued)

andwhen§2=i%
an?

(o]
2 - —

[or®} =2 sin 88
N

PROBLEM 4.24

It will be helpful to express the given ratings in alternative ways.
Rated output power = 6000 HP = 4480 KW at 0.8 p.f. this is

4480

0.8 = 5600 KVA total

or
2800 KVA per phase

The rated phase current is then

3

_ 2800 x 10

3 x 103

I
s

Given:

= 933 amps rms = 1320 amps pk.

Direct axis reactance w(Lo+L2) = 4.0 ohms

Quadrature axis reactance w(Lo-LZ) = 2.2 ohms

wL_ = 3.1 ohms
o

The number of poles is not given in the problem statement.

Part a

wL, = 0.9 ohms

2

We assume 2 poles.

Rated field current can be found in several ways, all involving cut-and-try

procedures.
Fig. 4.2.5(a), thus

MAGNARY  AXis
A

2%

<>

Our method will be based on a vector diagram like that of

[
JU>QJ;
Note : \5<O) 5-40) AND
6 s MEASU@ED
Feemt Ig To VL AND
is fPosiTIVE AS

1

' S Howw.
> — Real
Is Mis



ROTATING MACHINES

PROBLEM 4.24 (Continued)

Evaluating the horizontal and vertical components of Vs we have (remember that

Yy < 0)

A

T T
Vs cos 8 = Eg cos(i +v) + wLZISCOS(§'+ 2y)

T T
Vs sin 6 = E sin(§-+ Y) + wLZIssin(i»+ 2y) + wLoIs

£

Using trigonometric identities we rewrite these as

Vs cos 6 = -E_ sin v - wL Is sin 2y

2
I cos 2y + wL I
s o's

f

Vs sin 6 = E_ cos Y + wL

f 2
Next, it will be convenient to normalize these equations to Vs,
wL,I
2°s
cos © -es sin vy - Vs sin 2y

mLZIs wL I
cos 2y + ——
v
s s

sin 0 = e; cosyY +

where

Solution of these two equations for‘ef yields

wLZIs wLOIs
sin 0 ~ v cos 2y - v
e = s s
£ cos Y
wL IS
-cos 0 - v sin 2y
e_ = 8
f sin v

For rated conditions as given the constants are:
cos 0 = p.f. = 0.8
sin 6 = - 0.6 (negative sign for leading p.f.)

wL, I wL I

2's o's
v - 0.280; v
8 s

= 0.964

Solution by trial and error for a value of Yy that satisfies both equations

simultaneously yields

Y = - 148°
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PROBLEM 4.24 '(Continued)

and the resulting value for ee is

e = 1.99

yielding for the rated field current

1 = vsef
r

= 24,1 amps.

where Vs is in volts peak.
Part b

The V-curves can be calculated in several ways. Our choice here is to
first relate power converted to terminal voltage and field generated voltage
by multiplying (4.2.46) by w, thus

2
EV (X=X )v
P = oI® = - fs sin § - d S sin 26
2X, X
d d q
where Xd = w(L°+L2)

Xq = m(LO-LZ)

We normalize this expression with respect to vi/xd, then

Efﬂ = - ¢e_ 8in § - (xd-x )
2 f 2X
Vs q

gin 26

Pull-out torque occurs when the derivative of this power with respect to § goes

to zero. Thus pull-out torque angle is defined by

PX X.,-X)
2—6 [vz—d)= -e. cos § - ——;q—L cos 26 =0
s

The use of (4.2.44) and (4.2.45) then yield the armature (stator) current

amplitude as

Vs 2 Vs Ef 2
I, = (—x—-sin 6) +()—(— cosé—x—)
q d d

A more useful form is

v [x
- _8 d 2 _ 2
Is = xd \/(xq sin 6)° + (cos 6 ef)

The computation procedure used here was to fix the power and assume values of
6 over a range going from either rated armature current or rated field current

to pull-out. For each value of §, the necessary value of ec is calculated
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PROBLEM 4.24 (Continued)

from the expression for power as

PX (X,-X)
d d
v2 + 7% sin 26
e, =2 :
f -gin &

and then the armature current magnitude is calculated from

' X
s d 2 2
Is T \/(Y— sin 6)° + (cos § - ef)
d q
For zero load power, Y = 0 and § = 0 and, from the vector diagram given earlier,

the armature current amplitude is

with pull-out still defined as before. The required V-curves are shown in the
followinggraph. Note that pull-out conditions are never reached because range of

operation 1s limited by rated field current and rated armature current.

PROBLEM 4.25
Equation (4.2.41) is (assuming arbitrary phase for Is)

~

- I I 32y 32y
Vo= Jul, I+ juL, Iel®' + JuMI_e

With v = 0 as specified

~ ~

Vo = Ju(LHL,)T + JuMI

The two vector diagrams required are
A

Vs 1} jw(“ofl‘7'>r5 A
\, 44 jwMIy
jwﬂﬁrr
A
A L
» s -
Laoverive CAPACITWVE
\é >wMLy N&‘1LUAA‘Ir 3w0¢4€9;v

74



ROTATING MACHINES

V= CURVES For PRoBLEM 4-,2.4_

ARMATUEE
CuBLRENT
(Amps KMms)

A
1000 /ﬂ/}m AemArulE cogeenr = 933 Ames RMS

600+

T

4001

T

200

© 7 16 15
Fieedp cukeenT L. (AMPS)

PATED FIELD
CURLENT = 241 AMPs.
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PROBLEM 4.26

Part a
From Fig. 4P.26(a)
o 1 10
v._._ X
v 1 3¢
Vs jxs + Y e

from which the ratio of the magnitudes is
1

vl ___ ¥
‘Vsl \/(% cos¢) 2+(% sing + Xs)z

For the values Y = 0.01 mho, Xs = 10 ohms

[v] 100

Vel /(200 cos$)? + (100 sin¢+10)2
Then, for ¢ = 0

vl ___100 = 0.995

|v_| /10,000 + 100
S

and, for ¢ = 45°

vl 100 = 0.932

[Vl [(I00y2 (100 2
\/(ﬁ)uﬁno)

Part b
It is instructive to represent the synchronous condenser as a susceptance
jB, then when B is positive the synchronous condenser appears capacitive. Now the

circuit is

i*s
2L —o
1_
+ .
A A .~
\é Vv Y e B
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PROBLEM 4.26 (Continued)

Now the voltage ratio is

1
_v_ = Ye_J¢+ JB = 1
~ 1 -j¢
v —— + X 1+ jX Ye - BX
8 ye ity 4p s s s
v 1
v 1—Bxs+st sin¢+szY cosd
Then
v _ 1
| Vs | \/ (1-BX_+X_Ysin¢) 2, (X Ycosd) 2
For ¢ = 0
v . 1

1v_| .2 2
o Yam)?+ «n
If this is to be unity
2 2
(1—BXS) + (XSY) =1

v 2
l—BXs = 1-(X_Y)

1- 1-(XSY)

X
s

B =

for the constants given

B = 1- V1-0.01 - 0.005 _ 0.0005 mho

10 10

Volt-amperes required from synchronous condenser

wa = [7]% = 0" (5)10™) = 10,000 KkvA

Real power supplied to load

P, = |97 cos ¢ = [¥]% for ¢ = 0

Then
(VA)sc

L

For ¢ = 0 the synchronous condenser needs to supply reactive volt amperes equal to

0.0005

0.01 - 0-05

I
|

5 percent of the load power to regulate the voltage perfectly.
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PROBLEM 4.26 (Continued)

For ¢ = 45°

tvi . 1
v )

IvS| X Y\Z XY
(1-Bx . +(L)
") T\

In order for this to be unity

XY2Z XYy
foaw, + =) +(2) -1
V2 \v2
XY X Y\2
LY __s_)

X
s

B =

For the constants given

. 1+0.0707 -~ v1-0.005

B 10

= 0.00732 mho

Volt-amperes required from synchronous condenser

'

o, = |7]% = 2) 21019 (7.32) (1073 = 146,400 KkvA

Real power supplied to load
~ v 2
P, = |V|2Y cos ¢ = i!l—!-for ¢ = 45°
V2

Then

(Wee _ B2 _ 0/2)(0.00132) _, ,,
. :

PL 0.01

Thus for a load having power factor of 0.707 lagging a synchronous condenser needs
to supply reactive volt-amperes equal to 1.04 times the power supplied to the
load to regulate the voltage perfectly.

These results, of course, depend on the internal impedance of the source.

That given is typical of large power systems.

PROBLEM 4.27
Part a
This part of this problem is very much like part a of Prob. 4.24. Using

results from that problem we define
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PROBLEM 4.27 (Continued)

where Vs is in volts peak. Then
wL,I wL I
sin 0 -

From the constants given

cos 6 =1,0; sin 6 =0

wL = 2.5 ohms wL, = 0.5 ohm
o 2

Rated power

P, = 1000 P = 746 xw

Armature current at rated load is

Is - 746,000 _ 527 amps peak = 373 amps RMS
/2 1000
Then
wL, I wL I
= 0.186; 7 = 0.932
s s
Using the constants
e = -0.186 cos 2y - 0.932
f cos Y
e, = -1 - 0.186 sin 2y
f sin v

The use of trial-and-error to find a value of Yy that satisfies these two

equations simultaneously yields

Y =-127° and e; = 1.48

Using the given constants we obtain

I = °f's _ (1.48) (/2) (1000)
r  uM 150

= 14.0 amps
For Lf/Rf very large compared to a half period of the supply voltage the field
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PROBLEM 4.27 (Continued)
current will essentially be equal to the peak of the supply voltage divided by
the field current; thus, the required value of Rf is

v
_ s _ /2 (1000),,
Re =T " a0 v 1000

Part b
We can use (4.2.46) multiplied by the rotational speed w to write the

output power as

e Ee XXV
P, = T = - sin § - ———3 3 g5in 25
L Xd Zde
q
where
Xd = m(Lo+L2) = direct axis reactance

Xq = w(Lo—LZ) = quadrature axis reactance
With the full-wave rectifier supplying the field winding we can express

WM
B = uMI, = 3%

f

Then oM V2 (X X )VZ

P =- R 8 sin & - 2; S gin 26
L fxd dxq
Factoring out Vi yields

X X))
PL = Vz [l RwM sin § - —5%—23— sin 2%}

_ fxd dq

Substitution of given constants yields

3

746 x 107 = Vg [-0.500 sin 6§ - 0.083 sin 248]

To find the required curve it is easiest to assume § and calculate the required

Vs’ the range of § being limited by pull-out which occurs when

BPL
3 = 0= - 0,500 cos§ - 0.166 cos 2§

The resulting curve of § as a function of Vs is shown in the attached graph.
Note that the voltage can only drop 15.5% before the motor pulls out

of step.

BN
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PROBLEM 4.27 (Continued)

A
80..
Poct
—_ our
a 450.-
g |
@ |
)
\J
<l |
Y
)
=Y
< |
W 204+
>
N . |
d ATED
= VourhGE
|
O + t + t _\\“ g
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ACMATURE. volLTS £MS

N

Although it was not required for this ﬁioblem}caléhlations will show that
operation at reduced voltage will lead to excessive armature current, thus,

operation in this range must be limited to transient conditions.
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PROBLEM 4.28
Part a

This is similar to part a of Prob. 4.24 except that now we are considering
a number of pole pairs greater than two and we are treating a generator. Consider-
ing first the problem of pole pairs, reference to Sec. 4.1.8 and 4.2.4 shows that

when we define electrical angles Yo and Ge as
Y, = PY and §_ = pd
where p is number of pole pairs (36 in this problem) and when we realize that the

electromagnetic torque was obtained as a derivative of inductances with respect to

angle we get the results

2
VE p(X~-X )V
™=-2_3 £ sin § -~ d 8 sin 26
w X e w2X X e
d dq
where Xd = w(L°+L2) and Xq = m(Lo—Lz), and, because the synchronous speed is w/p
(see 4.1.95) the electrical power output from the generator is
W e stf (xd_x )Vz
P=-27"2 5 Lgins +—S—31 3gin 25
Xd e 2Xqu e

Next, we are dealing with a generator so it is convenient to replace IS
by -IS in the equations. To make clear what is involved we redraw Fig. 4.2.5(a)

with the sign of the current reversed.

ImAGNARY AX1S
A

JWkols
A Yoo
>
v o bz <€
PeaL
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PROBLEM 4.28 (Continued)

Now, evaluating horizontal and vertical components of Vs we have
Vs cos 0 - wLZIs sin 2Ye = Ef sin Yo
-Vs sin 0 = wLOIs + szls cos 2Ye + Ef cos Y,

From these equations we obtain

wLZIs
cos 6 - Vs sin 2Ye
e=
f sin Ye
wLoIs wLZIs
~-gin B—T- v cos ZYe
e = s |
cos Y,
where
E wMI
£ Vv v
8 8
with Vs in volts peak

Is in amps peak

w is the electrical frequency
For the given constants
cos O = p.f. = 0,850 sin & = 0.528

wL,I wL I

25 < 0.200 —25 = 1.00
s s
and
0.850 - 0.200 sin ZYe
e =
f sin Yo
-1.528 -~ 0.200 cos ZYe
e =
f cos Y,

Trial-and-error solution of these two equations to find a positive value of

Yo that satisfies both equations simultaneously yields

= ° =
Y, = 147.5° and e = 1.92

From the definition of er we have

;< of's _ (1.92) (¢/2)(10,000)
r wM  (120)(m) (0.125)

= 576 amps
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PROBLEM 4.28 (Continued)
Part b
From Prob. 4.14 the definition of complex power is

AA*:
VSIs P + jQ
where Vs and Is are complex amplitudes.
The capability curve is not as easy to calculate for a salient-pole

machine as it was for a smooth-air-gap machine in Prob. 4.14. It will be easiest

to calculate the curve using the power output expression of part a

V.E, (XX V2
P= sin § + ——3- % gin 26
d e 2Xqu e

the facts that

P

VsIs cos O

Q
and that Is is given from (4.2.44) and (4.2.45) as

VI sin 0
s's

7V E. 2

\Y
s s f
I \/(X sin Ge] + (X cos § i—)
q d d
First, assuming operation at rated field current the power is
6 6

P = 320 x 10" sin Ge + 41.7 x 10" sin 26e watts.

We assume values of Ge starting from zero and calculate P; then we calculate Is

for the same values of Ge from

1_ = 11,800 V?i.so sin se)z + (cos 63-1.92)2 amps peak

Next, because we know P, VS, and IS we find 6 from

P

viI
ss

cos O =

From O we then find Q from
Q= VSIs gin 0.

This process 1s continued until rated armature current
I, = YZ 10,000 amps peak

is reached.

The next part of the capability curve 1s limited by rated armature

current which defines the trajectory
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PROBLEM 4.28 (Continued)

d 2 2
P” +Q VsIs
where VS and Is are rated values.

For Q < 0, the capability curve is limited by pull-out conditions
defined by the condition

2
VE X.-X )V
dP ( d ) s
—=— =0 = cos § + cos 26
dé e X e
e d d'q

To evaluate this part of the curve we evaluate es in terms of 6e from the power

and current expressions

PX X,~X)
d d
v2 - % sin 26
e, = —> :
f sin §
IX, 2 X 2
s d d
e, = cos Ge - ( Vs ] - (i— sin Ge]

For each level of power at a given power factor we find the value of Ge that
simultaneously satisfies both equations. The.resulting values of ec and Ge are

used in the stability criterion

2 2
Ve X,-X )V
dP s f ( d ) s
=5 = cos § + cos 26 >0
dé X e X, X e —
e d d "q

When this condition is no longer met (equal sign holds) the stability limit is

reached. For the given constants

P 6" 0.25 sin 26e
e = 167 x 10
f sin Se

I 2
S 2
ef = cos Ge - \/(m) - (1.5 sin Ge)

dP

—_—=a

dée cos Ge + 0.5 cos 26e >0

f

The results of this calculation along with the preceding two are shown on the
attached graph. Note that the steady-state stability never limits the capability,
In practice, however, more margin of stability is required and the capability in
the fourth quadrant is limited accordingly.
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PROBLEM 4.29
Part a

For this electrically linear system the electric coenergy is

Wé(vl,v ,0) = Co(l + cos 26)vi

2
+ Co(l + sin 26)v2
The torque of electric origin is

GW' (V 'V ’e)
¢ = __E__%giL——-= qo(vg cos 26 - vi sin 20)

Part b

With v. =V cos wt; v, = V_ sin wt
1 o o

2

e

T = C°V§(sin2 wt cos 20 - cos2 wt sin 20)

Using trig identities

2
\'/
™ = g 0[cos 20 - cos 2wt cos 20 - sin 20 - cos 2wt cos?26]
e Covi Covi
T = 2 (cos 26 - sin 26) - 2 .[cos(2wt-20) + cos(2uwt + 26)]

Three possibilities for time-average torque:
Case I:

Shaft sitting still at fixed angle @
Case II:

Shaft turning in positive 6 direction

6 = wt + v

where Y is a constant
Case III:
Shaft turning in negative 6 direction

0=-wt+3§

where 8 is a constant.

Part ¢
The time average torques are:
Case I:0 = const. 2
Covo
<% = 3 (cos .26 - sin 20)
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PROBLEM 4.29 (Continued)

Case II: 0 = wt + v

e Covi

<T™> = - 5 Ccos 2y
Case III: 6 = - wt + § 9
Covo

<% = - 5 cos 26

PROBLEM 4.30
For an applied voltage v(t) the electric coenergy for this electrically

linear system is -

' -1 2
we(v,e) 2(Co + C1 cos 20)v
The torque of electric origin is then
W' (v,0)
e e 2
T 3§ -Clsinzev
For v = V° sin wt
™==-c V2 sinzwt sin 26
lo
e %%
T = -~ 2 (sin 26 - cos 2wt cos 268)
Clv2 clvi
T = - 20 sin 260 + A [cos (2wt-28) + cos (2wt+26)]

For rotational velocity w, we write

0= wt +y

and then 2
o

sin Z(wmt + v)

2
c,v
+ 'Z = {eos[2(w-w )e-2y] + cos[2(whu )t + 2v1}

This device can behave as a motor if it can produce a time-average torque for

wm = constant. This can occur when

w =+uw
m -
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LUMPED-PARAMETER ELECTROMECHANICAL DYNAMICS

PROBLEM 5.1
Part a

The capacitance of the system of plane parallel electrodes is

C = (L#x) dsols (a)

and since the co-energy W' of an electrically linear system is simply %Cv2

(remember v is the terminal voltage of the capacitor, not the voltage of the
driving source)

de
e W' _1 o2
£ = 3x 2 s (b)

The plates tend to increase their area of overlap.

Part b
The force equation is

2 de

ME—’Z‘-=-Kx+%—-S—9-v2 (c)
dt

while the electrical loop equation, written using the fact that the current
dq/dt through the resistance can be written as Cv, is

d ' deo
v(t) = R EE{(L+X)—;—V]+ v (d)

These are two equations in the dependent variables (x,v).

Part ¢
This problem illustrates the important point that unless a system
involving electromechanical components is either intrinsically or externally

biased, its response will not in general be a linear reproduction of the

input. The force is proportional to the square of the terminal voltage, which

in the limit of small R is simply Vz(t). Hence, the equation of motion is
(c) with

2 2 ) Vi
vi = VT (t) = u_l(t) 7 (1-cos 2wt) (e)

where we have used the identity sinzwt = %(l-cosAZwt). For convenience

the equation of motion is normalized

89



LUMPED-PARAMETER ELECTROMECHANICAL DYNAMICS

PROBLEM 5.1 (Continued)

2 _
> + w, X = au_l(t)‘l-cOSth)
()
where

2 2
wo=K/M,a=vodg/43M

To solve this equation, we note that there are two parts to the particular

solution, one a constant

L

5 (g)
[o]

X =

€

and the other a cosinusoid having the frequency 2w. To find this second
part solve the equation
2

g—% + wi X=- Reaezjwt (h)
dt
for the particular solution
X = ~0cos 2wt (1)
2 2
w - 4w
o

The general solution is then the sum of these two particular solutions and the

homogeneous solution t > O

x(t) = @ _ @& cos 2ut + A sinw t + Bcosw t (&)
2 2 2 o o
o wo - 4w

g

The constants A and B are determined by the initial conditions. At t=0,
dx/dt = 0, and this requires that A = 0, The spring determines that the initial
position is x = 0, from which it follows that

2,2,2 2
B = abw /wo(wo - 4w") (k)

Finally, the required response is (t > 0)

2w, 2
(<) cos wot
x(t) = o [ 1 - —cos 2wt + 0 ] (1)
2 2w, 2 2w, 2
w [1- (—“Z) 1 [1- (E) ]
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PROBLEM 5.1 (Continued)

Note that there are constant and double frequency components in this response,
reflecting the effect of the drive. In addition, there is the response
frequency wy reflecting the natural response of the spring mass system. No

part of the response has the same frequency as the driving voltage.

PROBLEM 5.2
Part a
The field intensities are defined as in the figure

a+x Hs a-x
—_— —
H ] Hz
Ampere's law, integrated around the outside magnetic circuit gives
2N11l = Hl(a+x) + Hz(a—x) (a)

and integrated around the left inner circuit gives

Nlil‘- N212 = Hl(a+x) - H3a (b)
In addition, the net flux into the movable plunger must be zero
0=H, -H, +H (c)

1 2 3
These three equations can be solved for Hl’ H2 and H3 as functions of il and

i Then, the required terminal fluxes are

2°
Ay = Nou dW(H +H,) (d)
Az = Nzuodw}{3 (e)
Hence, we have
Nluodw
Al = 382-x2 [116aN1 + 122N2x] (£)
Nzuodw
Az = ;;E:;f [112N1x + 1228N2] (g)

Part b
To use the device as a differential transformer, it would be

excited at a frequency such that
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PROBLEM 5.2 (Continued)

2m
= << T (h)

where T is a period characterizing the movement of the plunger. This means
that in so far as the signal induced at the output terminals is concerned,
the effect of the motion can be ignored and the problem treated as though x
is a constant (a quasi-static situation, but not in the sense of Chap. 1).
Put another way, because the excitation is at a frequency such that (h) is

satisfied, we can ignore idL/dt compared to Ldi/dt and write

dAz m2N1N2uodWxI
v =-———=-——2—-§——-sinwt

(3a"~-x")

At any instant, the amplitude is determined by x(t), but the phase remains
independent of x(t), with the voltage leading the current by 90°. By

design, the output signal is zero at x=0 and tends to be proportional to x over

a range of x << a.

PROBLEM 5.3
Part a

The potential function which satisfies the boundary conditions along
constant O planes 1is

b = %ﬁ (a)

where diffefentiation'shows that Laplaces equation is satisfied. The constant
has been set so that the potential is V on the upper electrode where 8 = ¢,

and zero on the lower electrode where 6 = 0. Then, the electric field is

Be-vo =1, 223 T (b)

6 r 36 0 ry
Part b
The charge on the upper electrode can he written as a function of (V,V¥)

by writing

b v Deov b
a = De_ L ?‘Fdw v 1“(3) (c)
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PROBLEM 5.3 (Continued)
Part ¢

Then, the energv stored in the electromechanical coupling follows as

d 1 2
w’f"d“"f‘ﬂ‘gb—ﬁq?—w“r @
Deoln(;) DeolnC;)
and hence
2
Te=—-g—$=—%_‘l—b— (e)
De In(-)
o a
Part d

The mechanical torque equation for the movable plate requires that the
inertial torque be balanced by that due to the torsion spring and the electric
field

2
Y = oy -9)- 3~ (£)

de? 2 De_In (h)

o ‘a
The electrical equation requires that currents sum to zero at the current node,
and makes use of the terminal equation (c).

R e | (8)

de ~ @t T @ ‘T by
o a

Part e
With ¢ = 0, Q(t) = q(t). (This is true to within a constant, corresponding

to charge placed on the upper plate initially. We will assume that this constant

is zero.) Then, (f) reduces to

2
2 0
d_g + % = % Yy - —[]i 0 5 (l+cos 2uwt) (h)
dt JDEoln(;)

" where we have used the identity coszwt = %{l + cos 2wt). This equation has a

"solution with a constant part 2
1 Qo
V1= % "% T by @)
aPe _In(=)
o a

and a sinusoidal steady state part

2
Qo cos 2wt

1

pho=- b, p)
JaDe In()[7 - (2w)7]
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PROBLEM 5.3 (Continued)

as can be seen by direct substitution. The plate responds with a d-c part and a
part which has twice the frequency of the drive. As can be seen from the
mathematical description itself, this is because regardless of whether the upéer
plate is positive or negative, it will be attracted toward the opposite plate
where the image charges reside. The plates always attract. Hence, if we wish
to obtain a mechanical response that is proportional to the driving signal, we
must bias the ‘system with an additional source and used the drive to simply

increase and decrease the amount of this force.

PROBLEM 5.4
Part a

The equation of motion is found from (d) and (h) with i=Io, as given in
the solution to Prob. 3.4.

2
d2x 1.2 (N uoaw)
M—=Mg- I ——— (a)
dt2 270 623 + x)2 &
b ~
Part b $ ¥
] K|
The mass M can be in static 4;
equilibrium if the forces due to the :
field and gravity just balance, :
i
f =f !
g i
or I
2 )
(N"u_aw) I
D S [
8T 2% da, 2 (&) - +
B X Ko X

A solution to this equation is shown
graphically in the figure. The equilibrium is statically unstable because if
the mass moves in the positive x direction from X the gravitational force

exceeds the magnetic force and tends to carry it further from equilibrium.

Part c
Because small perturbations from equilibrium are beinpg considered it is
appropriate to linearize. We assume x = X +x'(t) and expand the last term

in (a) to obtain
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PROBLEM 5.4 (Continued)

2 2
1 2 (N M aw) 5 O uan) ,
-=1 +1 x' + ... (c)
2 o cgg +x )2 o (gg + x )3
b o b o

(see Sec. 5.1.2a). The constant terms in the equation of motion cancel out by

virtue of (b) and the equation of motion is

(d)

Solutions are exp + ot, and the linear combination which satisfies the given

initial conditions is

<

x' = =2 [ - &7 (e)

PROBLEM 5.5
Part -a

For small values of x relative to d, the equation of motion is

w&x 2% 1 a1 2 @
dt2 4me d2 d3 d2 d3
which reduces to
2 Q Q .
g—% + wz x = 0 where wz =2 13 (b)
dt ° °  Mmed

The equivalent spring constant will be positive if

Qle

wed3

and hence this is the condition for stability. The system is stable if the

>0 (c)

charges have like signs.
Part b
The solution to (b) has the form

X = A cos wot + B sin wot (d)

)

and in view of the initial conditions, B = 0 and A = Xy
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PROBLEM 5.6
Part a
Questions of equilibrium and stability are of interest. Therefore, the
equation of motion is written in the standard form
2

wdx. (a)
dt
where
V = Mgx - W' (b)

Here the contribution of W' to the potential is negative because F& = au'/ox.
The separate potentials are shown in the figure, together with the total
potential. From this plot it is clear that there will be one point of static
equilibrium as indicated.
Part b

An analytical expression for the point of equilibrium follows by setting

the force equal to zero

3
2L X
v _ o 2
3 - Vet 7 I (c)
b
Solving for X, we have
4 1/3
Mgh
X = - [ (@)
2LOI

Part c
- It is clear from the potential plot that the equilibrium is stable.

PROBLEM 5.7
From Prob. 3.15 the equation of motion is, for small ©
2
388 e ke v 2 um? m& (a)
dt (B-a)

Thus, the system will have a stable static equilibrium at 6 =0 if the

N

effective spring constant 1is positive, or if

b, .2
3 In(QDI (®)
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| 5+c\\>\e 5‘\“«"\'?4:
¥;%vthkf\0w\

Figure for Prob. 5.6
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PROBLEM 5.8
Part a

The coenergy is

11 i
W = IO Al(i ,0,x)di1 + Io A (i 12,x)di (a)

which can be evaluated using the given terminal relations

1. .2
W= (3l 12+ it + ; ) 2]/(1 + ) (b)

If follows that the force of electrical origin is

2
—[Llil + 7M1112 + L 12]/(1 + ) (c)

e BW

£ =

Part b

The static force equation takes the form

-£% = Mg (d)
or, with 12=0 and 11=I,
2
3 Ll I
2m X 4 (e)
[1+7]

Solution of this equation gives the required equilibrium position Xo
21/4
-1 (f)

LS
a 2a Mg

Part c
For small perturbations from the equilibrium defined by (e),

2 6L.I7x"' .
d7°x' 1
M —3 - —'——*—‘j(‘jg £(t) (2)

° de (1+—)
where f(t) is an external force acting in the x direction on M.

With the external force an impulse of magnitude Ioland the mass initially
at rest, one initial condition is x(0) = 0. The second is given by integrating
the equation of motion form 0" to 0+

O+ ‘ di 0+ 0+
f ) EE(MO dt)dt - constant [ ) x'dt = I° I'_—%Ezft)dt (h)
0 °. |
The first term is the jump in momentum at t=0, while the second is zero if
x is to remain continuous. B& definition, the integral on the right is.Io.

Hence, from (h) the second initial condition is
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PROBLEM 5.8 (Continued)

ax!

Mo dt

- o) =
0 =1 xl)=0 (1)

In view of these conditions, the response is

I
' _ o) ot _ ot
x'(t) = _2““0 (e e ) (3
where g s "7_
2,2 0
o =‘.le1 /a Mo(l + a_) J
Part d

With proportional feedback through the current 12, the mutual term in

the force equation makes a linear contribution and the force equation becomes

2, 6L.1
ax' 1 — - ML, v 2 £(e) (k)

2 a
2 ‘
a a’(1+ a°)5 b C(+-Zo_)4
Q
The effective spring constant is positive 1if

2 xo &
ol > 2LlI fa (1 + -;—) M (1)

M
o

and hence this is the condition for stability. However, once initiated
oscillations remain undamped according to this model.
Part e (_bea ‘\wsu*)

With a damping term introduced by the feedback, the mechanical

equation becomes

2
d"x', 3MI dx'
M —+=—=B-"+Kx'=£() (m)
o .2 a; t e
ey
where 2 2
BVt R =3rTh 6L, T
e a X 5 ——t 5
2 \ 4
( %\“"“ a+ QBN (e
\r
This equation has solutions of the form exp st, where substitution shows that

7
L. M mig, i Ke « .
y e hl \/(2aMO)'L M (Hé 2 (n)
14+ =3

For the response to decay, Ke must be positive (the system must be stable with-~

out damping) and 8 must be positive.

RS N T
M, CZett 1+ 2 o
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PROBLEM 5.9
Part a

The mechanical equation of motion is

2
MIE o gex-p - &4 £° (a)
2 o dt
dt
Part b
where the force £€ 1s found from the coenergy function which is (because
the system is electrically linear) W' = % L12 = % Ax3i2
e _oW'_3,2.2
£ =r =7 At (b)

Part c
We can both find the equilibrium points Xo and determine if they are stable

by writing the linearized equation at the outset. Hence, we let x(t)=Xo+x'(t)
and (a) and (b) combine to give

2
a7x'_ - v_p T 3,02 2 '
M dtz K(Xo 20) Kx B it + > AIo (Xo + 2xox ) (c)
With the given condition on Io, the constant (equilibrium) part of this equation
is 3X§
% = %o = Tox, @

which can be solved for XO/Q,o to ohtain

X 12/3
o]
T (e)
o 4/3
That is, there are two possible equilibrium positions. The perturbation part
of (c) tells whether or not these are stahle. That equation, upon substitution
of Xo and the given value of Io, becomes
2 [} 1
M XL k- e -5 E (£)

X
dtz 1/2 dt

where the two possibilities correspond to the two equilibrium noints. Hence,
we conclude that the effective spring constant is positive (and the system is
stable) at Xollo = 4/3 and the effective spring constant is negative (and hence
the equilibrium is unstable) at Xollo = 4,

Part d
The same conclusions as to the stability of the equilibrium noints can be

made from the figure.
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PROBLEM 5.9 (Continued)

y 'Fe

l K (XQ—JO)

; |
|
|
|
|
|
!

/X403 X4 X,

Consider the equilibrium at Xo = 4. A small displacement to the right makes
the force f° dominate the spring force, and this tends to carry the mass
further in the x direction. Hence, this point is unstable. Similar arguments

show that the other point 1is stable.

PROBLEM 5.10
Part a
The terminals are constrained to constant potential, so use coenergy found

from terminal equation as
W' = f qdv =

Then, since T® = 3W'/56 and there are no other torques acting on the shaft, the

. 2
Co(l + cos 29)V0 (a)

N

total torque can be found by taking the negative derivative of a potential
V ==W', where V is the potential well. A sketch of this well is as shown in
the figure.
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PROBLEM 5.10 (Continued)

*\~————'&%01V\v3& ~—

Here it is clear that there are points of zero slope (and hence zero torque

and possible static equilibrium) at

3n

6 =0, ,1[,'2—-,... (b)

N

Part b
From the potential well it is clear that the first and third equilibria

are stable, while the second and fourth are unstable.

PROBLEM 5.11
Part a
From the terminal pair relation, the coenergy is given by
W' O(4:,1.,0)= L(L M cos 20)1%2 + 2 (L -M cos 20)i2 + M sin 20 1,1, ()
m ~71%72 270 1 2% 2 172
so that the torque of electrical origin is

e 2,2 .
T = M[sin 26(12—11) + 2 cos 26 1112] (b)

Part b

For the two phase currents, as given,

2 2
-1, =

12 cos 2w t
s

9 (c)
1112 = I = sin ZuEt

e
so that the torque T becomes
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PROBLEM 5.11 (Continued)

T = MIZ[—sin 26 cos Zwst + sin 2wst cos 29] (d)

or

Te

MIzsin(Zwst - 26) (e)

Substitution of 6 = wmt + § obtains

e . . MIzsin[Z(wm—ws)t + 28] (£)

T
and for this torque to be constant, we must have the frequency condition

‘wm =w, (g)

under which condition, the torque can be written as

18 = - MIZsin 25 (h)

Part c
To determine the possible equilibrium angles 60, the perturbations and

time derivatives are set to zero in the mechanical equations of motion.
T = MIZ sin 26 (1)
o o

Here, we have written the time dependence in a form that is convenient if
cos 26°'> 0, as it is at the points marked (s) in the figure. Hence, these
points are stable. At the points marked (u), the argument of the sin function
and the denominator are imaginary, and the response takes the form of a sinh
function. Hence, the,equilibrium points indicated by (u) are unstable.
Graphical solutions of this expression are shown in the figure. For there
to be equilibrium values of § the currents must be large enough that the torque
can be maintained with the rotor in synchronism with the rotating field.

2
MI™ > To)

mx?
)
VAVA
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PROBLEM 5.11 (Continued)

Returning to the perturbation part of the equation of motion with W= Wy

2
L t . 't _ 2 L]
J dtz (wmt + 60 + 6') = T° + T M1 sin(26o + 28'") 1
linearization gives
d%s" 2
J — + (2MI® cos 250)6' =T (k)

dt
where the constant terms cancel out by virtue of (i). With T' = Touo(t) and

initial rest conditions, the initial conditions are

T
ds' , .+ 0o
dt (0) = T 1)
s'h =0 4 (m)

and hence the solution for &'(t) is

' To
§'(e) = sin

2M12cos 28
J V__________JZ
J

Part a .

(n)

PROBLEM 5.12

The magnitude of the field intensitﬁ\(H) in the gaps is the same. Hence,

from Ampere's law,
H = Ni/2x (a)

and the flux linked by the terminals is N times that passing across either

of the gaps.

uoasz
A= 21 = L)1 (®)
Because the system is electrically linear, W'(i,x) = % Liz, and we have.
2
fe = -—a—‘l' = - N aduo 12 (c)
X 2
4x

as the required force of electrical origin acting in the x direction.

Part b
Taking into account the forces due to the springs, gravity and the

magnetic field, the force equation becomes
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PROBLEM 5.12 (Continued)

kY N ady
—5 = -~ 2Kx + Mg - —2-
dt 4x

where the last term accounts for the driving force.

2

M © 1% + £(t) (d)

The electrical equation requires that the currents sum to zero at the
electrical node, where the voltage is d\/dt, with A given by (b).

ade

4 [EE__i_.

o [T 11+t (e)

1
IL=g7
Part ¢
In static equilibrium, the electrical equation reduces to i=I, while
the mechanical equation which takes the form f1 = f, 1s satisfied 1if

2 2
N aduOI

-2KX + Mg = ——— (£)
4X

Here, f, is the negative of the force of electrical origin and therefore

(if positive) acts in the - x direction. The respective sides of (f) are
shown in the sketch, where the points of possible static equilibrium are
indicated. Point (1) is stable, because a small excursion to the right makes
fz dominate over f1 and this tends to return the mass in the minus x direction
toward the equilibrium point. By contrast, equilibrium point (2) is
characterized by having a larger force f2 and f1 for small excursions to the
left. Hence, the dominate force tends to carry the mass even further from the
point of equilibrium and the situation is unstable. In what follows, x = X

will be used to indicate the position of stable static equilibrium (1).

%bvce
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PROBLEM 5.12 (Continued)
Part d
If R is very large, then

i1
even under dynamic conditions. This approximation allows the removal of
the characteristic time L/R from the analysis as reflected in the
reduction in the order of differential equation required to define the
dynamics. The mechanical response is determined by the mechanical

equation (x = X + x')

dzx' Nzadu 2
M —5 = - 2Kx' + — I°x' + f(t) (g)
dt 2X
where the constant terms have been balanced out and small perturbations are

assumed. In view of the form taken by the excitation, assume x = Re X ejwt

and detine Ke = 2K - Nzadu012/2X3. Then, (g) shows that

% = B/ (k_-u'm) (h)
To compute the output voltage
2
v Y d_x = - w .dl' (i)
o dt 1=1 2x2 dt
or 9
" wuoadN 1 .
Vo=t T X @
2X
Then, from (h), the transfer function is
~ 2
v, wuoadN I
= i @)
f 2X (Keﬂn M)

PROBLEM 5.13
Part a
The system is electrically linear. Hence, the coenergy takes the

standard form

L1 2 1. .2
Wh= g gl P hpohily 5 bl (a)

and it follows that the force of electrical origin on the plunger is

el 127, T 1 Ty
2 71 9x 172 3x 2 72 3x

(b)
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PROBLEM 5.13 (Continued)

which, for the particular terminal relations of this problem becomes
12 2

fe=Lo{d—1(1+—§)~%ij—"+:—2(1-§>} (c)
Finally, in terms of this force, the mechanical equation of motion is
d2x dx e
M —5 = -Kx - B c + f (d)
dt
The circuit connections show that the currents 11 and 12 are related to the
source currents by
1, =T +1 _ (e)
12 = Io -1
Part b
If we use (e) in (b) and linearize, it follows that
e 4L T .. ALOI:‘) x -
d d d
and the equation of motion is
- d2x dx 2 -
-—E-+ LRy + WX = - ci (g)
dt
where
d i 12
w, = [K + dT]/M
o = B/M
c = 4L°I°/dM
Part ¢

Both the spring constant and damping in the equation of motion are
positive, and hence the system is always stable.

Part d

p

The homogeneous equation has solutions of the form e t where

p2+ap+m(2)=0 (h)

or, since the system is underdamped

2
p=-%ij\lw§-<%> =-§ 40 1)
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PROBLEM 5.13 (Continued)

The general solution is
x(t) = - =2+ e (A sin wpt + D cos wpt] &)

where the constants are determined by the initial conditions x(0) = 0 and
dx/dt(0) = 0

CIo aCI
D=—=3; A= (k)
w 2w w
o
Part e
With a sinusoidal steady state condition, assume x = Re ; ejwt and write
1(t) = Re(-on)ejwt and (g) becomes
a2 2
x(-0" + jwo + w’) = C§I 1)
o o
Thus, the required solution is
RejCIoejwt
x(t) = (m)

(mg-w?)+jwa

PROBLEM 5.14
Part a
From the terminal equations, the current il is determined by Kirchhoff's
current law
di1

G Ll 'd—t-" + 11 =1+ GMIzQ sin Qt ) (a)

The first term in this expression is the current which flows through G because
of the voltage developed across the self inductance of the coil, while the last
is a current through G induced by the rotational motion. The terms on the right
are known functions of time, and constitute a driving function for the linear
equation.
Part b

We can divide the solution into particular solutions due to the two driving

terms and a homogeneous solution. From the constant drive I we have the solution

il =1 (b)

it

Because sin it = Re(-je’ ), if we assume a particular solution for the

sinusoidal drive of the form il = Re(ilejgt), we have
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PROBLEM 5.14 (Continued)

I, (4L, + 1) = - J0MI, (c)

or, rearranging

L ~DGMI,(RCL, + 1)
1 +(QGL1)

We now multiply this complex amplitude by eth and take the real part to

obtain the particular solution due to the sinusoidal drive

-GMIZQ
11 = (QGL1 cos it - sin QOt) (e)
1+(96L, )
The homogeneous solution is
-é/GL1
i.=Ae (£)

and the total solution is the sum of (b), (e) and (f) with the constant A
determined by the initial conditions.
In view of the initial conditions, the complete solution for 11, normalized

to the value necessary to produce a flux equal to the maximum mutual flux, is

then
2 Qt
L1, _ (6L,) ) LI e- oLy
MI, 1+(QGL1)2 MI,
GL LT
+ — (sin Qt - QGL1 cos Qt) + M (g)
1+(Q6L, ) 2
Part ¢

The terminal relation is used to find the flux linking coil 1

2
(9GL,) Y -
fl_ = {____it_._._ Elf] IGLy
MI, 1+(QGL1)2 MI,
CL. 0 L.I
+—l—zsingt+—(£§Q—t2+—ﬁ;—- (h)
l+(QGL1) 1+(QGL1) 2

The flux has been normalized with respect to the maximum mutual flux (MIZ)'
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PROBLEM 5.14 (Continued)
Part d

In order to identify the limiting cases and the appropriate approximations
it is useful to plot (g) and (h) as functions of time. These equations contain
two constants, QGLl and LII/MI2° The time required for one rotation is 2m/Q and
GLl is the time constant of the inductance L1 and conductance G in series. Thus,
QGL1 is essentially the ratio of an electrical time constant to the time required -
for the coil to traverse the applied field one time. The quantity MI2 is the
maximum flux of the externally applied field that can link the rotatable coil and
Lll 1s the self flux of the coill due to current I acting alone. Thus, LII/MI2
is* the ratio of self excitation to mutual excitation.

To first consider the limiting case that can be approximated by a current

source we require that

LlI
Q6L, << 1 and Q6L, << M—I; 1)
To demonstrate this set
LII
QGL1 = 0.1 and ﬁf; =1 &)
and plot current and flux as shown in Fig. (a). We note first that the

transient dies out very quickly compared to the time of one rotation. Further-
more, -the flux varies appreciably while the current varies very little compared
to its average value. In the ideal limit (G*)) the transient would die out
instantaneously and the current would be constant. Thus the approximation of
the situation by an ideal current-source excitation would involve a small
error; however, the saving in analytical time 1s often well worth the decrease

in accuracy resulting from the approximatiom.

Part e

We next consider the limiting case that can be approximated by a constant-

flux constraint. This requires that

QGL1 >> 1 (k)

To study this case, set
QGL1 =50 and I =0 (L

The resulting curves of flux and current are shown plotted in Fig. (b).
Note that with this constraint the current varies drastically but the flux
pulsates only slightly about a value that decavs slowly compared to a rotational

period. Thus, when considering events that occur in a time interval comparable
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PROBLEM 5.14 (Continued)

with the rotational period, we can approximate this system with a constant-flux
constraint. In the ideal, limiting éase, which can be approached with super-
conductors, G and Al stays constant at its initial value. This initial value
is the flux that links the coil at the instant the switch S is closed.

In the limiting cases of constant-current and constant flux constraints
the losses in the electrical circuit go to zero. This fact allows us to take
advantage of the conservative character of lossless systems, as discussed in
Sec. 5.2.1.

Part f y

Between the two limiting cases of constant—current and constant flux
constraints the conductance G is finite and provides electrical damping on
the mechanical system. We can show this by demonstrating that mechanical
power supplied by the speed source is dissipated in the conductance G. For
this purpose we need to evaluate the torque supplied by the speed source.
Because the rotational velocity is constant, we have

™=-1° (m)
The torque of electrical origin T 1s in turn
]
Te = .a_b.J..__.__—.(il’ 12’ e) ( )
36 n

Because the system is electrically linear, the coenergy W' is

. § 2 1 2
W' = 5 Llil +M 1112 cos 6 + 5 L2 12 (o)
and therefore,
e
T =-M 11 12 sin 6 (p)
The power supplied by the torque T" to rotate the coil is
e df _
Pin =~-T rri Mﬂillz sin Qt (a)

Part g
Hence, from (p) and (q), it follows that in the sinusoidal steady state

the average power <Pin> supplied hy the external toraue is

1 G leg QZ
<P >=—2—

in (r)

1+(Q<:L1)2
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PROBLFM 5.14 (Continued)
This power, which is dissipated in the conductance G, is plotted as a function

of QGLl in Fig. (c¢). Note that because §? and L, are used as normalizing

1
constants, QGLl can only be varied bv varving G. Note that for both large and
small values of QGLl the average mechanical power dissipated in G becomes small.

The maximum in <Pin> occurs at QCLl = 1.

PROBLEM 5.15
Part a

The coenergy of the capacitor is

v o1 2.1 A
W= 500 V=5 (e DV

The electric force in the x direction is

2 2
£ AV € AV v e AV x
£ (x) = - 1l o o_o0o o 4.0 ©
e 2 2 2 :
X X X
o

The linearized equation of motion 1is then

dx EoAvi eoA
X - = - -2 v
B dat + (K 3 ) x 5~ VoV + f(t)
X X
o (o)

The equation for the electric circuit is

d =
V+ Rge (C(XV) =V

Part b
We can keep the voltage constant if i
R——0

In this case 2
dx € AV0

— ' = = . ' = -
B it + K'x = f(t) F u_l(t), K K x3
0

The particular solution is

x(t) = F/K'
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PROBLEM 5.15 (Continued)

The natural frequency S is the solution to

sB +K'x =0 $=-XK"'/B

Notice that since

EOAVZ J |

X'/B = (K- 3°) /B x(t)
X
° F

there is voltage V_ above which the W

° K Kﬁf::B/YKI
system is unstable. Assuming Vo is -
less than this voltage z

2 al
x(t) = F/K' (1l-e (K /B)t)

Now we can be more specific about the size of R. We want the time
constant of the RC circuit to be small compared to the "action time" of the

mechanical system
Rc(xo) << B/X!

B

R €< o7
K C(xo)

Part c

From part a we suspect that

>>
RC(xo) Tmech

where Tnech €20 be found by letting R + «. Since the charge will be constant

dA= =2 =
dt 0 ¢q C(xo)Vo C(x°+x)(Vo+v)

. dc
- C(xo)vo + C(xo)v + Vo dx (xo)x

v Vxed

o dC - o ~o - P

v C(x) dx(xo)x =t+teixA 3% vo X
o o x_ o

Using this expression for induced v, the linearized equation of motion

becomes 2
€ _AV €A
dx 0 o 0 2 :
Ba—g'f-(l(- 3 X - 3V°x+f(t)
X X
o o
dx _
B—dt+l(x-f(t:)
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PROBLEM 5.15 (Continued)

The electric effect disappeérs because the force of a capacitor with
constant charge is independent of the plate separation. The solutions are the
same as part (é) except that K' = K. The constraint on the resistor is then

1
R >> C(xo) B/K

PROBLEM 5.16

We wish to write the sum of the forces in the form

v
f=f +f =~ (a)
For x > 0, this is done by making
1.2
V= - E—Kx + Fox ()

as shown in the figure. The potential is symmetric about the origin. The largest
value of v, that can be contained by the potential well is determined by the peak

value of potential which, from (b), comes at

X = FO/K (e)
where the potential is
1.2
V=3F /K (d)

Because the minimum value of the potential is zero, this means that the kinetic

energy must exceed this peak value to surmount the barrier. Hence,

1,2 1 .2

5 Mvo 2 Fo/K (e)
or Fi

o = | T ©
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PROBLEM 5.16 (Continued)

PROBLEM 5.17

Part a = ——y
The electric field intensities = t
defined in the figure are 2
Ey = (vy=vy)/(d-x) (a) E,
E, = vll(d+x) (b) l .
Hence, the total charge on the
respective electrodes is
- v 2o, M, T2M% ©
9 % a0 T Tax d-x
Y @
92 d-x
Part b
Conservation of energy requires
e
vldq1 + vqu2 = dW + f dx (e)
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and since the charge 9 and voltage v, are constrained, we make the

transformation vqu2 = d(vzqz)-qzdv2 to obtain

- = " e
v dq,-q,dv, = dW" + £ dx (£)
It follows from this form of the conservation of energy equation that
"
£€ = - %g and hence W" = U, To find the desired function we integrate

(f) using the terminal relations.
= " = -
U=W Ivldq1 qzdv2 (g)

The integration on 9, makes no contribution since 9, is constrained to be

zero. We require vz(q1=0,v2) to evaluate the remaining integral

V9416 1
4, (9;=0,v,) = —5 L W =) (h)
[.l___ + 1]
A, (dHx)
1
Then, from (g),
2
\
yoo1YM% | 1 0
2  d-x Az(d-x)
[Al(d-!-x) +1]

PROBLEM 5.18
Part a n f’“\
Because the two outer plates are
constrained differently once the switch
is opened, it is convenient to work in
terms of two electrical terminal pairs,
defined as shown in the figure. The
plane parallel geometry makes it
straightforward to compute the

terminal relations as being those for

simple parallel plate capacitors, with

no mutual capacitance.

i
= v eoA/a + x (a) ’"

4
q, = vzeoA/a—x (b)
.y
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PROBLEM 5.18 (Continued)
Conservation of energy for the electromechanical coupling requires
e
vydq, + vydq, = dW + £dx (e)
This is written in a form where 9, and v, are the independent variables by
= - AP A
using the transformation vqu2 d(vzqz) q2dv2 and defining W'sW Vyd,
- = " e
vldq1 qzdv2 dw" + f dx (d)
This is done because after the switch is opened it is these variables that

are conserved. In fact, for t > 0,

v, = Vo and (from (a))q1 = VoeoA/a (e)
The energy function W" follows from (d) and the terminal conditions, as
W= Jvldq1 - fqzdv2 (£)
or
€ sz
1(atx) 2 _ 15072 ()
27e X 1772 Tax &
Hence, for t > 0, we have (from (e))
€ AV2
wollem 2 1%
W 2 aZ E:oAVo 2 a-x (h)

Part b

"
The electrical force on the plate is £€ = - %g—. Hence, the force

equation is (assuming a mass M for the plate)

2 2
2, € AV £ _AV
Rl S e (1)
dt a (a-x)
For small excursions about the origin, this can be written as
d2x 1 eoAVg 1 eoAVg eoAvﬁ
My =Ky =5+ 3 +t—3 % &)
dt a a a

The constant terms balance, showing that a static equilibrium at the origin
is possible. Then, the system is stable if the effective spring constant
is positive.
K > eoszla3 ¢9)
Part c
The total potential V(x) for the system is the sum of W" and the
potential energy stored in the springs. That is,
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PROBLEM 5.18 (Continued)

2
€ AV
1.2 1 (atx) 2 10 o
Vg kx +3 ) €A 72 o 1)
or
2 2 Av?
akK  x l oo X 1
7 Q@ ryg A -l (m)
(1- '5)

This is sketched in the figure for azK/Z = 2 and 1/2 eoAvila = 1. In addition
to the point of stable equilibrium at the origin, there is also an unstable
equilibrium point just to the right of the origin.

Vi

h unsTable e%u:\:lw;um L

PROBLEM 5.19
Part a

The coenergy is

v - 1 2 1 2 _Xx 4
W vai =3 Loi /11 a] (a)
and hence the force of electrical origin is
5
e W' _ 2 _ X
f- = i 2Loi /all a] (b)

Hence, the mechanical equation of motion, written as a function of (1,x) is

d2x 2L 12
M — = Mg + (c)
dt

a[1- §]5
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PROBLEM 5.19 (Continued)
while the electrical loop equation, written in terms of these same variables

(using the terminal relation for 1) is

d Loi
V°+V=Ri+EE '——;(—4] (d)
(1- ‘;)

These last two expressions are the equations of motion for the mass.
Part b
In static equilibrium, the above equations are satisfied by (x,v,i) having

the respective values (XO,VO,IO). Hence, we assume that

= ' . = . = '
bS Xo + x'"(t): v V° + v(t): 1 I° + 1'(t) (e)
The equilibrium part of (c¢) is then
21, 12 x, > (
= - %60 -9 f
0 Mg + ——/(1 - ) )
while the perturbations from this equilibrium are governed by
2y 0Ll 4Tt
M— =t X 67 x5 (g)

dt 2 ") 0
a (1~ ;—-) a(l- —a—')

The equilibrium part of (d) is simply Vo = IOR, and the perturbation part is

L ' 4L 1T
cRi' 4+ —0 41, " oo dx'
veR h—— gt X5 dat (h)
[1__2] 8[1_._0
a a

Equations (g) and (h) are the linearized equations of motion for the system which
can be solved given the driving function v(t) and (if the transient 1s of interest)

the initial conditions.

PROBLEM 5.20

N $ EL . ’} Eg

Part a
The electric field intensities, defined as shown, are

E, = (vl-vz)/s; E, = v2/s . (a)
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PROBLEM 5.20 (Continued)

In terms of these quantities, the charges are

a a ’
9, 13 9 =~ €,(G -X)dE; + e G+ x)dE,  (b)

Combining (a) and (b), we have the required terminal relations

a
60(2 - %)dE

9 = V1%1 T V2%
(c)
U =V1Cyp * Vo0
where eod . and
C1° 5 G-¥3 Cy=—
Eod a
Cp=%5 G- %
For the next part it is convenient to write these as ql(vl,qz) and vz(vl,qz).
C2 C
ap = vy (e =5l - 4y 5o
22 22
vy T %Z' tv ;;3 @
22 22
Part b
Conservation of energy for the coupling requires
vldq1 + vqu2 = dW + £%dx (e)

To treat Vi and q, as independent variables (since they are constrained to be

constant) we let vldq1 = d(vlql)-qidvl, and write (e) as
-9, dv1 + vqu2 = - dw" + £% ax (£)

From this expression it is clear that £€ = 3W"/3x as required. In particular,
the function W' is found by integrating (f)

v Q
W' = [ ° q,(v{,0)dv; - J v, (V ,q,)da, (g)
o] o]
to obtain
2
w 1.2 C12. 2 Yo%
W=Vt -el - ¢ (h)
22 22 22

Of course, Cll’ 022 and C12 are functions of x as defined in (c).

122
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PROBLEM 5.21
Part a

The equation of motion as developed in Prob. 3.8 but with I(t)=I°=constant,

is 9
© .2 IL I .
J g—g = - ___{%_JZ (1-cos 6) sing (a)
dt 2
This has the required form if we define
I 1,2 :
V=- —ET—-I (cos 6 + = sin"06) (b)
2 o 2

as can be seen by differentiating (b) and recovering the equation of motion. This
potential function could also have been obtained by starting directly with the
thermodynamic energy equation and finding a hybred energy function (one having
il, AZ,G as independent variables). See Example 5.2.2 for this more fundamental
approach.
Part b

A sketch of the potential well is as shown below. The rotor can be in
stable static equilibrium at 6 = 0 (s) and unstable static equilibrium at
6 = w(u).

Part c

For the rotor to execute continuous rotory motion from an initial rest
position at 8 = 0, it must have sufficient kinetic energy to surmount the peak
in potential at 0 = w. To do this,

2
2 2IL1
1 ..dg m o
5 I 2 i, (c)
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PROBLEM 5.22
Part a
The coenergy stored in the magnetic coupling is simply

W = %Lo(l + 0.2 cos 6 + 0.05 cos 26)12 (a)
Since the gravitational field exerts a torque on the pendulum given by
=3
Tp =9 (-Mg £ cos9) (b)

and the torque of electrical origin is T = 3W'/36, the mechanical equation of
motion is
2
a | 1,2 ,40 B
where (because 12L° = 6Mgl)

V = Mg[0.4 cos 6 - 0.15 cos 20 - 3]

Part b

The potential distribution V 1s plotted in the figure, where it is evident
that there is a point of stable static equilibrium at 6 = 0 (the pendulum
straight up) and two points of unstable static equilibrium to either side of
center. The constant contribution has been ignored in the plot because it is

arbitrary.

_/5+a¥\e e?ui\i‘ortuhﬂ
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PROBLEM 5.23
Part a

The magnetic field intensity is uniform over the cross section and equal
to the surface current flowing around the circuit. Define H as into the paper
and H = 1/D. Then A is H multiplied by M, and the area xd.

U xd
A= OD i (a)

The system is electrically linear and so the energy is W =~% AZ/L. Then, since
e

f = - 3W/3x, the equation of motion is
2 2
Mi—’2‘=f=-xx+-;—A—ZD (b)
dt H x"d
)
Part b
Let x = Xo + x'where x' 1s small and (b) becomes approximately
2, 2 2.,
b RERTRPE eLe Sy e ©
dt u X—-d M X"d
oo oo
The constant terms define the static equilibrium
‘< - [l_AZD ]1/3 @
o 2 uodK

and if we use this expression for Xo, the perturbation equation becomes,

dzx'
dtz

M = -Kx' - 2Kx' ) (e)

Hence, the point of equilibrium at Xo as given by (d) is stable, and the magnetic
field is equivalent to the spring constant 2K.
Part c

The total force is the negative derivative with respect to x of V where

2 1A%

1
V=—2-Kx +2UOXd (£)

This makes it possible to integrate the equation of motion (b) once to obtain

dx _ ‘FE _
i n (E-V) (8)

The potential well is as shown in figure (a). Here again it is apparent that
the equilibrium point is one where the mass can be static and stable. The constant

of integration E is established physically by releasing the mass from static
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PROBLEM 5.23 (Continued)
positions such as (1) or (2) shown in Fig. (a). Then the bounded excursions of
the mass can be pictured as having the level E shown in the diagram. The motions
are periodic in nature regardless of the initial position or velocity.
Part d

The constant flux dynamics can be contrasted with those occurring at
constant current simply by replacing the energy function with the coenergy

function. That is, with the constant current constraint, it is appropriate to find
Y

the electrical force from W' ='% Liz, where £° = 3W'/9x. Hence, in this case
H xd
21,2 170 2
VeZke - 55— 1 (h)

A plot of this potential well is shown in Fig. (b). Once again there is a point
Xo of stable static equilibrium given by
2
X = l uodI
o 2 DK
However, note that if oscillations of sufficiently large amplitude are initiated

1)

that it is now possible for the plate to hit the bottom of the parallel plate

system at x = 0.

PROBLEM 5.25
Part a
Force on the capacitor plate is simply
2 2
e 3w _ 2_.[1.33_522_]
9% 9x 2 X

due to the electric field and a force f due to the attached string.

f (a)

Part b

With the mass M, rotating at a constant angular velocity, the force £€

1
must balance the centrifugal force wi er transmitted to the capacitor plate

by the string.

1 waze V2 9
273 ™ ()
A
or Ta eovi
w = (c)
m 2 E3M1

where £ is both the equilibrium spacing of the plates and the equilibrium radius
of the trajectory for Ml.
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.f : QOV\S‘QV\* A /
1@ w/!

V 2

?d.

(o)

vV T . Constant

N
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PROBLEM 5.25 (Continued)
Part ¢
The 6 directed force equation is (see Prob. 2.8) for the accleration

on a particle in circular coordinates)

2
a6 dr d6
Ml[r —5 +2 it at) = 0 (d)
dt
which can be written as
d 2 do
ae M g =0 (e)
This shows that the angular momentum is constant even as the mass Ml moves in and
out
2 dé 2
er I Mll wm = constant of the motion (f)

This result simply shows that if the radius increases, the angular velocity must

decrease accordingly
i (g)

Part d
The radial component of the force equation for Ml is

2 2
d'r do
-G 1=~ ¢ (h)
1 dt2 dt

where f is the force transmitted by the string, as shown in the figure.

M

¥e r---i—}———————ﬁM.
i

T M.
777 77

The force equation for the capacitor plate is

+ £ 1)

where fe is supplied by (a) with v = Vo = constant. Hence, these last two

expressions can be added to eliminate f and obtain
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PROBLEM 5.25 (Continued)

2 2 Ta'e V
d'r 40 3 ,1 00

If we further use (g) to eliminate d6/dt, we obtain an expression for r(t)

that can be written in the standard form

d2r 9
(M1+M2)—2+a—,fv=o (k)
dt
where Ml 24 w2 "aze v
V= m_1 oo (L)
2 2 2 r
r
Of course, (k) can be multiplied by dr/dt and written in the form
2
d .1 dr
E[fml +M)GE +Vl=0 (m)

to show that V is a potential well for the combined mass of the rotating particle
and the plate.

Part e

The potential well of (1) has the shape shown in the figure. The minimum
represents the equilibrium position found in (c), as can be seen by differentiat-
ing (1) with respect to r, equating the expression to zero and solving for W
assuming that r =. In this example, the potential well is the result of
a combination of the negative coenergy for the electromechanical system,
constrained to constant potential, and the dynamic system with angular momentum

conserved.

e e . -
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PROBLEM 5.26

Part a
To begin the analysis we first write the Kirchhoff voltage equations for
the two electric circuits with switch S closed

1

V= 11R1 + i (a)
dkz

0= isz + T . M)

To obtain the electrical terminal relations for the system we neglect fringing

fields and assume infinite permeability for the magnetic material to obtain*
Ay = Nb o, A, = Nyb ()

where the flux ¢ through the coils is given by

2u° wd (Nli1 + Nziz)

¢ = - )
1+ =
g( g)
We can also use (c¢) and (d) to calculate the stored magnetic energy as*¥*
X\ ,2
g(l +2)¢
W es— 8 (e)
m 4u° wd

We now multiply (a) by N1/R1 and (b) by N?/Rz, add the results and use
(¢) and (d) to obtain

2 2
NV g(l+ D NS N
I SRR - o + (_l + _29 a¢ (f)
Rl 2uo wd Rl R2 dt

Note that we have only one electrical unknown, the flux ¢, and 1f the plunger is

at rest (x = constant) this equation has constant coefficients.

*The neglect of fringing fields makes the two windings unity coupled. In practice
there will be small fringing flelds that cause leakage inductances. However,
these leakage inductances affect only the initial part of the transient and
neglecting them causes negligible error when calculating the closing time of
the relay.

**Here we have used the equation (Q\qg)mm\s deék"\ca\&\% \"\v\ec\,()

wo=2r 12414 +1L 42
m-a it Lt 1
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PROBLEM 5.26 (Continued)
Part b
Use the given definitions to write (f) in the form
| b= L+ D947 (®)
Part c
During interval 1 the flux is determined by (g) with x = X, and the
initial condition is ¢ = 0. Thus the flux undergoes the transient

X
o, t
-(1+E—)T—

¢
l1-e ° (h)

0
X
1+-=2
g

To determine the time at which interval 1 ends and to describe the dynamics

¢=

of interval 2 we must write the equation of motion for the mechanical node.

Neglecting inertia and damping forces this equation is
K(x - &) = £° 1)

In view of (c) (Al and 12 are the independent variables implicit in ¢) we can

use (e) to evaluate the force £% as

. awm(xl, Az, x) . ‘9? -
Ix 4u wd
o
Thus, the mechanical equation of motion becomes
' 2
-2 = -2
K(x - %) W owd (k)
o
The flux level ¢1 at which interval 1 ends is given by
2
K(x - 2) = - — (L
o 4uowd

Part d
During interval 2, flux and displacement are related by (k), thus we
eliminate x between (k) and (g) and obtain

2-x 2
- L o d¢
b= | +D (g)% o+, B ()
1

were we have used () to write the equation in terms of ¢1. This is the nonlinear
differential equation that must be solved to find the dynamical behavior during

interval 2.
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PROBLEM 5.26 (Continued)

To illustrate the solution of (m) it is convenient to normalize the equation

as follows
ady 2
¢o z-xo ¢'o ¢ 3 2. 9
= (—)E) & - Q+3) +1 (n)
d(: ) g ¢1 ¢° g ¢0

(o]

We can now write the necessary integral formally as

¢

[ ! t

o d(%—) —

o =Jod( £

[l_xo ¢°29L3 . i :| o TQ
¢ V) G - 1 +3) +1

N g 6" o, g 9,

e (o)

o
where we are measuring time t from the start of interval 2.

Using the given parameter values,

L [ ]
% d(%—)
[o) t
; =T (p)
[] ] o]
w0 & -9 % +1
0.1 %o °

We factor the cubic in the denominator into a first order and a quadratic factor

and do a partial-fraction expansion* to obtain

% '
N (-2.23 %+ 0.844)
0.156 + o d(—'-) I
5.20 &4 4 1 o', 2 o' % o
29 % 5.7 ¢ - 13+
° o o (q)
0.1

Integraticn of this expression yields

x
Phillips, H.B., Analytic Geometry and Calculus, second edition, John Wiley
and Sons, New York, 1946, pp. 250-253.
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PROBLEM 5.26 (Continued)

) .
£ - 0.0295 1n [3.46 (%) +0.654] - 0.0147 1n [231 (%) - 43.5 (%—) + 3.05]

o o o (o]

+0.127 tan" T [15.1 (%) - 1.43] - 0.0108 (r)

o
Part e

During interval 3, the differential equation is (g) with x = 0, for which
the solution is t

-
b=0,+ (6, - 0)(L-e ©) (s)

where t is measured from the start of interval 3 and where ¢2 is the value of flux

at the start of interval 3 and is given by (k) with x =0

2
%
KL = R (t)
o
Part f
For the assumed constants in this problem
¢
¢—2= ) (w)
1
The transients in flux and position are plotted in Fig. (a) as functions

of time. Note that the mechanical transient occupies only a fraction of the time
interval of the electrical transient. Thus, this example represents a case in
which the electrical time constant is purposely made longer than the mechanical

transient time.
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FIELDS AND MOVING MEDIA

PROBLEM 6.1
Part a

From Fig. 6P.1 we see the geometric relations
r'=1r, 08 =0-Qt, 2'=32,t'=t¢t (a)
There is also a set of back transformations
r=1', 0=06'+Qt'", z=2', t=t' (b)

Part b
Using the chain rule for partial derivatives

3 ) or 3 36 Y, 9z ) at
@ Er+dh Eo+dhZo+agH gty ©

From (b) we learn that

ar ) 9z 3t _

gt =0 = o =0 30 =1 (@
Hence,

W W, g

3t' = 3t T 30 (e)
We note that the remaining partial derivatives of Y are

LY VR VI R R -

dr'  dr * 236' 236 * 3z' 0z
PROBLEM 6.2
Part a

The geometric transformation laws between the two inertial systems are

X] = % vt, Xy = Xyy Xy = Xg, t t (a)

The inverse transformation laws are

» t=t' (b)

= ! v = 5! = w!
x1 x1 + vt', X, Xy x3 x3

The transformation of the magnetic field when there is no electric field
present in the laboratory faame is

B' = B (c)
Hence the time rate of change of the magnetic field seen by the moving

observer is

x
3B' _ 9B 3B 3 ,,°%2 3B 3 3B, ot
aer " ar T Gxp et Gy GE0 T Gy G G Ge)

(d)
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PROBLEM 6.2 (Continued)

From (b) we learn that

Ix ox ax
1 2 3 _ ot _
Y v, at' o, 3c' o, at! 1 (e)
While from the given field we learn that
a8 )] JB 3B
3x; Mo % MX1 g T, "6 7 O ©
1 2 3
Combining these results
9B' _ 3B 3B
e~ 3¢ =V PR VkB cos kx1 (g)
which is just the convective derivative of B.
Part b
Now (b) becomes
x) = xi » Xy = xé + Vt, Xy = xs, t=t' (h)

When these equations are used with (d) we learn that

9B' _ 9B 9B 3B

ErA TR A T W
3B 9B
because both Ix and 3¢ are naught. The convective derivative is zero.
2
PROBLEM 6.3
Part a

The quasistatic magnetic field transformation 1is

B' = B (a)

The geometric transformation laws are

x=x"+Vt',y=y',z=2"', t = t' (b)
This means that
B' = B(t,x) = B(t', x' + Vt') = IyBo cos (wt' - k(x' + vt"))
= ino cos[(w - kV)t' - kx'] (c)
From (c) it is possible to conclude that

w' = w - kV (d)

Part b
If w' = 0 the wave will appear stationary in time, although it will
still have a spacial distribution; it will not appear to move.
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PROBLEM 6.3 (Continued)
w =0=w-%kV; V=wks= vp » (e)

The observer must move at the phase velocity vp to make the wave appear

stationary.

PROBLEM 6.4

These three laws were determined in an inertial frame of reference, and
since there is no a priori reason to prefer one inertial frame more than
another, they should have the same form in the primed inertial frame.

We start with the geometric laws which relate the coordinates of the
two frames

rer-ve, t=t, T+t (a)

We recall from Chapter 6 that as a consequence of (a) and the definitions of the

operators

d 3 - 3 ) -
= ' Endil— - . ' — BN ——— [ 2

Ve, e -3 Ve Vo de Tt Ve v ®)

In an fpnertial frame of reference moving with the velocity ;r we expect the equation

to take the same form as in the fixed frame. Thus,

, v

) p' Hpr +O(VVIV +V'p' =0 (c)
%%: +V'ep'v' =0 (d)
p' =p'(p") (e)

However, from (b) these become
0! %%' + ' (347 FURHT )47p' = 0 (£)
304 vep' 545 )) = 0 (e)
p' =p'(p") (h)

where we have used the fact that v _*Vp's=Ve(v p'). Comparison of (1)-(3) with (£)-(h)
shows that a self consistent transFormation “that leaves the equations invariant in

form is

p'=p;p' =p; V' =V -V
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PROBLEM 6.5

Part a
eELE) =0 = p (- D= p -5 (a)

J'=p'v' =0 (b)
Where we have chosen -‘;r = voiz so that

5'=;-\_rr=0 (c)

Since there are no currents, there is only an electric field in the primed

frame
B = (o fe)E - 9T @
=0, 5 = u ' =0 (e)
Part b | |
plr,e) = p (1= D) €3

This charge distribution generates an electric field

2
E= (p,/edz - 31

. (g)

In the stationary frame there is an electric current

J=pvs= a- Hv i (h)

o . Po a’ o'z

This current generates a magnetic field

- r ‘r - -

H = povo(-Z- - ?a-) 1 C
Part c ) )

- _" .- r' - .

J=J3"-p'v. = p (A-J)v i 1

5 BT LR e r' r'z I

E=E —erB = E' = (DO/EAXE_.— 3;—)ir (k)

T oo I r' f'z g

H=H + vrxD = vopo(-z- .- 3T)ie (1)

If we include the geometric transformation r' = r,(j), (k), and (1)
become (h), (g), and (1) of part (b) which we derived without using trans-
formation laws. The above equations apply for r<a. Similar reasoning gives

the fields in each frame for r>a.
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PROBLEM 6.6

Part a

But then since r' = r, ;r(r) = rwi

In the frame rotating with the cylinder

0
E=f -V xB =EF =57
r r.r
b _ b K
Vs E+d? = < dr = K In(b/a)
a a
FoV 1% _F oY 17
e /o r " " Wl £
The surface charge density is then
eV
'=-’o -'=._2____lg
Oa 1r eoE In(b/a) a Ua
Eov 1

> -
'= - L] A IR e  e—— 3
ob 1r €oE In(b/a) b 05

Part b

But in

T = 1 hod '
J J'" + vr o}
this problem we have only surface currents and charges
K=K'"+v_ o'=v_ o'
r r
_ awsov - weov >
X(a) = i, = i
a In(b/a) 0 In(b/a) 6
_ bue V > we Vo o
K(b)=——°———-i=——i
b In(b/a) 6 In(b/a) @

Part ¢

weV
=-—92 4
In(b/a) "z

Part d

H=H+v_xD =v_xD'
r r

- , Eov 1.,* ->
H=r w(m;,)(ie X ir)
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PROBLEM 6.6 (Continued)
w€°V ->
~ 1n(b/a) iz (0)

H=

This result checks with the calculation of part (c).

PROBLEM 6.7
Part a

The equation of the top surface is

f(x,y,t) =y - a sin(uwt) cos(kx) + d =0 (a)

The normal to this surface is then

= _ _Vf 4 - oy

n TVET n ak sin(wt)sin(kx)ix + 1y (b)
Applying the boundary condition n*B = 0 at each surface and keeping only linear
terms, we learn that

hy(x,d,t) = -ak sin(t)sin(kx) ﬁfa (c)

hy(x,o,t) =0 (d)
We look for a solution for h that satisfies

Vxh=0, Vh=0 (e)
Let i = Yy, V2 = 0 (£)

Now we must make an intelligent guess for a Laplacian ¥ using the

periodicity of the problem and the boundary condition hy = 3y/dy = 0 at
y = 0. Try
P = %-cosh(ky)sin(kx)sin(wt) (g)

- - -
h=A sin(wt)[cos(kx)cosh(ky)ix + sin(kx)sinh(ky)iy] (h)
Equation (c) then requires the constant A to be

-ak A

A = STah(kdu_d (1)
Part b
= =+ QE . 7 2E 3B
VxE-= ix(gz)—iy(g};zﬁ’ " 3¢ &)
%% = oA cos(wt)[cos(kx)cosh(ky)ix + sin(kx)sinh(ky)iy] (k)
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PROBLEM 6.7 (Continued)

E=- wuo -{} cos(wt)[c:os(kx)sinh(ky)]Iz (1)

Now we check the boundary conditions. Because \-r(y=0) =0

nxE= (nv)B=0 (§=0) (m)

But E(y=0) = 0, so (m) is satisfied.
If a particle is on the top surface, its coordinates x,y,t must satisfy

(a). It follows that

Df—ﬁ -. =
T.)-E—at+va 0 (n)

- Ve
Since n = W we have that

(n*v) = -[%- g—: ~ awcos (wt) cos (kx) (o)

Now we can check the boundary condition at the top surface

nxE = - W f:‘- cos(wt)cos(kx)sinh(kd)[Ix—ak sin(wt)sin(kx)iy] (r)
(R*9)B = awcos (wt) cos (kx) (210kd) Al + (@)

qu sin(wt)sin(kx)sinh(kd) iy ]

Comparing (p) and (q) we see that the boundary condition is satisfied at the top

surface.
PROBLEM 6.8 X
Part a .r-- 1|
Since the plug is perfectly Ei e[.\ 1 K '
conducting we expect that the current
I will return as a surface current on %_—“Z
the left side of the plug. Also E', H'
will be zero in the plug and the trans- l @ Ka
formation laws imply that E,H will then N
also be zero. = % b
Using ampere's law
z%i i, 0<z<E
H= (a)
0 £ <2
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PROBLEM 6.8 (Continued)

Also we know that
_ o8
) ot
We choose a simple Laplacian E field consistent with the perfectly conduct-~

VE=0, VXxE= =0 0<z<E§g (b)

ing boundary conditions

-
E=_1_ (o)

"=

K can be evaluated from

e 1 = - i— —o
{E df TS JB da (d)

S
If we use the deforming contour shown above which has a fixed left leg at z = 2z
and a moving right leg in the conductor. The notation E" means the electric
field measured in a frame of reference which is stationary with respect to the

local element of the deforming contour. Here

E"(z) = E(z), E"(£&+d) = E'(E+A) =0 (e)
b

¢E"*dl = - J E(z,r)dr = =K 1n(b/a) (£)
a

The contour contains a flux
b

- - I
[5-da = & Luoﬂedr = - 1, = Ine/a) (-2) @
S
So that
=-3 | 3T = L 48
K in®/a) = - & [ BT = +u, 5 ne/a) )
= 4§ s
Since v =49t °
vu I
= o 1
E= |-t Ir 0<z<t
)
0 £ <z
Part b
The voltage across the line at z = 0 is
b vuOI ) .
V=- Ja Erdr = 57 In(b/a) (k)
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PROBLEM 6.8 (Continued)

W
I(R + T In(b/a)) = Vo (1)
Vo
1= vi_ (m)
R + 'ZT' In(b/a)
_ 1
V= [ 27R +1 J Yo ’ (n)
vii_ 1n(b/a)
o
A L
i e e 0czc<t
R + .:'Z‘IT— In(b/a)
iz (o)
0 £ <z
r 1 ] Vo -+
— 1 0 <z <Eg
[ZI§(+ (Inb/ayd T T
1 Yo
E= (r)
5 0 £ <z

Part ¢

Since E = 0 to the right of the plug the voltmeter reads zero. The terminal
voltage V is not zero because of the net change of magnetic flux in the loop
connecting these two voltage points.
Part d

Using the results of part (b)

R v, In(b/a) 1 o2
in 27 vuo o
R + ZT In(b/a)
dw b u
m o .2
T - J - H (r)2nr dr
a
1 [Wo In(b/a) ( 1 )2 v2]
2 2n vuo o
R + — 1n(b/a)

2%
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PROBLEM 6.8 (Continued)

There is a net electrical force on the block, the mechanical system that keeps

the block traveling at constant velocity receives power at the rate

1 W In(b/a) r 1 .2 o2
2 2T l vu_ 1n(b/a) o
o]
R+ ]
2m

from the electrical system.

Part e
uoH(r,I)x dr uo
L(x) = [ —F =3y In (b/a)x
'
e _ _m. -1 2
f cyad Wm 5 L(x)1
u
e 193L .2 170 2
£ =3% 1 =77 ln®/a)d
The power converted from electrical to mechanical is then
2
3 uv \'j
Frodx _ =1 9o o
fe dat fe V=3 on In(b/a) [ i ]
R + T In(b/a)
as predicted in Part (d).
PROBLEM 6.9
The surface current circulating in the system must remain
B-o
K=-— (a)
Yo
Hence the electric field in the finitely conducting plate is
Bo
E'= (b)
Yo%
But then
E=FE -Vx8B (c)
1
=B ( - v)
CATCH
v must be chosen so that E = 0 to comply with the shorted end, hence
1
v = (d)
uocs
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PROBLEM 6.10
Part a

Ignoring the effect of the induced field we must conclude that
E=0 (a)
everywhere in the stationary frame. But then
E'=E+VxB=Vx8B (b)
Since the plate _is conducting
J'=J=0dVxB (c)

The force on the plate is then

F=Iijdv=DWd(o-\-lx§)xI_5 (d)
F = - DWd ov B2 (e)
, X o
Part b ////
e
dv 2
M d—t- + (DWdUBo)V 0 " (£)
DWdOB2 t
-
M
v=v e _ (g)
Part ¢

The additional induced field must be small. From (e)

' o~
J' = 0B v (h)
Hence K' = 0B dv 1)
o o
The induced field then has a magnitude
Kl
B' . uo _
B.TB - MY, <1 &)
o] 0
1
od << Ty . (k)
oo

It must be a very thin plate or a poorly conducting one.
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PROBLEM 6.11

Part a f %

The condition %-<< Ho means that the field

¥
induced by the current can be ignored. Then the Ky 1%
magnetic field in the stationary frame is ‘;x
->
H = -Hoi everywhere outside the perfect (a)
conductors
The surface currents on the sliding conductor are such that
K, +K, = 1/W (b)
The force on the conductor is then
- - - -»>
F = f JxB dv = [(K1 + Kz)iy x Boiz]WD
<>
= uHdl i (e)
Part b
The circuit equation is
da
RL+ 2=V (d)
dA
i uoHOdv (e)
Since F = M dv (£)
dat
MR dv
(u 7 a g T (v =V, (g)
oo
2
(u H d)
00
Yo " Twr ot
vV=UWd (1 -e du_, (t) (h)
oo
PROBLEM 6.12
Part a
We assume the simple magnetic field
i? 0
- = < <
} D 13 xl X
H= (8)
0 x < X,
S U wx
A(x) = IB°da =5 1 (b)
Part b
H_Wx
oo = M - 2= @
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PROBLEM 6.12.(Continued)

Since the system is linear

uon

D

2 2

1

' =1 =1
Wm(i,x) =3 L(x)1i" = 5

Part ¢ 3’
m

3x

u ¥

D

2

e 1

f =

N

Part d
The mechanical equation is

2 uw
dx dx 1 "'0o ,2
" ta2zn

The electrical circuit, equation is

.d_)‘zi_(uowxi)=v
dt dt D o

Part e
' From (f) we learn that
u v
dx (]

2
it = 78D i® = const

while from (g) we learn that

uOWi dx _ v
D dt o

Solving these two simultaneously

Y3
2

ax [ X

dt 2uOWB

Part f
From (e) 2/3
’_21329_5 _ D 1/3, 1/3
1= U Wdt _(uw) (2B) Yo
o o
Part g
As in part (a)
->
-_££F)13 0 < Xy < x
i= D
(4] x < X,

Part h

The surface current K is
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PROBLEM 6.12 (Continued)

R=-l0 7

D 2 (m)
The force on the short is _ _
_ L _ uWH +ud
F=IJ'dev=DWKx(°1 ° 2, (n)
uw
o 2 e
Di(t)i1
Part 1
JE_ =» - U
% 2{_ _ 3B _Todi7
VEES TR ¥ D t 1 (0)
u >
- ‘0 di
E2=[D xd—t+C]i3 (r)
u
- [0 ¢ 4 _ V()
5~ *ac ~ 7w 143
Partj

Choosing a contour with the right leg in the moving short, the left leg
fixed at x, = 0

1
§iredi = - & | Beda (a)
dt
c s
Since E' = 0 in the short and we are only considering quasistatic fields
' I aHO dx
'. = == ————— ——
§E dl = v(e) = W xu_ 5>+ W GE uH (r)
U Wx
d o
T 5 1) (s)
Part k
ax B)=v B (t)
Here
u i
dx =zb o 7
n=il,v —d—t,B =—Ti3 (u)
U x HW
= _ 0 di _ V()T _ . dx o T
B= e~ w0 Cae vV )
uw ui
dx "o dx o
- E 1= (P ()
Part 1

Equations (n) and (e) are identical. Equations (s) and (g) are
identical 1f V(t) = Vo. Since we used (e) and (g) to solve the first part

we would get the same answer using (n) and (s) in the second part.

148



FIELDS AND MOVING MEDIA

PROBLEM 6.12 (Continued)

Part m
di
Since it - o,
v
v(t) T o
PROBLEM 6.13
Part a
¢ & _
5 =TI + T,(0)
dt
Part b >
P S S B
1 D2ur ’* "1 1 D2aR )
Similarly
Fow - uoHoiZ I
2 D2aR 78
Part c
e - -
T1 [I(r X f)dv]z = - UOHO(RZ-Rl)i1
T = - u H (R -R )1
2 o002 1°72
Part d i
V1 = By (Ry=Ry)5 vy = By (Ry-Ry)
Part e
= ! = ' 2 E VR =
J1 J1 cEl 0(E1+VxB) c(E1+Ru H
i
=1 1 | a4
E1 o 2aDR R oHo dt
(R, - R)
I e e LA ny dU
Y1 ° 5 ZarD 1) = HHRRy-RY) G
R, - R
12 1, _ry S
V2 = T am 12 T MooR(RyRy) Gy
Part f 2
a4y _ -
K . 2 UOHO(RZ Rl)io u_l(t)
t
u H
P(t) = =« —— ZK (R R)i t u_ (t:)
wit) = WHER-RNZ2 4w ()
2 oo 271 K 0 -1
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PROBLEM 6.13 (Continued)

(R,-R,)
vl(t) = %m_gn—l— + (uoHo(RZ_Rl)2 % ti]iou-l(t)
B
V. (¢)
R
- y(¢)
Part g dzq,
K d—tz' = - uOHO(RZ-Rl)il
u H (R,-R,)02aRD
oo 2 1 &y
®,R)) (v HuHR(Ry=Ry )]
2
v v _
d—tz' + Kl E szl(t)

K, = [(uonon)z 20D (R,~R,)0]/K

u H 2aDRT
K. =-20
2 K
Find the particular solution

AR
VY (w,t) = R,[—5——e" "]
P ¢ wz..](lju

K vo -1 Kl
= ——————  gin(wt+tan w—)u_l(t)

qu + (.l)2

B —Klt
b(t) = A +-ﬁz e + \bp(w,t)

N

=N

We must choose A and B so that

=g+ -

W) = 03¢ (@ =0

K K,w
A=‘L v B =+ 2

—— Y
Klw o (Ki + wz) o
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PROBLEM 6.13(Continued)

» ¢
i)}
Part h
The secondary terminals are constrained so that v2=-12R2. Thus, (j) becomes
R3 1 (R2-R ) '
at "/, PP "Rt o 2 roat K4 T Hollo Ry~R) )
Then, it follows from (a), (d) and (e) that
di, RK> K2R4
B R R
dt KR, 2 KR
3 3
from which it follows that - \
" 2
i K,R 0
14, = 4 i
1 72 il
9 RK4 o
KRN0+ GR)
3 P
PROBLEM 6.14 «
Part a
The electric field in the moving laminations is
J' J _ i ?
' 2 e B e 5 e—
B =5 "o~ m;l; (2)
The electric field in the stationary frame is
B = PUxB = (& 4 ruB )1
~Vx 5t rw y) 2 (b)
uoNi
By =~ =3 (c)
U 2DreN
2D o
VeGr- s @
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PROBLEM 6.14 (Continued)
Now we have the V-1 characteristic of the device. The device is in series with an

inductance and a load resistor Rt=RL+Rint'2

U _2DrN U N"aD
2D 0 0 di
[Rt +'6K - 3 wl]i + 5 a& 0 (e)
Part b '
Let 2Du_rNw u NzaD
R =R +2__9° -0 (£)
1 t oA S ’ S
R, /1)t
1=1e ! (g)
2 r
p, = 1%/ =I_°[—@1/[)tJ
d RL RL e
1f 2D 2Duoer
Ri=Re*a~- "5 <0 (h)

the power delivered is unbounded as t + <.

Part c

As the current becomes large, the electrical nonlinearity of the magnetic
circuit will limit the exponential growth and determine a level of stable
steady state operation (see Fig. 6.4.12).

PROBLEM 6.15

After the switch is closed, the armature circuit equation 1s%

diL .
(RL + Ra)iL + La T = Geif (a)

Since Géif is a constant and iL(O) = 0 we can solve for the load current and

shaft torque

(R #R )
GOt T TI t
iL(t) = W (1-e )U_l(t) ()
L a
™(t) = 1, (t) Gi
L £ (R +R))
(Gif)z 6 "~ °¢
= ——— (l-e Yu (t) (c)
(R R ) -1

Wolee Lo = -t
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- PROBLEM 6.15 (Continued)

From the data given

- -3
T La/RL-i.-Ra = 2.5 x 10 ~ sec (d)
Go1
iL =T R 628 amps (e)
max L a
(1) %
Tmax = —izxﬁ—— * 1695 newton-meters (£)
a
Jk (’L (Okmi’i)
628t ——— - mm o m oo - - -
/
/
/
/
T £
c
AT <n0w+ ‘“‘)
/695 L - - - e
R
,
/
Z
7 ~¢
PROBLEM 6.16
Part a
With S1 closed the equation of the field circuit is
di
f
Rfif + Lf EE_ Vf (a)
Since if(O) = 0 Rf
ve  TLC
i(t) = == (1-e Ju_.(¢t) (b)
f Rf -1
Since the armature circuit is open
R
v - _f t
. vV, GO L
v, =681, = R (1-e Ju_, () ()
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PROBLEM 6.16 (Continued)

From the given data

T=1L /Rf = 0.4 sec
v Ge
v =

amax Rf

= 254 volts

0.4 ALt

Part b
Since there is no coupling 6f the armature circuit to the field circuit
is still given by (b).
Because S2 is closed, the armature circuit equation is
dVL
(RL+Ra)VL + La T

i

o
= RLGSif (d)

Since the field current rises with a time constant

T = 0.4 sec (e)

while the time constant of the armature circuit is

T = La/RL+Ra = 0.0025 sec )
we will only need the particular solution for VL(t)
R
£
: -=t
R, GO RL v L
L f f
v, (t) = 1, = ()60 = (1-e Yu_, (t) (2
RL+R £ RL+R f 1
VL = (R +R ) ( )V = 242 volts (h)
max
242 MU -t T T === - -
7/
t%. ’
Voris 2
_ + >t
- 0.4 sec
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PROBLEM 6.17
The equation of motion of the shaft is
dw To
Jr I +'a; w = To + Te(t) (a)

If Te(t) is thought of as a driving term, the response time of the mechanical

circuit is

J w
r o

T= = 0,0785 sec (b)

]
In Probs. 6.15 to 6.16 we have already calculated the armature circuit time

constant to be
; La -3
T = 'E—_"_-R— ~*2,5x%x 10 sec (c)
a L .
We conclude that therise time of the armature circuit may be neglectea, this is
equivalent to ignoring the armature inductance. The circuit equation for the

armature is then

(Ra + RL)iL = Gwif (d)
Then - -(Gif)zw
T =6Gi il =—o——F—7 (e)
e f'L Ra + RL
Plugging into (a)
dw
Jr T + Kw = To (£)
Here 2
To (Gif) Vf :
K= G Y = x (e)
o a L f :
Using the initial condition that w(0) = wo
T T -@(/Jl)t
=2 -9
w(t) = =+ (W - e t>0 (h)
From which we can calculate the net torque on the shaft ag
/3 ) -
dw
T=J 4" (To-Kwo)e u_l(t) ‘ 1)
and the armature current iL(t)
Gif
s (—— >
10 = Ggdu®  t20 W
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PROBLEM 6.17 (Continued)

From the given data
T

0
Weinal = K 119.0 rad/sec = 1133 RPM

T = (T -Kw_) = 1890 newton-m
max o o

Gif
i = w_ = 700 amps
Lm:ln Rzf"R‘l.. °
. Gi £
i, = (FTR) Yfina = 793 avps
max a L

K = 134.5 newton-meters, T = Jr/K = 0.09 sec

1/33'7_;_‘—;-‘—“—"————:_——— - —
/000 1 ~ )

1840
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PROBLEM 6.18

Part a

Let the coulomb torque be C, then the equation of motion is

J % +C=0 (a)
Since w(0) = W,
w(t) = w_(1- ﬁ B 0<e<f/Ow, (b)
LA w(®)

W

ol A
.SWO/C
Part b )
Now the equation of motion is
dw
J m + Bw=20 (c)
w(t) = B/ (@
\ wlt)
- 7
Part c
let C = Bmo, the equation of motion is now
dw
J g+ Bw= -Bu, t (e)
-5 3, .}
{w(e) = - w, + 20 e 0<t<yln2 (£)
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PROBLEM 6.18 (Continued)

w(t)

We =3/8
~T /

PR I PO U
PROBLEM 6.19

Part a

The armature circuit equation is

diL
RaiL + La ac = Gwif - Va u_l(t)
Differentiating
di di
L L dw
L2 Raac = G ge ~ Vat%h(®

dt

The mechanical equation of motion 1is

dw

Jr at = - GiLif
Thus, (b) becomes 2 2
L diL diL (Gif)
a——+R —+——1_=-V u (t)
2 a dt J L ao
dt Y
Initial conditions are
di v
1,07 =0, 37 (0 = - ¢
and it follows from (d) thet a
a -0t
1L(t) (- LaB e sin Bt)u_l(t)
where Ra
o= Ef; = 7.5/sec

2 )
Gi
B = \/-(—f)— - RL?' ~ 19,9 rad/sec
J_ L 2L °
r a a

158

(a)

(b)

(c)

(d)

(e)

£)

(2)

(h)



FIELDS AND MOVING MEDIA

PROBLEM 6.19 (Continued)

v
a8 .
LaB =: 1160 amps (1)

v
w(t) = - 2 [% e sin Bt + (e *tcos Bt-1)]
£

\')
—G:—f = 153.3 rad/sec (k)
ALL‘L
/’\
\\\\\\\\ i//////////’ e ———
Lw(t)
AR e
A

Part b

Now we replace Ra by Ra+RL in part (a). Because of the additional
damping

v
a -(a-y)t __~-(otY)t
1(0 = - 3y Ce - Yu_y (8) w
where R +RL
a-= —aZL—— = 75/sec (m)
a
R +R 2 (6l )2
a ) £

v =\ ¢ ST -1 = 10.6/sec. (n)
a r a
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PROBLEM 6.19 (Continued)

va Gif e-(a—y)t + 1
2Ly J
a r

w(e) = .

1
[(Y'G)

A CL(t)

e-(a+y)t + 22x2]
=Y (o)

|

b N3
’r—
=<

<

LENe

0
oA |

PROBLEM 6.20
Part a

The armature circuit equation is

)

v =R1i +GI
a aa f

The equation of motion is

dw
J it GIfia

Which may be integrated to yield
gr
J -00

w(t) = ia(t)
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PROBLEM 6.20 (Continued)

Combining (e) with (a)

c1)? gt
v.=Ri1i + [ i (t) (d)
a Jr PR -
We recognize that
J
r
C - )2 (e)
f
Part b-
J
Cs= r . _(0.5) = 0.22 farads

©p? Wi

PROBLEM 6.21
According to (6.4.30) the torque of electromagnetic origin is

e

T =611

fa

For operation on a~-c, maximum torque is produced when 1f and ia are in phase,
a situation assured for all loading conditions by a series connection of field
and armature. Parallel operation, on the other hand, will yield a phase relation
between if and ia that varies with loading. This gives reduced performance unless
phase connecting means are employed. This is so troublesome and expensive that
the series connection is used almost exclusively.
PROBLEM 6.22

From (6.4.50) et. seq. the homopolar machine, viewed from the disk terminals

in the steady state, has the volt ampere relation

e —— e

v, = Raia + Gmif P S
q
a 2mod _1i N ‘f‘so éu
2d | Ijzzlr
For definition of v_ and 1 _{_ ‘o
a a . ;

shown to the right and with the
interconnection with the coil
shown in Fig. 6P.22

e e e e e T e

B = uoNia
0 2d
Then from (6.4.52)
wB wu Ni
o ,2 2 o a,2 2
Gmif == (b"-a") = %d (b -a")
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PROBLEM 6.22 (Continued)

Substitution of this into the voltage equation yields for steady state (because

the coll resistance is zero).
wuoNia (b2_82
4d

for self-excitation with 1 #0

0=R1 + )
a a

wu N
—2a ¢

Because all terms on the left are positive except for w, we specify w < 0

b2—a2) = ~R
a

(it rotates in the direction opposite to that shown). With this provi;;pnjthe
number of turns must be S

4dR 4diln(b/a)
N = =
|w|uo(b2—a2) -2ﬂod|w|uo(b2-a2)

21n(b/a)
nouolwl(bz-az)

PROBLEM 6.23
Part a

Denoting the left disk and magnet as 1 and the right one as 2, the flux

densities defined as positive upward are B
™
Y, N s
= - —-—— Y <
Bl (i 2) e
B Bl il
i Y v

Adding up voltage drops around the loop carrying current 11 we have: . %?

dB dB N
2 z 21 B2 2 -
-Nma’ -2 -Nma® L+ R HLR @ (b*-a") = 0 : -
- lnéb&ao
where Ra “omoh

Part b
Substitution of the expression for Bl and 32 into this voltage expression
and simplification yield

di
1
L rTS + il(R.L+Ra) - GQil + GQiz 0

Ney ,

o }

A [
.M Ay
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PROBLEM 6.23 (Continued)
where ) )
éuoNz'naz
L=—g—
-l N(bz-az)
G = .°_2£__
The equation for the circuit carrying current ié can be written similarly as
d12

L T + iz(RL+Ra)—GQiz—Gﬂil =0

These are linear differential equations with constant coefficients, hence, assume

" st, - st
il = Ile H 12 12e

Then
[Ls + R.L+Ra-GS2]Il + sz =0
[Ls + R.L-G-Ra--GQ]I2 - GQII =0

Eliminagion of I1 yields

2
[ [Ls + R +R_-GO]

0 +GQ]I=0

2

If I2 # 0 as it must be if we are to supply current to the load resistances,

then
2 2
[Ls + RL+Ra-GQ] + (G° =0

For steady-state sinusoidal operation s must be purely imaginary. This requires

R, + R -G =0
L a le

B A 2_2 1n (bed
¢ ot Rt mon
22 f

This is the condition required.

or

Part ¢ )
-When the condition of (b) is satisfied

co <

L -
2 2 “(i -1)§

—u NG -2 2

W = LN

212,110N21ra2 2 2T S

8=+ jus=+

o
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PROBLEM 6.23 (Continued)

Thus the system will operate in the sinusoidal steady-state with amplitudes

determined by initial conditions. With the condition of part (b) satisfied the
voltage equations show that

L =3

and the currents form a balanced two-phase set.
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